Raspbian Package Auto-Building

Build log for z3 (4.8.6-2+b2) on armhf

z34.8.6-2+b2armhf → 2019-12-08 16:25:19

sbuild (Debian sbuild) 0.72.0 (25 Oct 2016) on mb-lxc-02

+==============================================================================+
| z3 4.8.6-2+b2 (armhf)                        Sun, 08 Dec 2019 15:15:46 +0000 |
+==============================================================================+

Package: z3
Version: 4.8.6-2+b2
Source Version: 4.8.6-2
Distribution: bullseye-staging
Machine Architecture: armhf
Host Architecture: armhf
Build Architecture: armhf

I: NOTICE: Log filtering will replace 'var/lib/schroot/mount/bullseye-staging-armhf-sbuild-ff570ed2-6c36-4441-af56-60b65fac4e0a' with '<<CHROOT>>'

+------------------------------------------------------------------------------+
| Update chroot                                                                |
+------------------------------------------------------------------------------+

Get:1 http://172.17.0.1/private bullseye-staging InRelease [11.3 kB]
Get:2 http://172.17.0.1/private bullseye-staging/main Sources [11.5 MB]
Get:3 http://172.17.0.1/private bullseye-staging/main armhf Packages [12.8 MB]
Fetched 24.3 MB in 10s (2344 kB/s)
Reading package lists...
W: No sandbox user '_apt' on the system, can not drop privileges

+------------------------------------------------------------------------------+
| Fetch source files                                                           |
+------------------------------------------------------------------------------+


Check APT
---------

Checking available source versions...

Download source files with APT
------------------------------

Reading package lists...
NOTICE: 'z3' packaging is maintained in the 'Git' version control system at:
https://salsa.debian.org/pkg-llvm-team/z3.git
Please use:
git clone https://salsa.debian.org/pkg-llvm-team/z3.git
to retrieve the latest (possibly unreleased) updates to the package.
Need to get 4342 kB of source archives.
Get:1 http://172.17.0.1/private bullseye-staging/main z3 4.8.6-2 (dsc) [2659 B]
Get:2 http://172.17.0.1/private bullseye-staging/main z3 4.8.6-2 (tar) [4329 kB]
Get:3 http://172.17.0.1/private bullseye-staging/main z3 4.8.6-2 (diff) [10.9 kB]
Fetched 4342 kB in 1s (5773 kB/s)
Download complete and in download only mode
I: NOTICE: Log filtering will replace 'build/z3-ZX6SWM/z3-4.8.6' with '<<PKGBUILDDIR>>'
I: NOTICE: Log filtering will replace 'build/z3-ZX6SWM' with '<<BUILDDIR>>'

+------------------------------------------------------------------------------+
| Install build-essential                                                      |
+------------------------------------------------------------------------------+


Setup apt archive
-----------------

Merged Build-Depends: build-essential, fakeroot
Filtered Build-Depends: build-essential, fakeroot
dpkg-deb: building package 'sbuild-build-depends-core-dummy' in '/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive/sbuild-build-depends-core-dummy.deb'.
dpkg-scanpackages: warning: Packages in archive but missing from override file:
dpkg-scanpackages: warning:   sbuild-build-depends-core-dummy
dpkg-scanpackages: info: Wrote 1 entries to output Packages file.
gpg: keybox '/<<BUILDDIR>>/resolver-ZQbPWQ/gpg/pubring.kbx' created
gpg: /<<BUILDDIR>>/resolver-ZQbPWQ/gpg/trustdb.gpg: trustdb created
gpg: key 37145E60F90AF620: public key "Sbuild Signer (Sbuild Build Dependency Archive Key) <buildd-tools-devel@lists.alioth.debian.org>" imported
gpg: Total number processed: 1
gpg:               imported: 1
gpg: key 37145E60F90AF620: "Sbuild Signer (Sbuild Build Dependency Archive Key) <buildd-tools-devel@lists.alioth.debian.org>" not changed
gpg: key 37145E60F90AF620: secret key imported
gpg: Total number processed: 1
gpg:              unchanged: 1
gpg:       secret keys read: 1
gpg:   secret keys imported: 1
gpg: using "Sbuild Signer" as default secret key for signing
Ign:1 copy:/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive ./ InRelease
Get:2 copy:/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive ./ Release [957 B]
Get:3 copy:/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive ./ Release.gpg [370 B]
Get:4 copy:/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive ./ Sources [349 B]
Get:5 copy:/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive ./ Packages [431 B]
Fetched 2107 B in 0s (8246 B/s)
Reading package lists...
W: No sandbox user '_apt' on the system, can not drop privileges
Reading package lists...

Install core build dependencies (apt-based resolver)
----------------------------------------------------

Installing build dependencies
Reading package lists...
Building dependency tree...
Reading state information...
The following packages were automatically installed and are no longer required:
  libpam-cap netbase
Use 'apt autoremove' to remove them.
The following NEW packages will be installed:
  sbuild-build-depends-core-dummy
0 upgraded, 1 newly installed, 0 to remove and 15 not upgraded.
Need to get 852 B of archives.
After this operation, 0 B of additional disk space will be used.
Get:1 copy:/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive ./ sbuild-build-depends-core-dummy 0.invalid.0 [852 B]
debconf: delaying package configuration, since apt-utils is not installed
Fetched 852 B in 0s (0 B/s)
Selecting previously unselected package sbuild-build-depends-core-dummy.
(Reading database ... 13002 files and directories currently installed.)
Preparing to unpack .../sbuild-build-depends-core-dummy_0.invalid.0_armhf.deb ...
Unpacking sbuild-build-depends-core-dummy (0.invalid.0) ...
Setting up sbuild-build-depends-core-dummy (0.invalid.0) ...
W: No sandbox user '_apt' on the system, can not drop privileges

+------------------------------------------------------------------------------+
| Check architectures                                                          |
+------------------------------------------------------------------------------+

Arch check ok (armhf included in any)

+------------------------------------------------------------------------------+
| Install package build dependencies                                           |
+------------------------------------------------------------------------------+


Setup apt archive
-----------------

Merged Build-Depends: debhelper-compat (= 12), dh-python, python3, javahelper, default-jdk, ocaml-nox, dh-ocaml, libnum-ocaml-dev
Filtered Build-Depends: debhelper-compat (= 12), dh-python, python3, javahelper, default-jdk, ocaml-nox, dh-ocaml, libnum-ocaml-dev
dpkg-deb: building package 'sbuild-build-depends-z3-dummy' in '/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive/sbuild-build-depends-z3-dummy.deb'.
dpkg-scanpackages: warning: Packages in archive but missing from override file:
dpkg-scanpackages: warning:   sbuild-build-depends-core-dummy sbuild-build-depends-z3-dummy
dpkg-scanpackages: info: Wrote 2 entries to output Packages file.
gpg: using "Sbuild Signer" as default secret key for signing
Ign:1 copy:/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive ./ InRelease
Get:2 copy:/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive ./ Release [963 B]
Get:3 copy:/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive ./ Release.gpg [370 B]
Get:4 copy:/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive ./ Sources [566 B]
Get:5 copy:/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive ./ Packages [620 B]
Fetched 2519 B in 0s (9274 B/s)
Reading package lists...
W: No sandbox user '_apt' on the system, can not drop privileges
Reading package lists...

Install z3 build dependencies (apt-based resolver)
--------------------------------------------------

Installing build dependencies
Reading package lists...
Building dependency tree...
Reading state information...
The following package was automatically installed and is no longer required:
  libpam-cap
Use 'apt autoremove' to remove it.
The following additional packages will be installed:
  autoconf automake autopoint autotools-dev bsdmainutils ca-certificates
  ca-certificates-java dctrl-tools debhelper default-jdk default-jdk-headless
  default-jre default-jre-headless devscripts dh-autoreconf dh-ocaml dh-python
  dh-strip-nondeterminism dwz file fontconfig-config fonts-dejavu-core gettext
  gettext-base groff-base intltool-debian java-common javahelper
  libarchive-zip-perl libasound2 libasound2-data libavahi-client3
  libavahi-common-data libavahi-common3 libb-hooks-op-check-perl libbsd0
  libclass-method-modifiers-perl libcroco3 libcups2 libdbus-1-3
  libdebhelper-perl libdevel-callchecker-perl libdrm-amdgpu1 libdrm-common
  libdrm-nouveau2 libdrm-radeon1 libdrm2 libdynaloader-functions-perl libedit2
  libelf1 libencode-locale-perl libexpat1 libfile-homedir-perl
  libfile-listing-perl libfile-stripnondeterminism-perl libfile-which-perl
  libfontconfig1 libfreetype6 libgif7 libgl1 libgl1-mesa-dri libglapi-mesa
  libglib2.0-0 libglvnd0 libglx-mesa0 libglx0 libgssapi-krb5-2
  libhtml-parser-perl libhtml-tagset-perl libhtml-tree-perl
  libhttp-cookies-perl libhttp-date-perl libhttp-message-perl
  libhttp-negotiate-perl libicu63 libimport-into-perl libio-html-perl
  libio-pty-perl libio-socket-ssl-perl libipc-run-perl libjpeg62-turbo
  libk5crypto3 libkeyutils1 libkrb5-3 libkrb5support0 liblcms2-2 libllvm9
  liblwp-mediatypes-perl liblwp-protocol-https-perl libmagic-mgc libmagic1
  libmodule-runtime-perl libmoo-perl libmpdec2 libncurses-dev libncurses5-dev
  libncurses6 libnet-http-perl libnet-ssleay-perl libnspr4 libnss3
  libnum-ocaml libnum-ocaml-dev libparams-classify-perl libpcsclite1
  libpipeline1 libpng16-16 libpython3-stdlib libpython3.7-minimal
  libpython3.7-stdlib librole-tiny-perl libsensors-config libsensors5
  libsigsegv2 libssl1.1 libstrictures-perl libsub-override-perl
  libsub-quote-perl libtimedate-perl libtinfo5 libtool libtry-tiny-perl
  libuchardet0 liburi-perl libwww-perl libwww-robotrules-perl libx11-6
  libx11-data libx11-xcb1 libxau6 libxcb-dri2-0 libxcb-dri3-0 libxcb-glx0
  libxcb-present0 libxcb-sync1 libxcb1 libxdamage1 libxdmcp6 libxext6
  libxfixes3 libxi6 libxml2 libxrender1 libxshmfence1 libxtst6 libxxf86vm1
  libz3-4 m4 man-db mime-support ocaml-base-nox ocaml-compiler-libs
  ocaml-interp ocaml-nox openjdk-11-jdk openjdk-11-jdk-headless openjdk-11-jre
  openjdk-11-jre-headless openssl patchutils perl-openssl-defaults po-debconf
  python3 python3-distutils python3-lib2to3 python3-minimal python3.7
  python3.7-minimal sensible-utils ucf wdiff x11-common
Suggested packages:
  autoconf-archive gnu-standards autoconf-doc wamerican | wordlist whois
  vacation debtags dh-make adequate autopkgtest bls-standalone bsd-mailx
  | mailx check-all-the-things cvs-buildpackage devscripts-el diffoscope
  disorderfs dose-extra duck faketime gnuplot how-can-i-help
  libauthen-sasl-perl libdbd-pg-perl libfile-desktopentry-perl
  libnet-smtps-perl libterm-size-perl libyaml-syck-perl mozilla-devscripts
  mutt piuparts postgresql-client quilt ratt reprotest ssh-client
  svn-buildpackage w3m git gettext-doc libasprintf-dev libgettextpo-dev groff
  libasound2-plugins alsa-utils cups-common krb5-doc krb5-user
  libdata-dump-perl liblcms2-utils libcrypt-ssleay-perl ncurses-doc
  libscalar-number-perl pcscd lm-sensors libbareword-filehandles-perl
  libindirect-perl libmultidimensional-perl libtool-doc gfortran
  | fortran95-compiler gcj-jdk libauthen-ntlm-perl m4-doc apparmor less
  www-browser ocaml-doc tuareg-mode openjdk-11-demo openjdk-11-source visualvm
  libnss-mdns fonts-dejavu-extra fonts-ipafont-gothic fonts-ipafont-mincho
  fonts-wqy-microhei | fonts-wqy-zenhei fonts-indic libmail-box-perl
  python3-doc python3-tk python3-venv python3.7-venv python3.7-doc
  binfmt-support wdiff-doc
Recommended packages:
  at dput | dupload libdistro-info-perl libgit-wrapper-perl
  libgitlab-api-v4-perl liblist-compare-perl libstring-shellquote-perl
  licensecheck lintian python3-apt python3-debian python3-magic
  python3-requests python3-unidiff python3-xdg strace unzip wget | curl
  debian-keyring equivs libsoap-lite-perl curl | wget | lynx dbus
  libarchive-cpio-perl libglib2.0-data shared-mime-info xdg-user-dirs
  libhtml-format-perl krb5-locales libclass-xsaccessor-perl libsub-name-perl
  libgpm2 ocaml-findlib libltdl-dev libdata-dump-perl libhtml-form-perl
  libhttp-daemon-perl libmailtools-perl ocaml-man ledit | readline-editor
  libxt-dev libatk-wrapper-java-jni fonts-dejavu-extra libmail-sendmail-perl
The following NEW packages will be installed:
  autoconf automake autopoint autotools-dev bsdmainutils ca-certificates
  ca-certificates-java dctrl-tools debhelper default-jdk default-jdk-headless
  default-jre default-jre-headless devscripts dh-autoreconf dh-ocaml dh-python
  dh-strip-nondeterminism dwz file fontconfig-config fonts-dejavu-core gettext
  gettext-base groff-base intltool-debian java-common javahelper
  libarchive-zip-perl libasound2 libasound2-data libavahi-client3
  libavahi-common-data libavahi-common3 libb-hooks-op-check-perl libbsd0
  libclass-method-modifiers-perl libcroco3 libcups2 libdbus-1-3
  libdebhelper-perl libdevel-callchecker-perl libdrm-amdgpu1 libdrm-common
  libdrm-nouveau2 libdrm-radeon1 libdrm2 libdynaloader-functions-perl libedit2
  libelf1 libencode-locale-perl libexpat1 libfile-homedir-perl
  libfile-listing-perl libfile-stripnondeterminism-perl libfile-which-perl
  libfontconfig1 libfreetype6 libgif7 libgl1 libgl1-mesa-dri libglapi-mesa
  libglib2.0-0 libglvnd0 libglx-mesa0 libglx0 libgssapi-krb5-2
  libhtml-parser-perl libhtml-tagset-perl libhtml-tree-perl
  libhttp-cookies-perl libhttp-date-perl libhttp-message-perl
  libhttp-negotiate-perl libicu63 libimport-into-perl libio-html-perl
  libio-pty-perl libio-socket-ssl-perl libipc-run-perl libjpeg62-turbo
  libk5crypto3 libkeyutils1 libkrb5-3 libkrb5support0 liblcms2-2 libllvm9
  liblwp-mediatypes-perl liblwp-protocol-https-perl libmagic-mgc libmagic1
  libmodule-runtime-perl libmoo-perl libmpdec2 libncurses-dev libncurses5-dev
  libncurses6 libnet-http-perl libnet-ssleay-perl libnspr4 libnss3
  libnum-ocaml libnum-ocaml-dev libparams-classify-perl libpcsclite1
  libpipeline1 libpng16-16 libpython3-stdlib libpython3.7-minimal
  libpython3.7-stdlib librole-tiny-perl libsensors-config libsensors5
  libsigsegv2 libssl1.1 libstrictures-perl libsub-override-perl
  libsub-quote-perl libtimedate-perl libtinfo5 libtool libtry-tiny-perl
  libuchardet0 liburi-perl libwww-perl libwww-robotrules-perl libx11-6
  libx11-data libx11-xcb1 libxau6 libxcb-dri2-0 libxcb-dri3-0 libxcb-glx0
  libxcb-present0 libxcb-sync1 libxcb1 libxdamage1 libxdmcp6 libxext6
  libxfixes3 libxi6 libxml2 libxrender1 libxshmfence1 libxtst6 libxxf86vm1
  libz3-4 m4 man-db mime-support ocaml-base-nox ocaml-compiler-libs
  ocaml-interp ocaml-nox openjdk-11-jdk openjdk-11-jdk-headless openjdk-11-jre
  openjdk-11-jre-headless openssl patchutils perl-openssl-defaults po-debconf
  python3 python3-distutils python3-lib2to3 python3-minimal python3.7
  python3.7-minimal sbuild-build-depends-z3-dummy sensible-utils ucf wdiff
  x11-common
0 upgraded, 173 newly installed, 0 to remove and 15 not upgraded.
Need to get 363 MB of archives.
After this operation, 1381 MB of additional disk space will be used.
Get:1 copy:/<<BUILDDIR>>/resolver-ZQbPWQ/apt_archive ./ sbuild-build-depends-z3-dummy 0.invalid.0 [904 B]
Get:2 http://172.17.0.1/private bullseye-staging/main armhf libbsd0 armhf 0.10.0-1 [112 kB]
Get:3 http://172.17.0.1/private bullseye-staging/main armhf libtinfo5 armhf 6.1+20191019-1 [316 kB]
Get:4 http://172.17.0.1/private bullseye-staging/main armhf bsdmainutils armhf 11.1.2 [182 kB]
Get:5 http://172.17.0.1/private bullseye-staging/main armhf libuchardet0 armhf 0.0.6-3 [62.2 kB]
Get:6 http://172.17.0.1/private bullseye-staging/main armhf groff-base armhf 1.22.4-3 [782 kB]
Get:7 http://172.17.0.1/private bullseye-staging/main armhf libpipeline1 armhf 1.5.1-2 [26.6 kB]
Get:8 http://172.17.0.1/private bullseye-staging/main armhf man-db armhf 2.9.0-1 [1261 kB]
Get:9 http://172.17.0.1/private bullseye-staging/main armhf libssl1.1 armhf 1.1.1d-2 [1268 kB]
Get:10 http://172.17.0.1/private bullseye-staging/main armhf libpython3.7-minimal armhf 3.7.5-2 [584 kB]
Get:11 http://172.17.0.1/private bullseye-staging/main armhf libexpat1 armhf 2.2.9-1 [71.5 kB]
Get:12 http://172.17.0.1/private bullseye-staging/main armhf python3.7-minimal armhf 3.7.5-2 [1527 kB]
Get:13 http://172.17.0.1/private bullseye-staging/main armhf python3-minimal armhf 3.7.5-1 [36.6 kB]
Get:14 http://172.17.0.1/private bullseye-staging/main armhf mime-support all 3.64 [37.8 kB]
Get:15 http://172.17.0.1/private bullseye-staging/main armhf libmpdec2 armhf 2.4.2-2 [67.2 kB]
Get:16 http://172.17.0.1/private bullseye-staging/main armhf libpython3.7-stdlib armhf 3.7.5-2 [1668 kB]
Get:17 http://172.17.0.1/private bullseye-staging/main armhf python3.7 armhf 3.7.5-2 [347 kB]
Get:18 http://172.17.0.1/private bullseye-staging/main armhf libpython3-stdlib armhf 3.7.5-1 [20.1 kB]
Get:19 http://172.17.0.1/private bullseye-staging/main armhf python3 armhf 3.7.5-1 [61.5 kB]
Get:20 http://172.17.0.1/private bullseye-staging/main armhf sensible-utils all 0.0.12+nmu1 [16.0 kB]
Get:21 http://172.17.0.1/private bullseye-staging/main armhf libmagic-mgc armhf 1:5.37-6 [253 kB]
Get:22 http://172.17.0.1/private bullseye-staging/main armhf libmagic1 armhf 1:5.37-6 [111 kB]
Get:23 http://172.17.0.1/private bullseye-staging/main armhf file armhf 1:5.37-6 [66.2 kB]
Get:24 http://172.17.0.1/private bullseye-staging/main armhf gettext-base armhf 0.19.8.1-10 [117 kB]
Get:25 http://172.17.0.1/private bullseye-staging/main armhf ucf all 3.0038+nmu1 [69.0 kB]
Get:26 http://172.17.0.1/private bullseye-staging/main armhf libsigsegv2 armhf 2.12-2 [32.3 kB]
Get:27 http://172.17.0.1/private bullseye-staging/main armhf m4 armhf 1.4.18-4 [185 kB]
Get:28 http://172.17.0.1/private bullseye-staging/main armhf autoconf all 2.69-11 [341 kB]
Get:29 http://172.17.0.1/private bullseye-staging/main armhf autotools-dev all 20180224.1 [77.0 kB]
Get:30 http://172.17.0.1/private bullseye-staging/main armhf automake all 1:1.16.1-4 [771 kB]
Get:31 http://172.17.0.1/private bullseye-staging/main armhf autopoint all 0.19.8.1-10 [435 kB]
Get:32 http://172.17.0.1/private bullseye-staging/main armhf openssl armhf 1.1.1d-2 [806 kB]
Get:33 http://172.17.0.1/private bullseye-staging/main armhf ca-certificates all 20190110 [157 kB]
Get:34 http://172.17.0.1/private bullseye-staging/main armhf java-common all 0.72 [14.5 kB]
Get:35 http://172.17.0.1/private bullseye-staging/main armhf libavahi-common-data armhf 0.7-4+b2 [122 kB]
Get:36 http://172.17.0.1/private bullseye-staging/main armhf libavahi-common3 armhf 0.7-4+b2 [51.0 kB]
Get:37 http://172.17.0.1/private bullseye-staging/main armhf libdbus-1-3 armhf 1.12.16-2+b1 [189 kB]
Get:38 http://172.17.0.1/private bullseye-staging/main armhf libavahi-client3 armhf 0.7-4+b2 [54.1 kB]
Get:39 http://172.17.0.1/private bullseye-staging/main armhf libkeyutils1 armhf 1.6-6 [14.0 kB]
Get:40 http://172.17.0.1/private bullseye-staging/main armhf libkrb5support0 armhf 1.17-6+b1 [61.5 kB]
Get:41 http://172.17.0.1/private bullseye-staging/main armhf libk5crypto3 armhf 1.17-6+b1 [112 kB]
Get:42 http://172.17.0.1/private bullseye-staging/main armhf libkrb5-3 armhf 1.17-6+b1 [316 kB]
Get:43 http://172.17.0.1/private bullseye-staging/main armhf libgssapi-krb5-2 armhf 1.17-6+b1 [134 kB]
Get:44 http://172.17.0.1/private bullseye-staging/main armhf libcups2 armhf 2.3.0-7 [304 kB]
Get:45 http://172.17.0.1/private bullseye-staging/main armhf liblcms2-2 armhf 2.9-3 [116 kB]
Get:46 http://172.17.0.1/private bullseye-staging/main armhf libjpeg62-turbo armhf 1:1.5.2-2+b1 [110 kB]
Get:47 http://172.17.0.1/private bullseye-staging/main armhf libpng16-16 armhf 1.6.37-1 [274 kB]
Get:48 http://172.17.0.1/private bullseye-staging/main armhf libfreetype6 armhf 2.10.1-2 [330 kB]
Get:49 http://172.17.0.1/private bullseye-staging/main armhf fonts-dejavu-core all 2.37-1 [1068 kB]
Get:50 http://172.17.0.1/private bullseye-staging/main armhf fontconfig-config all 2.13.1-2 [280 kB]
Get:51 http://172.17.0.1/private bullseye-staging/main armhf libfontconfig1 armhf 2.13.1-2 [327 kB]
Get:52 http://172.17.0.1/private bullseye-staging/main armhf libnspr4 armhf 2:4.23-1 [90.6 kB]
Get:53 http://172.17.0.1/private bullseye-staging/main armhf libnss3 armhf 2:3.45-1 [957 kB]
Get:54 http://172.17.0.1/private bullseye-staging/main armhf libasound2-data all 1.1.9-1 [60.6 kB]
Get:55 http://172.17.0.1/private bullseye-staging/main armhf libasound2 armhf 1.1.9-1 [309 kB]
Get:56 http://172.17.0.1/private bullseye-staging/main armhf libpcsclite1 armhf 1.8.25-3 [56.1 kB]
Get:57 http://172.17.0.1/private bullseye-staging/main armhf libxau6 armhf 1:1.0.8-1+b2 [19.1 kB]
Get:58 http://172.17.0.1/private bullseye-staging/main armhf libxdmcp6 armhf 1:1.1.2-3 [25.0 kB]
Get:59 http://172.17.0.1/private bullseye-staging/main armhf libxcb1 armhf 1.13.1-2 [132 kB]
Get:60 http://172.17.0.1/private bullseye-staging/main armhf libx11-data all 2:1.6.8-1 [298 kB]
Get:61 http://172.17.0.1/private bullseye-staging/main armhf libx11-6 armhf 2:1.6.8-1 [691 kB]
Get:62 http://172.17.0.1/private bullseye-staging/main armhf libxext6 armhf 2:1.3.3-1+b2 [47.8 kB]
Get:63 http://172.17.0.1/private bullseye-staging/main armhf libxi6 armhf 2:1.7.9-1 [77.8 kB]
Get:64 http://172.17.0.1/private bullseye-staging/main armhf libxrender1 armhf 1:0.9.10-1 [29.9 kB]
Get:65 http://172.17.0.1/private bullseye-staging/main armhf x11-common all 1:7.7+20 [252 kB]
Get:66 http://172.17.0.1/private bullseye-staging/main armhf libxtst6 armhf 2:1.2.3-1 [26.3 kB]
Get:67 http://172.17.0.1/private bullseye-staging/main armhf openjdk-11-jre-headless armhf 11.0.5+10-2 [33.0 MB]
Get:68 http://172.17.0.1/private bullseye-staging/main armhf default-jre-headless armhf 2:1.11-72+b2 [11.2 kB]
Get:69 http://172.17.0.1/private bullseye-staging/main armhf ca-certificates-java all 20190909 [15.7 kB]
Get:70 http://172.17.0.1/private bullseye-staging/main armhf dctrl-tools armhf 2.24-3 [94.2 kB]
Get:71 http://172.17.0.1/private bullseye-staging/main armhf libtool all 2.4.6-11 [547 kB]
Get:72 http://172.17.0.1/private bullseye-staging/main armhf dh-autoreconf all 19 [16.9 kB]
Get:73 http://172.17.0.1/private bullseye-staging/main armhf libdebhelper-perl all 12.7.1 [173 kB]
Get:74 http://172.17.0.1/private bullseye-staging/main armhf libarchive-zip-perl all 1.67-1 [104 kB]
Get:75 http://172.17.0.1/private bullseye-staging/main armhf libsub-override-perl all 0.09-2 [10.2 kB]
Get:76 http://172.17.0.1/private bullseye-staging/main armhf libfile-stripnondeterminism-perl all 1.6.3-1 [23.6 kB]
Get:77 http://172.17.0.1/private bullseye-staging/main armhf dh-strip-nondeterminism all 1.6.3-1 [14.6 kB]
Get:78 http://172.17.0.1/private bullseye-staging/main armhf libelf1 armhf 0.176-1.1 [158 kB]
Get:79 http://172.17.0.1/private bullseye-staging/main armhf dwz armhf 0.13-4 [140 kB]
Get:80 http://172.17.0.1/private bullseye-staging/main armhf libglib2.0-0 armhf 2.62.3-2 [1137 kB]
Get:81 http://172.17.0.1/private bullseye-staging/main armhf libicu63 armhf 63.2-2 [7974 kB]
Get:82 http://172.17.0.1/private bullseye-staging/main armhf libxml2 armhf 2.9.4+dfsg1-8 [593 kB]
Get:83 http://172.17.0.1/private bullseye-staging/main armhf libcroco3 armhf 0.6.13-1 [133 kB]
Get:84 http://172.17.0.1/private bullseye-staging/main armhf gettext armhf 0.19.8.1-10 [1219 kB]
Get:85 http://172.17.0.1/private bullseye-staging/main armhf intltool-debian all 0.35.0+20060710.5 [26.8 kB]
Get:86 http://172.17.0.1/private bullseye-staging/main armhf po-debconf all 1.0.21 [248 kB]
Get:87 http://172.17.0.1/private bullseye-staging/main armhf debhelper all 12.7.1 [997 kB]
Get:88 http://172.17.0.1/private bullseye-staging/main armhf libglvnd0 armhf 1.1.0-1 [54.5 kB]
Get:89 http://172.17.0.1/private bullseye-staging/main armhf libdrm-common all 2.4.100-4+rpi1 [14.3 kB]
Get:90 http://172.17.0.1/private bullseye-staging/main armhf libdrm2 armhf 2.4.100-4+rpi1 [37.1 kB]
Get:91 http://172.17.0.1/private bullseye-staging/main armhf libglapi-mesa armhf 19.2.6-1 [77.7 kB]
Get:92 http://172.17.0.1/private bullseye-staging/main armhf libx11-xcb1 armhf 2:1.6.8-1 [190 kB]
Get:93 http://172.17.0.1/private bullseye-staging/main armhf libxcb-dri2-0 armhf 1.13.1-2 [100 kB]
Get:94 http://172.17.0.1/private bullseye-staging/main armhf libxcb-dri3-0 armhf 1.13.1-2 [100 kB]
Get:95 http://172.17.0.1/private bullseye-staging/main armhf libxcb-glx0 armhf 1.13.1-2 [114 kB]
Get:96 http://172.17.0.1/private bullseye-staging/main armhf libxcb-present0 armhf 1.13.1-2 [99.1 kB]
Get:97 http://172.17.0.1/private bullseye-staging/main armhf libxcb-sync1 armhf 1.13.1-2 [102 kB]
Get:98 http://172.17.0.1/private bullseye-staging/main armhf libxfixes3 armhf 1:5.0.3-1 [20.6 kB]
Get:99 http://172.17.0.1/private bullseye-staging/main armhf libxdamage1 armhf 1:1.1.5-1 [15.1 kB]
Get:100 http://172.17.0.1/private bullseye-staging/main armhf libxshmfence1 armhf 1.3-1 [8636 B]
Get:101 http://172.17.0.1/private bullseye-staging/main armhf libxxf86vm1 armhf 1:1.1.4-1+b2 [20.1 kB]
Get:102 http://172.17.0.1/private bullseye-staging/main armhf libdrm-amdgpu1 armhf 2.4.100-4+rpi1 [27.0 kB]
Get:103 http://172.17.0.1/private bullseye-staging/main armhf libdrm-nouveau2 armhf 2.4.100-4+rpi1 [24.7 kB]
Get:104 http://172.17.0.1/private bullseye-staging/main armhf libdrm-radeon1 armhf 2.4.100-4+rpi1 [28.9 kB]
Get:105 http://172.17.0.1/private bullseye-staging/main armhf libedit2 armhf 3.1-20191025-1 [79.3 kB]
Get:106 http://172.17.0.1/private bullseye-staging/main armhf libz3-4 armhf 4.8.6-2+b1 [5504 kB]
Get:107 http://172.17.0.1/private bullseye-staging/main armhf libllvm9 armhf 1:9.0.0-4+rpi1 [13.1 MB]
Get:108 http://172.17.0.1/private bullseye-staging/main armhf libsensors-config all 1:3.6.0-2 [32.0 kB]
Get:109 http://172.17.0.1/private bullseye-staging/main armhf libsensors5 armhf 1:3.6.0-2 [50.2 kB]
Get:110 http://172.17.0.1/private bullseye-staging/main armhf libgl1-mesa-dri armhf 19.2.6-1 [5597 kB]
Get:111 http://172.17.0.1/private bullseye-staging/main armhf libglx-mesa0 armhf 19.2.6-1 [168 kB]
Get:112 http://172.17.0.1/private bullseye-staging/main armhf libglx0 armhf 1.1.0-1 [24.6 kB]
Get:113 http://172.17.0.1/private bullseye-staging/main armhf libgl1 armhf 1.1.0-1 [107 kB]
Get:114 http://172.17.0.1/private bullseye-staging/main armhf libgif7 armhf 5.1.4-3 [41.0 kB]
Get:115 http://172.17.0.1/private bullseye-staging/main armhf openjdk-11-jre armhf 11.0.5+10-2 [30.7 kB]
Get:116 http://172.17.0.1/private bullseye-staging/main armhf default-jre armhf 2:1.11-72+b2 [1048 B]
Get:117 http://172.17.0.1/private bullseye-staging/main armhf openjdk-11-jdk-headless armhf 11.0.5+10-2 [183 MB]
Get:118 http://172.17.0.1/private bullseye-staging/main armhf default-jdk-headless armhf 2:1.11-72+b2 [1108 B]
Get:119 http://172.17.0.1/private bullseye-staging/main armhf openjdk-11-jdk armhf 11.0.5+10-2 [2134 kB]
Get:120 http://172.17.0.1/private bullseye-staging/main armhf default-jdk armhf 2:1.11-72+b2 [1060 B]
Get:121 http://172.17.0.1/private bullseye-staging/main armhf libfile-which-perl all 1.23-1 [16.6 kB]
Get:122 http://172.17.0.1/private bullseye-staging/main armhf libfile-homedir-perl all 1.004-1 [42.7 kB]
Get:123 http://172.17.0.1/private bullseye-staging/main armhf libio-pty-perl armhf 1:1.12-1 [35.5 kB]
Get:124 http://172.17.0.1/private bullseye-staging/main armhf libipc-run-perl all 20180523.0-2 [101 kB]
Get:125 http://172.17.0.1/private bullseye-staging/main armhf libclass-method-modifiers-perl all 2.13-1 [19.2 kB]
Get:126 http://172.17.0.1/private bullseye-staging/main armhf libb-hooks-op-check-perl armhf 0.22-1+b3 [11.0 kB]
Get:127 http://172.17.0.1/private bullseye-staging/main armhf libdynaloader-functions-perl all 0.003-1 [12.6 kB]
Get:128 http://172.17.0.1/private bullseye-staging/main armhf libdevel-callchecker-perl armhf 0.008-1+b1 [15.7 kB]
Get:129 http://172.17.0.1/private bullseye-staging/main armhf libparams-classify-perl armhf 0.015-1+b2 [24.4 kB]
Get:130 http://172.17.0.1/private bullseye-staging/main armhf libmodule-runtime-perl all 0.016-1 [19.4 kB]
Get:131 http://172.17.0.1/private bullseye-staging/main armhf libimport-into-perl all 1.002005-1 [11.6 kB]
Get:132 http://172.17.0.1/private bullseye-staging/main armhf librole-tiny-perl all 2.001004-1 [20.8 kB]
Get:133 http://172.17.0.1/private bullseye-staging/main armhf libstrictures-perl all 2.000006-1 [18.6 kB]
Get:134 http://172.17.0.1/private bullseye-staging/main armhf libsub-quote-perl all 2.006006-1 [21.0 kB]
Get:135 http://172.17.0.1/private bullseye-staging/main armhf libmoo-perl all 2.003006-1 [58.7 kB]
Get:136 http://172.17.0.1/private bullseye-staging/main armhf libencode-locale-perl all 1.05-1 [13.7 kB]
Get:137 http://172.17.0.1/private bullseye-staging/main armhf libtimedate-perl all 2.3000-2 [42.2 kB]
Get:138 http://172.17.0.1/private bullseye-staging/main armhf libhttp-date-perl all 6.05-1 [10.4 kB]
Get:139 http://172.17.0.1/private bullseye-staging/main armhf libfile-listing-perl all 6.04-1 [10.3 kB]
Get:140 http://172.17.0.1/private bullseye-staging/main armhf libhtml-tagset-perl all 3.20-4 [13.0 kB]
Get:141 http://172.17.0.1/private bullseye-staging/main armhf liburi-perl all 1.76-1 [89.9 kB]
Get:142 http://172.17.0.1/private bullseye-staging/main armhf libhtml-parser-perl armhf 3.72-3+b5 [101 kB]
Get:143 http://172.17.0.1/private bullseye-staging/main armhf libhtml-tree-perl all 5.07-2 [213 kB]
Get:144 http://172.17.0.1/private bullseye-staging/main armhf libio-html-perl all 1.001-1 [17.6 kB]
Get:145 http://172.17.0.1/private bullseye-staging/main armhf liblwp-mediatypes-perl all 6.04-1 [19.9 kB]
Get:146 http://172.17.0.1/private bullseye-staging/main armhf libhttp-message-perl all 6.18-1 [77.8 kB]
Get:147 http://172.17.0.1/private bullseye-staging/main armhf libhttp-cookies-perl all 6.08-1 [19.3 kB]
Get:148 http://172.17.0.1/private bullseye-staging/main armhf libhttp-negotiate-perl all 6.01-1 [12.8 kB]
Get:149 http://172.17.0.1/private bullseye-staging/main armhf perl-openssl-defaults armhf 3 [6782 B]
Get:150 http://172.17.0.1/private bullseye-staging/main armhf libnet-ssleay-perl armhf 1.88-2 [300 kB]
Get:151 http://172.17.0.1/private bullseye-staging/main armhf libio-socket-ssl-perl all 2.066-1 [210 kB]
Get:152 http://172.17.0.1/private bullseye-staging/main armhf libnet-http-perl all 6.19-1 [24.8 kB]
Get:153 http://172.17.0.1/private bullseye-staging/main armhf liblwp-protocol-https-perl all 6.07-2 [9242 B]
Get:154 http://172.17.0.1/private bullseye-staging/main armhf libtry-tiny-perl all 0.30-1 [23.3 kB]
Get:155 http://172.17.0.1/private bullseye-staging/main armhf libwww-robotrules-perl all 6.02-1 [12.9 kB]
Get:156 http://172.17.0.1/private bullseye-staging/main armhf libwww-perl all 6.43-1 [191 kB]
Get:157 http://172.17.0.1/private bullseye-staging/main armhf patchutils armhf 0.3.4-2 [83.1 kB]
Get:158 http://172.17.0.1/private bullseye-staging/main armhf wdiff armhf 1.2.2-2 [120 kB]
Get:159 http://172.17.0.1/private bullseye-staging/main armhf devscripts armhf 2.19.7 [1046 kB]
Get:160 http://172.17.0.1/private bullseye-staging/main armhf dh-ocaml all 1.1.0 [83.3 kB]
Get:161 http://172.17.0.1/private bullseye-staging/main armhf python3-lib2to3 all 3.8.0-1 [78.3 kB]
Get:162 http://172.17.0.1/private bullseye-staging/main armhf python3-distutils all 3.8.0-1 [145 kB]
Get:163 http://172.17.0.1/private bullseye-staging/main armhf dh-python all 4.20191017 [94.4 kB]
Get:164 http://172.17.0.1/private bullseye-staging/main armhf javahelper all 0.72.10 [96.4 kB]
Get:165 http://172.17.0.1/private bullseye-staging/main armhf libncurses6 armhf 6.1+20191019-1 [79.5 kB]
Get:166 http://172.17.0.1/private bullseye-staging/main armhf libncurses-dev armhf 6.1+20191019-1 [284 kB]
Get:167 http://172.17.0.1/private bullseye-staging/main armhf libncurses5-dev armhf 6.1+20191019-1 [940 B]
Get:168 http://172.17.0.1/private bullseye-staging/main armhf ocaml-base-nox armhf 4.08.1-5+rpi1 [528 kB]
Get:169 http://172.17.0.1/private bullseye-staging/main armhf libnum-ocaml armhf 1.3-1 [150 kB]
Get:170 http://172.17.0.1/private bullseye-staging/main armhf ocaml-compiler-libs armhf 4.08.1-5+rpi1 [24.7 MB]
Get:171 http://172.17.0.1/private bullseye-staging/main armhf ocaml-interp armhf 4.08.1-5+rpi1 [4782 kB]
Get:172 http://172.17.0.1/private bullseye-staging/main armhf ocaml-nox armhf 4.08.1-5+rpi1 [51.7 MB]
Get:173 http://172.17.0.1/private bullseye-staging/main armhf libnum-ocaml-dev armhf 1.3-1 [108 kB]
debconf: delaying package configuration, since apt-utils is not installed
Fetched 363 MB in 1min 8s (5301 kB/s)
Selecting previously unselected package libbsd0:armhf.
(Reading database ... 13002 files and directories currently installed.)
Preparing to unpack .../00-libbsd0_0.10.0-1_armhf.deb ...
Unpacking libbsd0:armhf (0.10.0-1) ...
Selecting previously unselected package libtinfo5:armhf.
Preparing to unpack .../01-libtinfo5_6.1+20191019-1_armhf.deb ...
Unpacking libtinfo5:armhf (6.1+20191019-1) ...
Selecting previously unselected package bsdmainutils.
Preparing to unpack .../02-bsdmainutils_11.1.2_armhf.deb ...
Unpacking bsdmainutils (11.1.2) ...
Selecting previously unselected package libuchardet0:armhf.
Preparing to unpack .../03-libuchardet0_0.0.6-3_armhf.deb ...
Unpacking libuchardet0:armhf (0.0.6-3) ...
Selecting previously unselected package groff-base.
Preparing to unpack .../04-groff-base_1.22.4-3_armhf.deb ...
Unpacking groff-base (1.22.4-3) ...
Selecting previously unselected package libpipeline1:armhf.
Preparing to unpack .../05-libpipeline1_1.5.1-2_armhf.deb ...
Unpacking libpipeline1:armhf (1.5.1-2) ...
Selecting previously unselected package man-db.
Preparing to unpack .../06-man-db_2.9.0-1_armhf.deb ...
Unpacking man-db (2.9.0-1) ...
Selecting previously unselected package libssl1.1:armhf.
Preparing to unpack .../07-libssl1.1_1.1.1d-2_armhf.deb ...
Unpacking libssl1.1:armhf (1.1.1d-2) ...
Selecting previously unselected package libpython3.7-minimal:armhf.
Preparing to unpack .../08-libpython3.7-minimal_3.7.5-2_armhf.deb ...
Unpacking libpython3.7-minimal:armhf (3.7.5-2) ...
Selecting previously unselected package libexpat1:armhf.
Preparing to unpack .../09-libexpat1_2.2.9-1_armhf.deb ...
Unpacking libexpat1:armhf (2.2.9-1) ...
Selecting previously unselected package python3.7-minimal.
Preparing to unpack .../10-python3.7-minimal_3.7.5-2_armhf.deb ...
Unpacking python3.7-minimal (3.7.5-2) ...
Setting up libssl1.1:armhf (1.1.1d-2) ...
Setting up libpython3.7-minimal:armhf (3.7.5-2) ...
Setting up libexpat1:armhf (2.2.9-1) ...
Setting up python3.7-minimal (3.7.5-2) ...
Selecting previously unselected package python3-minimal.
(Reading database ... 13921 files and directories currently installed.)
Preparing to unpack .../0-python3-minimal_3.7.5-1_armhf.deb ...
Unpacking python3-minimal (3.7.5-1) ...
Selecting previously unselected package mime-support.
Preparing to unpack .../1-mime-support_3.64_all.deb ...
Unpacking mime-support (3.64) ...
Selecting previously unselected package libmpdec2:armhf.
Preparing to unpack .../2-libmpdec2_2.4.2-2_armhf.deb ...
Unpacking libmpdec2:armhf (2.4.2-2) ...
Selecting previously unselected package libpython3.7-stdlib:armhf.
Preparing to unpack .../3-libpython3.7-stdlib_3.7.5-2_armhf.deb ...
Unpacking libpython3.7-stdlib:armhf (3.7.5-2) ...
Selecting previously unselected package python3.7.
Preparing to unpack .../4-python3.7_3.7.5-2_armhf.deb ...
Unpacking python3.7 (3.7.5-2) ...
Selecting previously unselected package libpython3-stdlib:armhf.
Preparing to unpack .../5-libpython3-stdlib_3.7.5-1_armhf.deb ...
Unpacking libpython3-stdlib:armhf (3.7.5-1) ...
Setting up python3-minimal (3.7.5-1) ...
Selecting previously unselected package python3.
(Reading database ... 14359 files and directories currently installed.)
Preparing to unpack .../000-python3_3.7.5-1_armhf.deb ...
Unpacking python3 (3.7.5-1) ...
Selecting previously unselected package sensible-utils.
Preparing to unpack .../001-sensible-utils_0.0.12+nmu1_all.deb ...
Unpacking sensible-utils (0.0.12+nmu1) ...
Selecting previously unselected package libmagic-mgc.
Preparing to unpack .../002-libmagic-mgc_1%3a5.37-6_armhf.deb ...
Unpacking libmagic-mgc (1:5.37-6) ...
Selecting previously unselected package libmagic1:armhf.
Preparing to unpack .../003-libmagic1_1%3a5.37-6_armhf.deb ...
Unpacking libmagic1:armhf (1:5.37-6) ...
Selecting previously unselected package file.
Preparing to unpack .../004-file_1%3a5.37-6_armhf.deb ...
Unpacking file (1:5.37-6) ...
Selecting previously unselected package gettext-base.
Preparing to unpack .../005-gettext-base_0.19.8.1-10_armhf.deb ...
Unpacking gettext-base (0.19.8.1-10) ...
Selecting previously unselected package ucf.
Preparing to unpack .../006-ucf_3.0038+nmu1_all.deb ...
Moving old data out of the way
Unpacking ucf (3.0038+nmu1) ...
Selecting previously unselected package libsigsegv2:armhf.
Preparing to unpack .../007-libsigsegv2_2.12-2_armhf.deb ...
Unpacking libsigsegv2:armhf (2.12-2) ...
Selecting previously unselected package m4.
Preparing to unpack .../008-m4_1.4.18-4_armhf.deb ...
Unpacking m4 (1.4.18-4) ...
Selecting previously unselected package autoconf.
Preparing to unpack .../009-autoconf_2.69-11_all.deb ...
Unpacking autoconf (2.69-11) ...
Selecting previously unselected package autotools-dev.
Preparing to unpack .../010-autotools-dev_20180224.1_all.deb ...
Unpacking autotools-dev (20180224.1) ...
Selecting previously unselected package automake.
Preparing to unpack .../011-automake_1%3a1.16.1-4_all.deb ...
Unpacking automake (1:1.16.1-4) ...
Selecting previously unselected package autopoint.
Preparing to unpack .../012-autopoint_0.19.8.1-10_all.deb ...
Unpacking autopoint (0.19.8.1-10) ...
Selecting previously unselected package openssl.
Preparing to unpack .../013-openssl_1.1.1d-2_armhf.deb ...
Unpacking openssl (1.1.1d-2) ...
Selecting previously unselected package ca-certificates.
Preparing to unpack .../014-ca-certificates_20190110_all.deb ...
Unpacking ca-certificates (20190110) ...
Selecting previously unselected package java-common.
Preparing to unpack .../015-java-common_0.72_all.deb ...
Unpacking java-common (0.72) ...
Selecting previously unselected package libavahi-common-data:armhf.
Preparing to unpack .../016-libavahi-common-data_0.7-4+b2_armhf.deb ...
Unpacking libavahi-common-data:armhf (0.7-4+b2) ...
Selecting previously unselected package libavahi-common3:armhf.
Preparing to unpack .../017-libavahi-common3_0.7-4+b2_armhf.deb ...
Unpacking libavahi-common3:armhf (0.7-4+b2) ...
Selecting previously unselected package libdbus-1-3:armhf.
Preparing to unpack .../018-libdbus-1-3_1.12.16-2+b1_armhf.deb ...
Unpacking libdbus-1-3:armhf (1.12.16-2+b1) ...
Selecting previously unselected package libavahi-client3:armhf.
Preparing to unpack .../019-libavahi-client3_0.7-4+b2_armhf.deb ...
Unpacking libavahi-client3:armhf (0.7-4+b2) ...
Selecting previously unselected package libkeyutils1:armhf.
Preparing to unpack .../020-libkeyutils1_1.6-6_armhf.deb ...
Unpacking libkeyutils1:armhf (1.6-6) ...
Selecting previously unselected package libkrb5support0:armhf.
Preparing to unpack .../021-libkrb5support0_1.17-6+b1_armhf.deb ...
Unpacking libkrb5support0:armhf (1.17-6+b1) ...
Selecting previously unselected package libk5crypto3:armhf.
Preparing to unpack .../022-libk5crypto3_1.17-6+b1_armhf.deb ...
Unpacking libk5crypto3:armhf (1.17-6+b1) ...
Selecting previously unselected package libkrb5-3:armhf.
Preparing to unpack .../023-libkrb5-3_1.17-6+b1_armhf.deb ...
Unpacking libkrb5-3:armhf (1.17-6+b1) ...
Selecting previously unselected package libgssapi-krb5-2:armhf.
Preparing to unpack .../024-libgssapi-krb5-2_1.17-6+b1_armhf.deb ...
Unpacking libgssapi-krb5-2:armhf (1.17-6+b1) ...
Selecting previously unselected package libcups2:armhf.
Preparing to unpack .../025-libcups2_2.3.0-7_armhf.deb ...
Unpacking libcups2:armhf (2.3.0-7) ...
Selecting previously unselected package liblcms2-2:armhf.
Preparing to unpack .../026-liblcms2-2_2.9-3_armhf.deb ...
Unpacking liblcms2-2:armhf (2.9-3) ...
Selecting previously unselected package libjpeg62-turbo:armhf.
Preparing to unpack .../027-libjpeg62-turbo_1%3a1.5.2-2+b1_armhf.deb ...
Unpacking libjpeg62-turbo:armhf (1:1.5.2-2+b1) ...
Selecting previously unselected package libpng16-16:armhf.
Preparing to unpack .../028-libpng16-16_1.6.37-1_armhf.deb ...
Unpacking libpng16-16:armhf (1.6.37-1) ...
Selecting previously unselected package libfreetype6:armhf.
Preparing to unpack .../029-libfreetype6_2.10.1-2_armhf.deb ...
Unpacking libfreetype6:armhf (2.10.1-2) ...
Selecting previously unselected package fonts-dejavu-core.
Preparing to unpack .../030-fonts-dejavu-core_2.37-1_all.deb ...
Unpacking fonts-dejavu-core (2.37-1) ...
Selecting previously unselected package fontconfig-config.
Preparing to unpack .../031-fontconfig-config_2.13.1-2_all.deb ...
Unpacking fontconfig-config (2.13.1-2) ...
Selecting previously unselected package libfontconfig1:armhf.
Preparing to unpack .../032-libfontconfig1_2.13.1-2_armhf.deb ...
Unpacking libfontconfig1:armhf (2.13.1-2) ...
Selecting previously unselected package libnspr4:armhf.
Preparing to unpack .../033-libnspr4_2%3a4.23-1_armhf.deb ...
Unpacking libnspr4:armhf (2:4.23-1) ...
Selecting previously unselected package libnss3:armhf.
Preparing to unpack .../034-libnss3_2%3a3.45-1_armhf.deb ...
Unpacking libnss3:armhf (2:3.45-1) ...
Selecting previously unselected package libasound2-data.
Preparing to unpack .../035-libasound2-data_1.1.9-1_all.deb ...
Unpacking libasound2-data (1.1.9-1) ...
Selecting previously unselected package libasound2:armhf.
Preparing to unpack .../036-libasound2_1.1.9-1_armhf.deb ...
Unpacking libasound2:armhf (1.1.9-1) ...
Selecting previously unselected package libpcsclite1:armhf.
Preparing to unpack .../037-libpcsclite1_1.8.25-3_armhf.deb ...
Unpacking libpcsclite1:armhf (1.8.25-3) ...
Selecting previously unselected package libxau6:armhf.
Preparing to unpack .../038-libxau6_1%3a1.0.8-1+b2_armhf.deb ...
Unpacking libxau6:armhf (1:1.0.8-1+b2) ...
Selecting previously unselected package libxdmcp6:armhf.
Preparing to unpack .../039-libxdmcp6_1%3a1.1.2-3_armhf.deb ...
Unpacking libxdmcp6:armhf (1:1.1.2-3) ...
Selecting previously unselected package libxcb1:armhf.
Preparing to unpack .../040-libxcb1_1.13.1-2_armhf.deb ...
Unpacking libxcb1:armhf (1.13.1-2) ...
Selecting previously unselected package libx11-data.
Preparing to unpack .../041-libx11-data_2%3a1.6.8-1_all.deb ...
Unpacking libx11-data (2:1.6.8-1) ...
Selecting previously unselected package libx11-6:armhf.
Preparing to unpack .../042-libx11-6_2%3a1.6.8-1_armhf.deb ...
Unpacking libx11-6:armhf (2:1.6.8-1) ...
Selecting previously unselected package libxext6:armhf.
Preparing to unpack .../043-libxext6_2%3a1.3.3-1+b2_armhf.deb ...
Unpacking libxext6:armhf (2:1.3.3-1+b2) ...
Selecting previously unselected package libxi6:armhf.
Preparing to unpack .../044-libxi6_2%3a1.7.9-1_armhf.deb ...
Unpacking libxi6:armhf (2:1.7.9-1) ...
Selecting previously unselected package libxrender1:armhf.
Preparing to unpack .../045-libxrender1_1%3a0.9.10-1_armhf.deb ...
Unpacking libxrender1:armhf (1:0.9.10-1) ...
Selecting previously unselected package x11-common.
Preparing to unpack .../046-x11-common_1%3a7.7+20_all.deb ...
Unpacking x11-common (1:7.7+20) ...
Selecting previously unselected package libxtst6:armhf.
Preparing to unpack .../047-libxtst6_2%3a1.2.3-1_armhf.deb ...
Unpacking libxtst6:armhf (2:1.2.3-1) ...
Selecting previously unselected package openjdk-11-jre-headless:armhf.
Preparing to unpack .../048-openjdk-11-jre-headless_11.0.5+10-2_armhf.deb ...
Unpacking openjdk-11-jre-headless:armhf (11.0.5+10-2) ...
Selecting previously unselected package default-jre-headless.
Preparing to unpack .../049-default-jre-headless_2%3a1.11-72+b2_armhf.deb ...
Unpacking default-jre-headless (2:1.11-72+b2) ...
Selecting previously unselected package ca-certificates-java.
Preparing to unpack .../050-ca-certificates-java_20190909_all.deb ...
Unpacking ca-certificates-java (20190909) ...
Selecting previously unselected package dctrl-tools.
Preparing to unpack .../051-dctrl-tools_2.24-3_armhf.deb ...
Unpacking dctrl-tools (2.24-3) ...
Selecting previously unselected package libtool.
Preparing to unpack .../052-libtool_2.4.6-11_all.deb ...
Unpacking libtool (2.4.6-11) ...
Selecting previously unselected package dh-autoreconf.
Preparing to unpack .../053-dh-autoreconf_19_all.deb ...
Unpacking dh-autoreconf (19) ...
Selecting previously unselected package libdebhelper-perl.
Preparing to unpack .../054-libdebhelper-perl_12.7.1_all.deb ...
Unpacking libdebhelper-perl (12.7.1) ...
Selecting previously unselected package libarchive-zip-perl.
Preparing to unpack .../055-libarchive-zip-perl_1.67-1_all.deb ...
Unpacking libarchive-zip-perl (1.67-1) ...
Selecting previously unselected package libsub-override-perl.
Preparing to unpack .../056-libsub-override-perl_0.09-2_all.deb ...
Unpacking libsub-override-perl (0.09-2) ...
Selecting previously unselected package libfile-stripnondeterminism-perl.
Preparing to unpack .../057-libfile-stripnondeterminism-perl_1.6.3-1_all.deb ...
Unpacking libfile-stripnondeterminism-perl (1.6.3-1) ...
Selecting previously unselected package dh-strip-nondeterminism.
Preparing to unpack .../058-dh-strip-nondeterminism_1.6.3-1_all.deb ...
Unpacking dh-strip-nondeterminism (1.6.3-1) ...
Selecting previously unselected package libelf1:armhf.
Preparing to unpack .../059-libelf1_0.176-1.1_armhf.deb ...
Unpacking libelf1:armhf (0.176-1.1) ...
Selecting previously unselected package dwz.
Preparing to unpack .../060-dwz_0.13-4_armhf.deb ...
Unpacking dwz (0.13-4) ...
Selecting previously unselected package libglib2.0-0:armhf.
Preparing to unpack .../061-libglib2.0-0_2.62.3-2_armhf.deb ...
Unpacking libglib2.0-0:armhf (2.62.3-2) ...
Selecting previously unselected package libicu63:armhf.
Preparing to unpack .../062-libicu63_63.2-2_armhf.deb ...
Unpacking libicu63:armhf (63.2-2) ...
Selecting previously unselected package libxml2:armhf.
Preparing to unpack .../063-libxml2_2.9.4+dfsg1-8_armhf.deb ...
Unpacking libxml2:armhf (2.9.4+dfsg1-8) ...
Selecting previously unselected package libcroco3:armhf.
Preparing to unpack .../064-libcroco3_0.6.13-1_armhf.deb ...
Unpacking libcroco3:armhf (0.6.13-1) ...
Selecting previously unselected package gettext.
Preparing to unpack .../065-gettext_0.19.8.1-10_armhf.deb ...
Unpacking gettext (0.19.8.1-10) ...
Selecting previously unselected package intltool-debian.
Preparing to unpack .../066-intltool-debian_0.35.0+20060710.5_all.deb ...
Unpacking intltool-debian (0.35.0+20060710.5) ...
Selecting previously unselected package po-debconf.
Preparing to unpack .../067-po-debconf_1.0.21_all.deb ...
Unpacking po-debconf (1.0.21) ...
Selecting previously unselected package debhelper.
Preparing to unpack .../068-debhelper_12.7.1_all.deb ...
Unpacking debhelper (12.7.1) ...
Selecting previously unselected package libglvnd0:armhf.
Preparing to unpack .../069-libglvnd0_1.1.0-1_armhf.deb ...
Unpacking libglvnd0:armhf (1.1.0-1) ...
Selecting previously unselected package libdrm-common.
Preparing to unpack .../070-libdrm-common_2.4.100-4+rpi1_all.deb ...
Unpacking libdrm-common (2.4.100-4+rpi1) ...
Selecting previously unselected package libdrm2:armhf.
Preparing to unpack .../071-libdrm2_2.4.100-4+rpi1_armhf.deb ...
Unpacking libdrm2:armhf (2.4.100-4+rpi1) ...
Selecting previously unselected package libglapi-mesa:armhf.
Preparing to unpack .../072-libglapi-mesa_19.2.6-1_armhf.deb ...
Unpacking libglapi-mesa:armhf (19.2.6-1) ...
Selecting previously unselected package libx11-xcb1:armhf.
Preparing to unpack .../073-libx11-xcb1_2%3a1.6.8-1_armhf.deb ...
Unpacking libx11-xcb1:armhf (2:1.6.8-1) ...
Selecting previously unselected package libxcb-dri2-0:armhf.
Preparing to unpack .../074-libxcb-dri2-0_1.13.1-2_armhf.deb ...
Unpacking libxcb-dri2-0:armhf (1.13.1-2) ...
Selecting previously unselected package libxcb-dri3-0:armhf.
Preparing to unpack .../075-libxcb-dri3-0_1.13.1-2_armhf.deb ...
Unpacking libxcb-dri3-0:armhf (1.13.1-2) ...
Selecting previously unselected package libxcb-glx0:armhf.
Preparing to unpack .../076-libxcb-glx0_1.13.1-2_armhf.deb ...
Unpacking libxcb-glx0:armhf (1.13.1-2) ...
Selecting previously unselected package libxcb-present0:armhf.
Preparing to unpack .../077-libxcb-present0_1.13.1-2_armhf.deb ...
Unpacking libxcb-present0:armhf (1.13.1-2) ...
Selecting previously unselected package libxcb-sync1:armhf.
Preparing to unpack .../078-libxcb-sync1_1.13.1-2_armhf.deb ...
Unpacking libxcb-sync1:armhf (1.13.1-2) ...
Selecting previously unselected package libxfixes3:armhf.
Preparing to unpack .../079-libxfixes3_1%3a5.0.3-1_armhf.deb ...
Unpacking libxfixes3:armhf (1:5.0.3-1) ...
Selecting previously unselected package libxdamage1:armhf.
Preparing to unpack .../080-libxdamage1_1%3a1.1.5-1_armhf.deb ...
Unpacking libxdamage1:armhf (1:1.1.5-1) ...
Selecting previously unselected package libxshmfence1:armhf.
Preparing to unpack .../081-libxshmfence1_1.3-1_armhf.deb ...
Unpacking libxshmfence1:armhf (1.3-1) ...
Selecting previously unselected package libxxf86vm1:armhf.
Preparing to unpack .../082-libxxf86vm1_1%3a1.1.4-1+b2_armhf.deb ...
Unpacking libxxf86vm1:armhf (1:1.1.4-1+b2) ...
Selecting previously unselected package libdrm-amdgpu1:armhf.
Preparing to unpack .../083-libdrm-amdgpu1_2.4.100-4+rpi1_armhf.deb ...
Unpacking libdrm-amdgpu1:armhf (2.4.100-4+rpi1) ...
Selecting previously unselected package libdrm-nouveau2:armhf.
Preparing to unpack .../084-libdrm-nouveau2_2.4.100-4+rpi1_armhf.deb ...
Unpacking libdrm-nouveau2:armhf (2.4.100-4+rpi1) ...
Selecting previously unselected package libdrm-radeon1:armhf.
Preparing to unpack .../085-libdrm-radeon1_2.4.100-4+rpi1_armhf.deb ...
Unpacking libdrm-radeon1:armhf (2.4.100-4+rpi1) ...
Selecting previously unselected package libedit2:armhf.
Preparing to unpack .../086-libedit2_3.1-20191025-1_armhf.deb ...
Unpacking libedit2:armhf (3.1-20191025-1) ...
Selecting previously unselected package libz3-4:armhf.
Preparing to unpack .../087-libz3-4_4.8.6-2+b1_armhf.deb ...
Unpacking libz3-4:armhf (4.8.6-2+b1) ...
Selecting previously unselected package libllvm9:armhf.
Preparing to unpack .../088-libllvm9_1%3a9.0.0-4+rpi1_armhf.deb ...
Unpacking libllvm9:armhf (1:9.0.0-4+rpi1) ...
Selecting previously unselected package libsensors-config.
Preparing to unpack .../089-libsensors-config_1%3a3.6.0-2_all.deb ...
Unpacking libsensors-config (1:3.6.0-2) ...
Selecting previously unselected package libsensors5:armhf.
Preparing to unpack .../090-libsensors5_1%3a3.6.0-2_armhf.deb ...
Unpacking libsensors5:armhf (1:3.6.0-2) ...
Selecting previously unselected package libgl1-mesa-dri:armhf.
Preparing to unpack .../091-libgl1-mesa-dri_19.2.6-1_armhf.deb ...
Unpacking libgl1-mesa-dri:armhf (19.2.6-1) ...
Selecting previously unselected package libglx-mesa0:armhf.
Preparing to unpack .../092-libglx-mesa0_19.2.6-1_armhf.deb ...
Unpacking libglx-mesa0:armhf (19.2.6-1) ...
Selecting previously unselected package libglx0:armhf.
Preparing to unpack .../093-libglx0_1.1.0-1_armhf.deb ...
Unpacking libglx0:armhf (1.1.0-1) ...
Selecting previously unselected package libgl1:armhf.
Preparing to unpack .../094-libgl1_1.1.0-1_armhf.deb ...
Unpacking libgl1:armhf (1.1.0-1) ...
Selecting previously unselected package libgif7:armhf.
Preparing to unpack .../095-libgif7_5.1.4-3_armhf.deb ...
Unpacking libgif7:armhf (5.1.4-3) ...
Selecting previously unselected package openjdk-11-jre:armhf.
Preparing to unpack .../096-openjdk-11-jre_11.0.5+10-2_armhf.deb ...
Unpacking openjdk-11-jre:armhf (11.0.5+10-2) ...
Selecting previously unselected package default-jre.
Preparing to unpack .../097-default-jre_2%3a1.11-72+b2_armhf.deb ...
Unpacking default-jre (2:1.11-72+b2) ...
Selecting previously unselected package openjdk-11-jdk-headless:armhf.
Preparing to unpack .../098-openjdk-11-jdk-headless_11.0.5+10-2_armhf.deb ...
Unpacking openjdk-11-jdk-headless:armhf (11.0.5+10-2) ...
Selecting previously unselected package default-jdk-headless.
Preparing to unpack .../099-default-jdk-headless_2%3a1.11-72+b2_armhf.deb ...
Unpacking default-jdk-headless (2:1.11-72+b2) ...
Selecting previously unselected package openjdk-11-jdk:armhf.
Preparing to unpack .../100-openjdk-11-jdk_11.0.5+10-2_armhf.deb ...
Unpacking openjdk-11-jdk:armhf (11.0.5+10-2) ...
Selecting previously unselected package default-jdk.
Preparing to unpack .../101-default-jdk_2%3a1.11-72+b2_armhf.deb ...
Unpacking default-jdk (2:1.11-72+b2) ...
Selecting previously unselected package libfile-which-perl.
Preparing to unpack .../102-libfile-which-perl_1.23-1_all.deb ...
Unpacking libfile-which-perl (1.23-1) ...
Selecting previously unselected package libfile-homedir-perl.
Preparing to unpack .../103-libfile-homedir-perl_1.004-1_all.deb ...
Unpacking libfile-homedir-perl (1.004-1) ...
Selecting previously unselected package libio-pty-perl.
Preparing to unpack .../104-libio-pty-perl_1%3a1.12-1_armhf.deb ...
Unpacking libio-pty-perl (1:1.12-1) ...
Selecting previously unselected package libipc-run-perl.
Preparing to unpack .../105-libipc-run-perl_20180523.0-2_all.deb ...
Unpacking libipc-run-perl (20180523.0-2) ...
Selecting previously unselected package libclass-method-modifiers-perl.
Preparing to unpack .../106-libclass-method-modifiers-perl_2.13-1_all.deb ...
Unpacking libclass-method-modifiers-perl (2.13-1) ...
Selecting previously unselected package libb-hooks-op-check-perl.
Preparing to unpack .../107-libb-hooks-op-check-perl_0.22-1+b3_armhf.deb ...
Unpacking libb-hooks-op-check-perl (0.22-1+b3) ...
Selecting previously unselected package libdynaloader-functions-perl.
Preparing to unpack .../108-libdynaloader-functions-perl_0.003-1_all.deb ...
Unpacking libdynaloader-functions-perl (0.003-1) ...
Selecting previously unselected package libdevel-callchecker-perl.
Preparing to unpack .../109-libdevel-callchecker-perl_0.008-1+b1_armhf.deb ...
Unpacking libdevel-callchecker-perl (0.008-1+b1) ...
Selecting previously unselected package libparams-classify-perl.
Preparing to unpack .../110-libparams-classify-perl_0.015-1+b2_armhf.deb ...
Unpacking libparams-classify-perl (0.015-1+b2) ...
Selecting previously unselected package libmodule-runtime-perl.
Preparing to unpack .../111-libmodule-runtime-perl_0.016-1_all.deb ...
Unpacking libmodule-runtime-perl (0.016-1) ...
Selecting previously unselected package libimport-into-perl.
Preparing to unpack .../112-libimport-into-perl_1.002005-1_all.deb ...
Unpacking libimport-into-perl (1.002005-1) ...
Selecting previously unselected package librole-tiny-perl.
Preparing to unpack .../113-librole-tiny-perl_2.001004-1_all.deb ...
Unpacking librole-tiny-perl (2.001004-1) ...
Selecting previously unselected package libstrictures-perl.
Preparing to unpack .../114-libstrictures-perl_2.000006-1_all.deb ...
Unpacking libstrictures-perl (2.000006-1) ...
Selecting previously unselected package libsub-quote-perl.
Preparing to unpack .../115-libsub-quote-perl_2.006006-1_all.deb ...
Unpacking libsub-quote-perl (2.006006-1) ...
Selecting previously unselected package libmoo-perl.
Preparing to unpack .../116-libmoo-perl_2.003006-1_all.deb ...
Unpacking libmoo-perl (2.003006-1) ...
Selecting previously unselected package libencode-locale-perl.
Preparing to unpack .../117-libencode-locale-perl_1.05-1_all.deb ...
Unpacking libencode-locale-perl (1.05-1) ...
Selecting previously unselected package libtimedate-perl.
Preparing to unpack .../118-libtimedate-perl_2.3000-2_all.deb ...
Unpacking libtimedate-perl (2.3000-2) ...
Selecting previously unselected package libhttp-date-perl.
Preparing to unpack .../119-libhttp-date-perl_6.05-1_all.deb ...
Unpacking libhttp-date-perl (6.05-1) ...
Selecting previously unselected package libfile-listing-perl.
Preparing to unpack .../120-libfile-listing-perl_6.04-1_all.deb ...
Unpacking libfile-listing-perl (6.04-1) ...
Selecting previously unselected package libhtml-tagset-perl.
Preparing to unpack .../121-libhtml-tagset-perl_3.20-4_all.deb ...
Unpacking libhtml-tagset-perl (3.20-4) ...
Selecting previously unselected package liburi-perl.
Preparing to unpack .../122-liburi-perl_1.76-1_all.deb ...
Unpacking liburi-perl (1.76-1) ...
Selecting previously unselected package libhtml-parser-perl.
Preparing to unpack .../123-libhtml-parser-perl_3.72-3+b5_armhf.deb ...
Unpacking libhtml-parser-perl (3.72-3+b5) ...
Selecting previously unselected package libhtml-tree-perl.
Preparing to unpack .../124-libhtml-tree-perl_5.07-2_all.deb ...
Unpacking libhtml-tree-perl (5.07-2) ...
Selecting previously unselected package libio-html-perl.
Preparing to unpack .../125-libio-html-perl_1.001-1_all.deb ...
Unpacking libio-html-perl (1.001-1) ...
Selecting previously unselected package liblwp-mediatypes-perl.
Preparing to unpack .../126-liblwp-mediatypes-perl_6.04-1_all.deb ...
Unpacking liblwp-mediatypes-perl (6.04-1) ...
Selecting previously unselected package libhttp-message-perl.
Preparing to unpack .../127-libhttp-message-perl_6.18-1_all.deb ...
Unpacking libhttp-message-perl (6.18-1) ...
Selecting previously unselected package libhttp-cookies-perl.
Preparing to unpack .../128-libhttp-cookies-perl_6.08-1_all.deb ...
Unpacking libhttp-cookies-perl (6.08-1) ...
Selecting previously unselected package libhttp-negotiate-perl.
Preparing to unpack .../129-libhttp-negotiate-perl_6.01-1_all.deb ...
Unpacking libhttp-negotiate-perl (6.01-1) ...
Selecting previously unselected package perl-openssl-defaults:armhf.
Preparing to unpack .../130-perl-openssl-defaults_3_armhf.deb ...
Unpacking perl-openssl-defaults:armhf (3) ...
Selecting previously unselected package libnet-ssleay-perl.
Preparing to unpack .../131-libnet-ssleay-perl_1.88-2_armhf.deb ...
Unpacking libnet-ssleay-perl (1.88-2) ...
Selecting previously unselected package libio-socket-ssl-perl.
Preparing to unpack .../132-libio-socket-ssl-perl_2.066-1_all.deb ...
Unpacking libio-socket-ssl-perl (2.066-1) ...
Selecting previously unselected package libnet-http-perl.
Preparing to unpack .../133-libnet-http-perl_6.19-1_all.deb ...
Unpacking libnet-http-perl (6.19-1) ...
Selecting previously unselected package liblwp-protocol-https-perl.
Preparing to unpack .../134-liblwp-protocol-https-perl_6.07-2_all.deb ...
Unpacking liblwp-protocol-https-perl (6.07-2) ...
Selecting previously unselected package libtry-tiny-perl.
Preparing to unpack .../135-libtry-tiny-perl_0.30-1_all.deb ...
Unpacking libtry-tiny-perl (0.30-1) ...
Selecting previously unselected package libwww-robotrules-perl.
Preparing to unpack .../136-libwww-robotrules-perl_6.02-1_all.deb ...
Unpacking libwww-robotrules-perl (6.02-1) ...
Selecting previously unselected package libwww-perl.
Preparing to unpack .../137-libwww-perl_6.43-1_all.deb ...
Unpacking libwww-perl (6.43-1) ...
Selecting previously unselected package patchutils.
Preparing to unpack .../138-patchutils_0.3.4-2_armhf.deb ...
Unpacking patchutils (0.3.4-2) ...
Selecting previously unselected package wdiff.
Preparing to unpack .../139-wdiff_1.2.2-2_armhf.deb ...
Unpacking wdiff (1.2.2-2) ...
Selecting previously unselected package devscripts.
Preparing to unpack .../140-devscripts_2.19.7_armhf.deb ...
Unpacking devscripts (2.19.7) ...
Selecting previously unselected package dh-ocaml.
Preparing to unpack .../141-dh-ocaml_1.1.0_all.deb ...
Unpacking dh-ocaml (1.1.0) ...
Selecting previously unselected package python3-lib2to3.
Preparing to unpack .../142-python3-lib2to3_3.8.0-1_all.deb ...
Unpacking python3-lib2to3 (3.8.0-1) ...
Selecting previously unselected package python3-distutils.
Preparing to unpack .../143-python3-distutils_3.8.0-1_all.deb ...
Unpacking python3-distutils (3.8.0-1) ...
Selecting previously unselected package dh-python.
Preparing to unpack .../144-dh-python_4.20191017_all.deb ...
Unpacking dh-python (4.20191017) ...
Selecting previously unselected package javahelper.
Preparing to unpack .../145-javahelper_0.72.10_all.deb ...
Unpacking javahelper (0.72.10) ...
Selecting previously unselected package libncurses6:armhf.
Preparing to unpack .../146-libncurses6_6.1+20191019-1_armhf.deb ...
Unpacking libncurses6:armhf (6.1+20191019-1) ...
Selecting previously unselected package libncurses-dev:armhf.
Preparing to unpack .../147-libncurses-dev_6.1+20191019-1_armhf.deb ...
Unpacking libncurses-dev:armhf (6.1+20191019-1) ...
Selecting previously unselected package libncurses5-dev:armhf.
Preparing to unpack .../148-libncurses5-dev_6.1+20191019-1_armhf.deb ...
Unpacking libncurses5-dev:armhf (6.1+20191019-1) ...
Selecting previously unselected package ocaml-base-nox.
Preparing to unpack .../149-ocaml-base-nox_4.08.1-5+rpi1_armhf.deb ...
Unpacking ocaml-base-nox (4.08.1-5+rpi1) ...
Selecting previously unselected package libnum-ocaml.
Preparing to unpack .../150-libnum-ocaml_1.3-1_armhf.deb ...
Unpacking libnum-ocaml (1.3-1) ...
Selecting previously unselected package ocaml-compiler-libs.
Preparing to unpack .../151-ocaml-compiler-libs_4.08.1-5+rpi1_armhf.deb ...
Unpacking ocaml-compiler-libs (4.08.1-5+rpi1) ...
Selecting previously unselected package ocaml-interp.
Preparing to unpack .../152-ocaml-interp_4.08.1-5+rpi1_armhf.deb ...
Unpacking ocaml-interp (4.08.1-5+rpi1) ...
Selecting previously unselected package ocaml-nox.
Preparing to unpack .../153-ocaml-nox_4.08.1-5+rpi1_armhf.deb ...
Unpacking ocaml-nox (4.08.1-5+rpi1) ...
Selecting previously unselected package libnum-ocaml-dev.
Preparing to unpack .../154-libnum-ocaml-dev_1.3-1_armhf.deb ...
Unpacking libnum-ocaml-dev (1.3-1) ...
Selecting previously unselected package sbuild-build-depends-z3-dummy.
Preparing to unpack .../155-sbuild-build-depends-z3-dummy_0.invalid.0_armhf.deb ...
Unpacking sbuild-build-depends-z3-dummy (0.invalid.0) ...
Setting up libpipeline1:armhf (1.5.1-2) ...
Setting up liblcms2-2:armhf (2.9-3) ...
Setting up libx11-xcb1:armhf (2:1.6.8-1) ...
Setting up libfile-which-perl (1.23-1) ...
Setting up libxau6:armhf (1:1.0.8-1+b2) ...
Setting up libkeyutils1:armhf (1.6-6) ...
Setting up mime-support (3.64) ...
Setting up java-common (0.72) ...
Setting up libdynaloader-functions-perl (0.003-1) ...
Setting up libclass-method-modifiers-perl (2.13-1) ...
Setting up libio-pty-perl (1:1.12-1) ...
Setting up libmagic-mgc (1:5.37-6) ...
Setting up libarchive-zip-perl (1.67-1) ...
Setting up libglib2.0-0:armhf (2.62.3-2) ...
No schema files found: doing nothing.
Setting up libglvnd0:armhf (1.1.0-1) ...
Setting up libhtml-tagset-perl (3.20-4) ...
Setting up libdebhelper-perl (12.7.1) ...
Setting up liblwp-mediatypes-perl (6.04-1) ...
Setting up x11-common (1:7.7+20) ...
update-rc.d: warning: start and stop actions are no longer supported; falling back to defaults
invoke-rc.d: could not determine current runlevel
invoke-rc.d: policy-rc.d denied execution of start.
Setting up dh-ocaml (1.1.0) ...
Setting up libtry-tiny-perl (0.30-1) ...
Setting up libsensors-config (1:3.6.0-2) ...
Setting up libmagic1:armhf (1:5.37-6) ...
Setting up perl-openssl-defaults:armhf (3) ...
Setting up gettext-base (0.19.8.1-10) ...
Setting up libencode-locale-perl (1.05-1) ...
Setting up file (1:5.37-6) ...
Setting up libicu63:armhf (63.2-2) ...
Setting up libkrb5support0:armhf (1.17-6+b1) ...
Setting up libasound2-data (1.1.9-1) ...
Setting up patchutils (0.3.4-2) ...
Setting up autotools-dev (20180224.1) ...
Setting up libz3-4:armhf (4.8.6-2+b1) ...
Setting up libjpeg62-turbo:armhf (1:1.5.2-2+b1) ...
Setting up libx11-data (2:1.6.8-1) ...
Setting up libnspr4:armhf (2:4.23-1) ...
Setting up libavahi-common-data:armhf (0.7-4+b2) ...
Setting up libncurses6:armhf (6.1+20191019-1) ...
Setting up libdbus-1-3:armhf (1.12.16-2+b1) ...
Setting up libsigsegv2:armhf (2.12-2) ...
Setting up libpng16-16:armhf (1.6.37-1) ...
Setting up libio-html-perl (1.001-1) ...
Setting up autopoint (0.19.8.1-10) ...
Setting up libb-hooks-op-check-perl (0.22-1+b3) ...
Setting up fonts-dejavu-core (2.37-1) ...
Setting up libipc-run-perl (20180523.0-2) ...
Setting up libpcsclite1:armhf (1.8.25-3) ...
Setting up libsensors5:armhf (1:3.6.0-2) ...
Setting up libk5crypto3:armhf (1.17-6+b1) ...
Setting up libglapi-mesa:armhf (19.2.6-1) ...
Setting up libtimedate-perl (2.3000-2) ...
Setting up libgif7:armhf (5.1.4-3) ...
Setting up sensible-utils (0.0.12+nmu1) ...
Setting up libxshmfence1:armhf (1.3-1) ...
Setting up libuchardet0:armhf (0.0.6-3) ...
Setting up libasound2:armhf (1.1.9-1) ...
Setting up librole-tiny-perl (2.001004-1) ...
Setting up libsub-override-perl (0.09-2) ...
Setting up libstrictures-perl (2.000006-1) ...
Setting up libsub-quote-perl (2.006006-1) ...
Setting up libkrb5-3:armhf (1.17-6+b1) ...
Setting up ocaml-base-nox (4.08.1-5+rpi1) ...
Setting up libmpdec2:armhf (2.4.2-2) ...
Setting up libfile-homedir-perl (1.004-1) ...
Setting up openssl (1.1.1d-2) ...
Setting up libbsd0:armhf (0.10.0-1) ...
Setting up libtinfo5:armhf (6.1+20191019-1) ...
Setting up libdrm-common (2.4.100-4+rpi1) ...
Setting up libelf1:armhf (0.176-1.1) ...
Setting up libxml2:armhf (2.9.4+dfsg1-8) ...
Setting up liburi-perl (1.76-1) ...
Setting up dctrl-tools (2.24-3) ...
Setting up libnet-ssleay-perl (1.88-2) ...
Setting up libfile-stripnondeterminism-perl (1.6.3-1) ...
Setting up wdiff (1.2.2-2) ...
Setting up libhttp-date-perl (6.05-1) ...
Setting up libxdmcp6:armhf (1:1.1.2-3) ...
Setting up libpython3.7-stdlib:armhf (3.7.5-2) ...
Setting up libncurses-dev:armhf (6.1+20191019-1) ...
Setting up libxcb1:armhf (1.13.1-2) ...
Setting up libfile-listing-perl (6.04-1) ...
Setting up libtool (2.4.6-11) ...
Setting up libxcb-glx0:armhf (1.13.1-2) ...
Setting up libedit2:armhf (3.1-20191025-1) ...
Setting up libavahi-common3:armhf (0.7-4+b2) ...
Setting up libnet-http-perl (6.19-1) ...
Setting up m4 (1.4.18-4) ...
Setting up libnss3:armhf (2:3.45-1) ...
Setting up libdevel-callchecker-perl (0.008-1+b1) ...
Setting up libxcb-present0:armhf (1.13.1-2) ...
Setting up ca-certificates (20190110) ...
Updating certificates in /etc/ssl/certs...
128 added, 0 removed; done.
Setting up libfreetype6:armhf (2.10.1-2) ...
Setting up libxcb-sync1:armhf (1.13.1-2) ...
Setting up bsdmainutils (11.1.2) ...
update-alternatives: using /usr/bin/bsd-write to provide /usr/bin/write (write) in auto mode
update-alternatives: using /usr/bin/bsd-from to provide /usr/bin/from (from) in auto mode
Setting up libgssapi-krb5-2:armhf (1.17-6+b1) ...
Setting up libcroco3:armhf (0.6.13-1) ...
Setting up ucf (3.0038+nmu1) ...
Setting up autoconf (2.69-11) ...
Setting up libxcb-dri2-0:armhf (1.13.1-2) ...
Setting up dh-strip-nondeterminism (1.6.3-1) ...
Setting up libwww-robotrules-perl (6.02-1) ...
Setting up libnum-ocaml (1.3-1) ...
Setting up libdrm2:armhf (2.4.100-4+rpi1) ...
Setting up dwz (0.13-4) ...
Setting up groff-base (1.22.4-3) ...
Setting up libhtml-parser-perl (3.72-3+b5) ...
Setting up libncurses5-dev:armhf (6.1+20191019-1) ...
Setting up libx11-6:armhf (2:1.6.8-1) ...
Setting up libavahi-client3:armhf (0.7-4+b2) ...
Setting up libllvm9:armhf (1:9.0.0-4+rpi1) ...
Setting up libio-socket-ssl-perl (2.066-1) ...
Setting up libpython3-stdlib:armhf (3.7.5-1) ...
Setting up libhttp-message-perl (6.18-1) ...
Setting up libdrm-amdgpu1:armhf (2.4.100-4+rpi1) ...
Setting up automake (1:1.16.1-4) ...
update-alternatives: using /usr/bin/automake-1.16 to provide /usr/bin/automake (automake) in auto mode
Setting up libxcb-dri3-0:armhf (1.13.1-2) ...
Setting up python3.7 (3.7.5-2) ...
Setting up libhttp-negotiate-perl (6.01-1) ...
Setting up libdrm-nouveau2:armhf (2.4.100-4+rpi1) ...
Setting up gettext (0.19.8.1-10) ...
Setting up libxrender1:armhf (1:0.9.10-1) ...
Setting up libhttp-cookies-perl (6.08-1) ...
Setting up libdrm-radeon1:armhf (2.4.100-4+rpi1) ...
Setting up fontconfig-config (2.13.1-2) ...
Setting up libhtml-tree-perl (5.07-2) ...
Setting up libparams-classify-perl (0.015-1+b2) ...
Setting up libgl1-mesa-dri:armhf (19.2.6-1) ...
Setting up libxext6:armhf (2:1.3.3-1+b2) ...
Setting up python3 (3.7.5-1) ...
Setting up man-db (2.9.0-1) ...
Not building database; man-db/auto-update is not 'true'.
Setting up libxxf86vm1:armhf (1:1.1.4-1+b2) ...
Setting up intltool-debian (0.35.0+20060710.5) ...
Setting up libmodule-runtime-perl (0.016-1) ...
Setting up libxfixes3:armhf (1:5.0.3-1) ...
Setting up libcups2:armhf (2.3.0-7) ...
Setting up libfontconfig1:armhf (2.13.1-2) ...
Setting up python3-lib2to3 (3.8.0-1) ...
Setting up python3-distutils (3.8.0-1) ...
Setting up dh-python (4.20191017) ...
Setting up libxdamage1:armhf (1:1.1.5-1) ...
Setting up libxi6:armhf (2:1.7.9-1) ...
Setting up libimport-into-perl (1.002005-1) ...
Setting up libxtst6:armhf (2:1.2.3-1) ...
Setting up libmoo-perl (2.003006-1) ...
Setting up po-debconf (1.0.21) ...
Setting up libglx-mesa0:armhf (19.2.6-1) ...
Setting up libglx0:armhf (1.1.0-1) ...
Setting up libgl1:armhf (1.1.0-1) ...
Setting up liblwp-protocol-https-perl (6.07-2) ...
Setting up default-jre-headless (2:1.11-72+b2) ...
Setting up libwww-perl (6.43-1) ...
Setting up ocaml-compiler-libs (4.08.1-5+rpi1) ...
Setting up openjdk-11-jre-headless:armhf (11.0.5+10-2) ...
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/rmid to provide /usr/bin/rmid (rmid) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/java to provide /usr/bin/java (java) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/keytool to provide /usr/bin/keytool (keytool) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jjs to provide /usr/bin/jjs (jjs) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/pack200 to provide /usr/bin/pack200 (pack200) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/rmiregistry to provide /usr/bin/rmiregistry (rmiregistry) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/unpack200 to provide /usr/bin/unpack200 (unpack200) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/lib/jexec to provide /usr/bin/jexec (jexec) in auto mode
Setting up openjdk-11-jre:armhf (11.0.5+10-2) ...
Setting up openjdk-11-jdk-headless:armhf (11.0.5+10-2) ...
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jar to provide /usr/bin/jar (jar) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jarsigner to provide /usr/bin/jarsigner (jarsigner) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/javac to provide /usr/bin/javac (javac) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/javadoc to provide /usr/bin/javadoc (javadoc) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/javap to provide /usr/bin/javap (javap) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jcmd to provide /usr/bin/jcmd (jcmd) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jdb to provide /usr/bin/jdb (jdb) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jdeprscan to provide /usr/bin/jdeprscan (jdeprscan) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jdeps to provide /usr/bin/jdeps (jdeps) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jimage to provide /usr/bin/jimage (jimage) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jinfo to provide /usr/bin/jinfo (jinfo) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jlink to provide /usr/bin/jlink (jlink) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jmap to provide /usr/bin/jmap (jmap) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jmod to provide /usr/bin/jmod (jmod) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jps to provide /usr/bin/jps (jps) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jrunscript to provide /usr/bin/jrunscript (jrunscript) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jshell to provide /usr/bin/jshell (jshell) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jstack to provide /usr/bin/jstack (jstack) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jstat to provide /usr/bin/jstat (jstat) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jstatd to provide /usr/bin/jstatd (jstatd) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/rmic to provide /usr/bin/rmic (rmic) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/serialver to provide /usr/bin/serialver (serialver) in auto mode
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jhsdb to provide /usr/bin/jhsdb (jhsdb) in auto mode
Setting up default-jre (2:1.11-72+b2) ...
Setting up dh-autoreconf (19) ...
Setting up ocaml-interp (4.08.1-5+rpi1) ...
Setting up default-jdk-headless (2:1.11-72+b2) ...
Setting up devscripts (2.19.7) ...
Setting up ocaml-nox (4.08.1-5+rpi1) ...
Setting up openjdk-11-jdk:armhf (11.0.5+10-2) ...
update-alternatives: using /usr/lib/jvm/java-11-openjdk-armhf/bin/jconsole to provide /usr/bin/jconsole (jconsole) in auto mode
Setting up ca-certificates-java (20190909) ...
head: cannot open '/etc/ssl/certs/java/cacerts' for reading: No such file or directory
Adding debian:ACCVRAIZ1.pem
Adding debian:AC_RAIZ_FNMT-RCM.pem
Adding debian:Actalis_Authentication_Root_CA.pem
Adding debian:AddTrust_External_Root.pem
Adding debian:AffirmTrust_Commercial.pem
Adding debian:AffirmTrust_Networking.pem
Adding debian:AffirmTrust_Premium.pem
Adding debian:AffirmTrust_Premium_ECC.pem
Adding debian:Amazon_Root_CA_1.pem
Adding debian:Amazon_Root_CA_2.pem
Adding debian:Amazon_Root_CA_3.pem
Adding debian:Amazon_Root_CA_4.pem
Adding debian:Atos_TrustedRoot_2011.pem
Adding debian:Autoridad_de_Certificacion_Firmaprofesional_CIF_A62634068.pem
Adding debian:Baltimore_CyberTrust_Root.pem
Adding debian:Buypass_Class_2_Root_CA.pem
Adding debian:Buypass_Class_3_Root_CA.pem
Adding debian:CA_Disig_Root_R2.pem
Adding debian:CFCA_EV_ROOT.pem
Adding debian:COMODO_Certification_Authority.pem
Adding debian:COMODO_ECC_Certification_Authority.pem
Adding debian:COMODO_RSA_Certification_Authority.pem
Adding debian:Certigna.pem
Adding debian:Certinomis_-_Root_CA.pem
Adding debian:Certplus_Class_2_Primary_CA.pem
Adding debian:Certum_Trusted_Network_CA.pem
Adding debian:Certum_Trusted_Network_CA_2.pem
Adding debian:Chambers_of_Commerce_Root_-_2008.pem
Adding debian:Comodo_AAA_Services_root.pem
Adding debian:Cybertrust_Global_Root.pem
Adding debian:D-TRUST_Root_Class_3_CA_2_2009.pem
Adding debian:D-TRUST_Root_Class_3_CA_2_EV_2009.pem
Adding debian:DST_Root_CA_X3.pem
Adding debian:Deutsche_Telekom_Root_CA_2.pem
Adding debian:DigiCert_Assured_ID_Root_CA.pem
Adding debian:DigiCert_Assured_ID_Root_G2.pem
Adding debian:DigiCert_Assured_ID_Root_G3.pem
Adding debian:DigiCert_Global_Root_CA.pem
Adding debian:DigiCert_Global_Root_G2.pem
Adding debian:DigiCert_Global_Root_G3.pem
Adding debian:DigiCert_High_Assurance_EV_Root_CA.pem
Adding debian:DigiCert_Trusted_Root_G4.pem
Adding debian:E-Tugra_Certification_Authority.pem
Adding debian:EC-ACC.pem
Adding debian:EE_Certification_Centre_Root_CA.pem
Adding debian:Entrust.net_Premium_2048_Secure_Server_CA.pem
Adding debian:Entrust_Root_Certification_Authority.pem
Adding debian:Entrust_Root_Certification_Authority_-_EC1.pem
Adding debian:Entrust_Root_Certification_Authority_-_G2.pem
Adding debian:GDCA_TrustAUTH_R5_ROOT.pem
Adding debian:GeoTrust_Global_CA.pem
Adding debian:GeoTrust_Primary_Certification_Authority.pem
Adding debian:GeoTrust_Primary_Certification_Authority_-_G2.pem
Adding debian:GeoTrust_Primary_Certification_Authority_-_G3.pem
Adding debian:GeoTrust_Universal_CA.pem
Adding debian:GeoTrust_Universal_CA_2.pem
Adding debian:GlobalSign_ECC_Root_CA_-_R4.pem
Adding debian:GlobalSign_ECC_Root_CA_-_R5.pem
Adding debian:GlobalSign_Root_CA.pem
Adding debian:GlobalSign_Root_CA_-_R2.pem
Adding debian:GlobalSign_Root_CA_-_R3.pem
Adding debian:GlobalSign_Root_CA_-_R6.pem
Adding debian:Global_Chambersign_Root_-_2008.pem
Adding debian:Go_Daddy_Class_2_CA.pem
Adding debian:Go_Daddy_Root_Certificate_Authority_-_G2.pem
Adding debian:Hellenic_Academic_and_Research_Institutions_ECC_RootCA_2015.pem
Adding debian:Hellenic_Academic_and_Research_Institutions_RootCA_2011.pem
Adding debian:Hellenic_Academic_and_Research_Institutions_RootCA_2015.pem
Adding debian:Hongkong_Post_Root_CA_1.pem
Adding debian:ISRG_Root_X1.pem
Adding debian:IdenTrust_Commercial_Root_CA_1.pem
Adding debian:IdenTrust_Public_Sector_Root_CA_1.pem
Adding debian:Izenpe.com.pem
Adding debian:LuxTrust_Global_Root_2.pem
Adding debian:Microsec_e-Szigno_Root_CA_2009.pem
Adding debian:NetLock_Arany_=Class_Gold=_Főtanúsítvány.pem
Adding debian:Network_Solutions_Certificate_Authority.pem
Adding debian:OISTE_WISeKey_Global_Root_GA_CA.pem
Adding debian:OISTE_WISeKey_Global_Root_GB_CA.pem
Adding debian:OISTE_WISeKey_Global_Root_GC_CA.pem
Adding debian:QuoVadis_Root_CA.pem
Adding debian:QuoVadis_Root_CA_1_G3.pem
Adding debian:QuoVadis_Root_CA_2.pem
Adding debian:QuoVadis_Root_CA_2_G3.pem
Adding debian:QuoVadis_Root_CA_3.pem
Adding debian:QuoVadis_Root_CA_3_G3.pem
Adding debian:SSL.com_EV_Root_Certification_Authority_ECC.pem
Adding debian:SSL.com_EV_Root_Certification_Authority_RSA_R2.pem
Adding debian:SSL.com_Root_Certification_Authority_ECC.pem
Adding debian:SSL.com_Root_Certification_Authority_RSA.pem
Adding debian:SZAFIR_ROOT_CA2.pem
Adding debian:SecureSign_RootCA11.pem
Adding debian:SecureTrust_CA.pem
Adding debian:Secure_Global_CA.pem
Adding debian:Security_Communication_RootCA2.pem
Adding debian:Security_Communication_Root_CA.pem
Adding debian:Sonera_Class_2_Root_CA.pem
Adding debian:Staat_der_Nederlanden_EV_Root_CA.pem
Adding debian:Staat_der_Nederlanden_Root_CA_-_G2.pem
Adding debian:Staat_der_Nederlanden_Root_CA_-_G3.pem
Adding debian:Starfield_Class_2_CA.pem
Adding debian:Starfield_Root_Certificate_Authority_-_G2.pem
Adding debian:Starfield_Services_Root_Certificate_Authority_-_G2.pem
Adding debian:SwissSign_Gold_CA_-_G2.pem
Adding debian:SwissSign_Silver_CA_-_G2.pem
Adding debian:T-TeleSec_GlobalRoot_Class_2.pem
Adding debian:T-TeleSec_GlobalRoot_Class_3.pem
Adding debian:TUBITAK_Kamu_SM_SSL_Kok_Sertifikasi_-_Surum_1.pem
Adding debian:TWCA_Global_Root_CA.pem
Adding debian:TWCA_Root_Certification_Authority.pem
Adding debian:Taiwan_GRCA.pem
Adding debian:TeliaSonera_Root_CA_v1.pem
Adding debian:TrustCor_ECA-1.pem
Adding debian:TrustCor_RootCert_CA-1.pem
Adding debian:TrustCor_RootCert_CA-2.pem
Adding debian:Trustis_FPS_Root_CA.pem
Adding debian:USERTrust_ECC_Certification_Authority.pem
Adding debian:USERTrust_RSA_Certification_Authority.pem
Adding debian:VeriSign_Class_3_Public_Primary_Certification_Authority_-_G4.pem
Adding debian:VeriSign_Class_3_Public_Primary_Certification_Authority_-_G5.pem
Adding debian:VeriSign_Universal_Root_Certification_Authority.pem
Adding debian:Verisign_Class_3_Public_Primary_Certification_Authority_-_G3.pem
Adding debian:XRamp_Global_CA_Root.pem
Adding debian:certSIGN_ROOT_CA.pem
Adding debian:ePKI_Root_Certification_Authority.pem
Adding debian:thawte_Primary_Root_CA.pem
Adding debian:thawte_Primary_Root_CA_-_G2.pem
Adding debian:thawte_Primary_Root_CA_-_G3.pem
done.
Setting up libnum-ocaml-dev (1.3-1) ...
Setting up debhelper (12.7.1) ...
Setting up default-jdk (2:1.11-72+b2) ...
Setting up javahelper (0.72.10) ...
Setting up sbuild-build-depends-z3-dummy (0.invalid.0) ...
Processing triggers for libc-bin (2.29-3+rpi1) ...
Processing triggers for ca-certificates (20190110) ...
Updating certificates in /etc/ssl/certs...
0 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d...

done.
done.
W: No sandbox user '_apt' on the system, can not drop privileges

+------------------------------------------------------------------------------+
| Build environment                                                            |
+------------------------------------------------------------------------------+

Kernel: Linux 4.15.0-58-generic armhf (armv8l)
Toolchain package versions: binutils_2.33.1-5+rpi1 dpkg-dev_1.19.7 g++-9_9.2.1-19+rpi1+b1 gcc-9_9.2.1-19+rpi1+b1 libc6-dev_2.29-3+rpi1 libstdc++-9-dev_9.2.1-19+rpi1+b1 libstdc++6_9.2.1-19+rpi1+b1 linux-libc-dev_5.2.17-1+rpi1+b2
Package versions: adduser_3.118 apt_1.8.4 autoconf_2.69-11 automake_1:1.16.1-4 autopoint_0.19.8.1-10 autotools-dev_20180224.1 base-files_11+rpi1 base-passwd_3.5.46 bash_5.0-5 binutils_2.33.1-5+rpi1 binutils-arm-linux-gnueabihf_2.33.1-5+rpi1 binutils-common_2.33.1-5+rpi1 bsdmainutils_11.1.2 bsdutils_1:2.34-0.1 build-essential_12.8 bzip2_1.0.8-2 ca-certificates_20190110 ca-certificates-java_20190909 coreutils_8.30-3 cpp_4:9.2.1-3.1+rpi1 cpp-9_9.2.1-19+rpi1+b1 dash_0.5.10.2-6 dctrl-tools_2.24-3 debconf_1.5.73 debhelper_12.7.1 debianutils_4.9 default-jdk_2:1.11-72+b2 default-jdk-headless_2:1.11-72+b2 default-jre_2:1.11-72+b2 default-jre-headless_2:1.11-72+b2 devscripts_2.19.7 dh-autoreconf_19 dh-ocaml_1.1.0 dh-python_4.20191017 dh-strip-nondeterminism_1.6.3-1 diffutils_1:3.7-3 dirmngr_2.2.17-3+b1 dpkg_1.19.7 dpkg-dev_1.19.7 dwz_0.13-4 e2fsprogs_1.45.4-1 fakeroot_1.24-1 fdisk_2.34-0.1 file_1:5.37-6 findutils_4.7.0-1 fontconfig-config_2.13.1-2 fonts-dejavu-core_2.37-1 g++_4:9.2.1-3.1+rpi1 g++-9_9.2.1-19+rpi1+b1 gcc_4:9.2.1-3.1+rpi1 gcc-9_9.2.1-19+rpi1+b1 gcc-9-base_9.2.1-19+rpi1+b1 gettext_0.19.8.1-10 gettext-base_0.19.8.1-10 gnupg_2.2.17-3 gnupg-l10n_2.2.17-3 gnupg-utils_2.2.17-3+b1 gpg_2.2.17-3+b1 gpg-agent_2.2.17-3+b1 gpg-wks-client_2.2.17-3+b1 gpg-wks-server_2.2.17-3+b1 gpgconf_2.2.17-3+b1 gpgsm_2.2.17-3+b1 gpgv_2.2.17-3+b1 grep_3.3-1 groff-base_1.22.4-3 gzip_1.9-3 hostname_3.23 init-system-helpers_1.57 intltool-debian_0.35.0+20060710.5 iputils-ping_3:20190709-2 java-common_0.72 javahelper_0.72.10 libacl1_2.2.53-5 libapt-pkg5.0_1.8.4 libarchive-zip-perl_1.67-1 libasan5_9.2.1-19+rpi1+b1 libasound2_1.1.9-1 libasound2-data_1.1.9-1 libassuan0_2.5.3-7 libatomic1_9.2.1-19+rpi1+b1 libattr1_1:2.4.48-5 libaudit-common_1:2.8.5-2 libaudit1_1:2.8.5-2+b1 libavahi-client3_0.7-4+b2 libavahi-common-data_0.7-4+b2 libavahi-common3_0.7-4+b2 libb-hooks-op-check-perl_0.22-1+b3 libbinutils_2.33.1-5+rpi1 libblkid1_2.34-0.1 libbsd0_0.10.0-1 libbz2-1.0_1.0.8-2 libc-bin_2.29-3+rpi1 libc-dev-bin_2.29-3+rpi1 libc6_2.29-3+rpi1 libc6-dev_2.29-3+rpi1 libcap-ng0_0.7.9-2.1 libcap2_1:2.27-1 libcap2-bin_1:2.27-1 libcc1-0_9.2.1-19+rpi1+b1 libclass-method-modifiers-perl_2.13-1 libcom-err2_1.45.4-1 libcroco3_0.6.13-1 libcups2_2.3.0-7 libdb5.3_5.3.28+dfsg1-0.6 libdbus-1-3_1.12.16-2+b1 libdebconfclient0_0.250 libdebhelper-perl_12.7.1 libdevel-callchecker-perl_0.008-1+b1 libdpkg-perl_1.19.7 libdrm-amdgpu1_2.4.100-4+rpi1 libdrm-common_2.4.100-4+rpi1 libdrm-nouveau2_2.4.100-4+rpi1 libdrm-radeon1_2.4.100-4+rpi1 libdrm2_2.4.100-4+rpi1 libdynaloader-functions-perl_0.003-1 libedit2_3.1-20191025-1 libelf1_0.176-1.1 libencode-locale-perl_1.05-1 libexpat1_2.2.9-1 libext2fs2_1.45.4-1 libfakeroot_1.24-1 libfdisk1_2.34-0.1 libffi6_3.2.1-9 libfile-homedir-perl_1.004-1 libfile-listing-perl_6.04-1 libfile-stripnondeterminism-perl_1.6.3-1 libfile-which-perl_1.23-1 libfontconfig1_2.13.1-2 libfreetype6_2.10.1-2 libgcc-9-dev_9.2.1-19+rpi1+b1 libgcc1_1:9.2.1-19+rpi1+b1 libgcrypt20_1.8.5-3 libgdbm-compat4_1.18.1-5 libgdbm6_1.18.1-5 libgif7_5.1.4-3 libgl1_1.1.0-1 libgl1-mesa-dri_19.2.6-1 libglapi-mesa_19.2.6-1 libglib2.0-0_2.62.3-2 libglvnd0_1.1.0-1 libglx-mesa0_19.2.6-1 libglx0_1.1.0-1 libgmp10_2:6.1.2+dfsg-4 libgnutls30_3.6.10-5 libgomp1_9.2.1-19+rpi1+b1 libgpg-error0_1.36-7 libgssapi-krb5-2_1.17-6+b1 libhogweed5_3.5.1+really3.5.1-2 libhtml-parser-perl_3.72-3+b5 libhtml-tagset-perl_3.20-4 libhtml-tree-perl_5.07-2 libhttp-cookies-perl_6.08-1 libhttp-date-perl_6.05-1 libhttp-message-perl_6.18-1 libhttp-negotiate-perl_6.01-1 libicu63_63.2-2 libidn2-0_2.2.0-2 libimport-into-perl_1.002005-1 libio-html-perl_1.001-1 libio-pty-perl_1:1.12-1 libio-socket-ssl-perl_2.066-1 libipc-run-perl_20180523.0-2 libisl22_0.22-2 libjpeg62-turbo_1:1.5.2-2+b1 libk5crypto3_1.17-6+b1 libkeyutils1_1.6-6 libkrb5-3_1.17-6+b1 libkrb5support0_1.17-6+b1 libksba8_1.3.5-2 liblcms2-2_2.9-3 libldap-2.4-2_2.4.48+dfsg-1+b2 libldap-common_2.4.48+dfsg-1 libllvm9_1:9.0.0-4+rpi1 liblwp-mediatypes-perl_6.04-1 liblwp-protocol-https-perl_6.07-2 liblz4-1_1.9.2-2 liblzma5_5.2.4-1 libmagic-mgc_1:5.37-6 libmagic1_1:5.37-6 libmodule-runtime-perl_0.016-1 libmoo-perl_2.003006-1 libmount1_2.34-0.1 libmpc3_1.1.0-1 libmpdec2_2.4.2-2 libmpfr6_4.0.2-1 libncurses-dev_6.1+20191019-1 libncurses5-dev_6.1+20191019-1 libncurses6_6.1+20191019-1 libncursesw6_6.1+20191019-1 libnet-http-perl_6.19-1 libnet-ssleay-perl_1.88-2 libnettle7_3.5.1+really3.5.1-2 libnpth0_1.6-1 libnspr4_2:4.23-1 libnss3_2:3.45-1 libnum-ocaml_1.3-1 libnum-ocaml-dev_1.3-1 libp11-kit0_0.23.18.1-2 libpam-cap_1:2.27-1 libpam-modules_1.3.1-5 libpam-modules-bin_1.3.1-5 libpam-runtime_1.3.1-5 libpam0g_1.3.1-5 libparams-classify-perl_0.015-1+b2 libpcre2-8-0_10.34-3 libpcre3_2:8.39-12 libpcsclite1_1.8.25-3 libperl5.30_5.30.0-9 libpipeline1_1.5.1-2 libpng16-16_1.6.37-1 libpython3-stdlib_3.7.5-1 libpython3.7-minimal_3.7.5-2 libpython3.7-stdlib_3.7.5-2 libreadline7_7.0-5 libreadline8_8.0-3 librole-tiny-perl_2.001004-1 librust-bitflags-dev_1.2.1-1 librust-cloudabi+default-dev_0.0.3-1 librust-cloudabi-dev_0.0.3-1 librust-fuchsia-zircon-dev_0.3.3-2 librust-fuchsia-zircon-sys-dev_0.3.3-2 librust-libc-dev_0.2.62-1 librust-phf-codegen-dev_0.7.23-1 librust-phf-generator-dev_0.7.23-1 librust-phf-shared-dev_0.7.23-2+b1 librust-rand-0.5+alloc-dev_0.5.5-2+rpi1 librust-rand-0.5+std-dev_0.5.5-2+rpi1 librust-rand-0.5-dev_0.5.5-2+rpi1 librust-rand-core-0.2+alloc-dev_0.2.2-1 librust-rand-core-0.2+std-dev_0.2.2-1 librust-rand-core-0.2-dev_0.2.2-1 librust-rand-core-dev_0.3.0-1 librust-siphasher-dev_0.2.3-1 librust-winapi-dev_0.3.6-1 librust-winapi-i686-pc-windows-gnu-dev_0.4.0-1 librust-winapi-x86-64-pc-windows-gnu-dev_0.4.0-1 libsasl2-2_2.1.27+dfsg-1+b1 libsasl2-modules-db_2.1.27+dfsg-1+b1 libseccomp2_2.4.2-2+rpi1 libselinux1_2.9-3 libsemanage-common_2.9-3 libsemanage1_2.9-3 libsensors-config_1:3.6.0-2 libsensors5_1:3.6.0-2 libsepol1_2.9-2 libsigsegv2_2.12-2 libsmartcols1_2.34-0.1 libsqlite3-0_3.30.1-1 libss2_1.45.4-1 libssl1.1_1.1.1d-2 libstdc++-9-dev_9.2.1-19+rpi1+b1 libstdc++6_9.2.1-19+rpi1+b1 libstrictures-perl_2.000006-1 libsub-override-perl_0.09-2 libsub-quote-perl_2.006006-1 libsystemd0_243-8+rpi1 libtasn1-6_4.14-3 libtimedate-perl_2.3000-2 libtinfo5_6.1+20191019-1 libtinfo6_6.1+20191019-1 libtool_2.4.6-11 libtry-tiny-perl_0.30-1 libubsan1_9.2.1-19+rpi1+b1 libuchardet0_0.0.6-3 libudev1_243-8+rpi1 libunistring2_0.9.10-2 liburi-perl_1.76-1 libuuid1_2.34-0.1 libwww-perl_6.43-1 libwww-robotrules-perl_6.02-1 libx11-6_2:1.6.8-1 libx11-data_2:1.6.8-1 libx11-xcb1_2:1.6.8-1 libxau6_1:1.0.8-1+b2 libxcb-dri2-0_1.13.1-2 libxcb-dri3-0_1.13.1-2 libxcb-glx0_1.13.1-2 libxcb-present0_1.13.1-2 libxcb-sync1_1.13.1-2 libxcb1_1.13.1-2 libxdamage1_1:1.1.5-1 libxdmcp6_1:1.1.2-3 libxext6_2:1.3.3-1+b2 libxfixes3_1:5.0.3-1 libxi6_2:1.7.9-1 libxml2_2.9.4+dfsg1-8 libxrender1_1:0.9.10-1 libxshmfence1_1.3-1 libxtst6_2:1.2.3-1 libxxf86vm1_1:1.1.4-1+b2 libz3-4_4.8.6-2+b1 libzstd1_1.4.4+dfsg-1+rpi1 linux-libc-dev_5.2.17-1+rpi1+b2 login_1:4.7-2 logsave_1.45.4-1 lsb-base_11.1.0+rpi1 m4_1.4.18-4 make_4.2.1-1.2 man-db_2.9.0-1 mawk_1.3.3-17 mime-support_3.64 mount_2.34-0.1 ncurses-base_6.1+20191019-1 ncurses-bin_6.1+20191019-1 netbase_5.7 ocaml-base-nox_4.08.1-5+rpi1 ocaml-compiler-libs_4.08.1-5+rpi1 ocaml-interp_4.08.1-5+rpi1 ocaml-nox_4.08.1-5+rpi1 openjdk-11-jdk_11.0.5+10-2 openjdk-11-jdk-headless_11.0.5+10-2 openjdk-11-jre_11.0.5+10-2 openjdk-11-jre-headless_11.0.5+10-2 openssl_1.1.1d-2 passwd_1:4.7-2 patch_2.7.6-6 patchutils_0.3.4-2 perl_5.30.0-9 perl-base_5.30.0-9 perl-modules-5.30_5.30.0-9 perl-openssl-defaults_3 pinentry-curses_1.1.0-3 po-debconf_1.0.21 python3_3.7.5-1 python3-distutils_3.8.0-1 python3-lib2to3_3.8.0-1 python3-minimal_3.7.5-1 python3.7_3.7.5-2 python3.7-minimal_3.7.5-2 raspbian-archive-keyring_20120528.2 readline-common_8.0-3 sbuild-build-depends-core-dummy_0.invalid.0 sbuild-build-depends-z3-dummy_0.invalid.0 sed_4.7-1 sensible-utils_0.0.12+nmu1 sysvinit-utils_2.96-1 tar_1.30+dfsg-6 tzdata_2019c-3 ucf_3.0038+nmu1 util-linux_2.34-0.1 wdiff_1.2.2-2 x11-common_1:7.7+20 xz-utils_5.2.4-1 zlib1g_1:1.2.11.dfsg-1

+------------------------------------------------------------------------------+
| Build                                                                        |
+------------------------------------------------------------------------------+


Unpack source
-------------

gpgv: unknown type of key resource 'trustedkeys.kbx'
gpgv: keyblock resource '/sbuild-nonexistent/.gnupg/trustedkeys.kbx': General error
gpgv: Signature made Mon Oct 14 23:25:48 2019 UTC
gpgv:                using RSA key 18A790760C008B509FCDF7A78A5388B64D692B49
gpgv: Can't check signature: No public key
dpkg-source: warning: failed to verify signature on ./z3_4.8.6-2.dsc
dpkg-source: info: extracting z3 in /<<PKGBUILDDIR>>
dpkg-source: info: unpacking z3_4.8.6.orig.tar.gz
dpkg-source: info: unpacking z3_4.8.6-2.debian.tar.xz
dpkg-source: info: using patch list from debian/patches/series
dpkg-source: info: applying 00-avoid-ocamlopt.patch
dpkg-source: info: applying 01-intrinsics.patch
dpkg-source: info: applying 02-hardening.patch
dpkg-source: info: applying 03-kfreebsd.patch
dpkg-source: info: applying 04-soname.patch
dpkg-source: info: applying 05-reproducibility.patch

Check disk space
----------------

Sufficient free space for build

Hack binNMU version
-------------------

Created changelog entry for binNMU version 4.8.6-2+b2

User Environment
----------------

APT_CONFIG=/var/lib/sbuild/apt.conf
DEB_BUILD_OPTIONS=parallel=4
HOME=/sbuild-nonexistent
LC_ALL=POSIX
LOGNAME=buildd
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
SCHROOT_ALIAS_NAME=bullseye-staging-armhf-sbuild
SCHROOT_CHROOT_NAME=bullseye-staging-armhf-sbuild
SCHROOT_COMMAND=env
SCHROOT_GID=112
SCHROOT_GROUP=buildd
SCHROOT_SESSION_ID=bullseye-staging-armhf-sbuild-ff570ed2-6c36-4441-af56-60b65fac4e0a
SCHROOT_UID=107
SCHROOT_USER=buildd
SHELL=/bin/sh
USER=buildd

dpkg-buildpackage
-----------------

dpkg-buildpackage: info: source package z3
dpkg-buildpackage: info: source version 4.8.6-2+b2
dpkg-buildpackage: info: source distribution bullseye-staging
 dpkg-source --before-build .
dpkg-buildpackage: info: host architecture armhf
 fakeroot debian/rules clean
if [ yes = yes ]; then \
	dh clean --parallel --with python3,javahelper,ocaml; \
else \
	dh clean --parallel --with python3,ocaml; \
fi
   jh_clean
   dh_ocamlclean
   debian/rules override_dh_clean
make[1]: Entering directory '/<<PKGBUILDDIR>>'
dh_clean
sed -i 's/^DOTNET_ENABLED=.*/DOTNET_ENABLED=False/' scripts/mk_util.py
rm -f Makefile scripts/*.pyc
rm -f -r build
rm -f src/api/python/*.pyc
rm -f \
    src/api/api_commands.cpp \
    src/api/api_log_macros.cpp \
    src/api/api_log_macros.h \
    src/api/dll/gparams_register_modules.cpp \
    src/api/dll/install_tactic.cpp \
    src/api/dll/mem_initializer.cpp \
    src/api/dotnet/Enumerations.cs \
    src/api/dotnet/Native.cs \
    src/api/dotnet/Properties/AssemblyInfo.cs \
    src/api/python/z3consts.py \
    src/api/python/z3core.py \
    src/api/java/Native.cpp \
    src/api/java/Native.java \
    src/api/java/enumerations/Z3_ast_kind.java \
    src/api/java/enumerations/Z3_ast_print_mode.java \
    src/api/java/enumerations/Z3_decl_kind.java \
    src/api/java/enumerations/Z3_error_code.java \
    src/api/java/enumerations/Z3_goal_prec.java \
    src/api/java/enumerations/Z3_lbool.java \
    src/api/java/enumerations/Z3_param_kind.java \
    src/api/java/enumerations/Z3_parameter_kind.java \
    src/api/java/enumerations/Z3_sort_kind.java \
    src/api/java/enumerations/Z3_symbol_kind.java \
    src/api/ml/z3native.ml \
    src/api/ml/z3native.mli \
    src/api/ml/z3native_stubs.c \
    src/api/ml/z3enums.ml \
    src/api/ml/z3enums.mli \
    src/ast/fpa/fpa2bv_rewriter_params.hpp \
    src/ast/normal_forms/nnf_params.hpp \
    src/ast/pattern/database.h \
    src/ast/pattern/pattern_inference_params_helper.hpp \
    src/ast/pp_params.hpp \
    src/ast/rewriter/arith_rewriter_params.hpp \
    src/ast/rewriter/array_rewriter_params.hpp \
    src/ast/rewriter/bool_rewriter_params.hpp \
    src/ast/rewriter/bv_rewriter_params.hpp \
    src/ast/rewriter/fpa_rewriter_params.hpp \
    src/ast/rewriter/poly_rewriter_params.hpp \
    src/ast/rewriter/rewriter_params.hpp \
    src/ast/simplifier/arith_simplifier_params_helper.hpp \
    src/ast/simplifier/array_simplifier_params_helper.hpp \
    src/ast/simplifier/bv_simplifier_params_helper.hpp \
    src/interp/interp_params.hpp \
    src/math/polynomial/algebraic_params.hpp \
    src/math/realclosure/rcf_params.hpp \
    src/model/model_evaluator_params.hpp \
    src/model/model_params.hpp \
    src/muz/base/fixedpoint_params.hpp \
    src/nlsat/nlsat_params.hpp \
    src/parsers/util/parser_params.hpp \
    src/sat/sat_asymm_branch_params.hpp \
    src/sat/sat_params.hpp \
    src/sat/sat_scc_params.hpp \
    src/sat/sat_simplifier_params.hpp \
    src/shell/gparams_register_modules.cpp \
    src/shell/install_tactic.cpp \
    src/shell/mem_initializer.cpp \
    src/smt/params/smt_params_helper.hpp \
    src/solver/combined_solver_params.hpp \
    src/tactic/sls/sls_params.hpp \
    src/test/gparams_register_modules.cpp \
    src/test/install_tactic.cpp \
    src/test/mem_initializer.cpp \
    src/util/version.h \
    src/opt/opt_params.hpp
make[1]: Leaving directory '/<<PKGBUILDDIR>>'
 debian/rules build-arch
if [ yes = yes ]; then \
	dh build-arch --parallel --with python3,javahelper,ocaml; \
else \
	dh build-arch --parallel --with python3,ocaml; \
fi
   dh_update_autotools_config -a -O--parallel
   dh_autoreconf -a -O--parallel
   dh_ocamlinit -a -O--parallel
   debian/rules override_dh_auto_configure
make[1]: Entering directory '/<<PKGBUILDDIR>>'
sed -i 's/^DOTNET_ENABLED=.*/DOTNET_ENABLED=False/' scripts/mk_util.py; \
if [ yes = yes ]; then \
	python3 scripts/mk_make.py --python --pypkgdir=/<<PKGBUILDDIR>>/debian/tmp/usr/lib/python3/dist-packages --java --ml --prefix=/<<PKGBUILDDIR>>/debian/tmp/usr; \
else \
	python3 scripts/mk_make.py --python --pypkgdir=/<<PKGBUILDDIR>>/debian/tmp/usr/lib/python3/dist-packages --ml --prefix=/<<PKGBUILDDIR>>/debian/tmp/usr; \
fi
opt = --python, arg = 
opt = --pypkgdir, arg = /<<PKGBUILDDIR>>/debian/tmp/usr/lib/python3/dist-packages
opt = --java, arg = 
opt = --ml, arg = 
opt = --prefix, arg = /<<PKGBUILDDIR>>/debian/tmp/usr
New component: 'util'
New component: 'polynomial'
New component: 'sat'
New component: 'nlsat'
New component: 'lp'
New component: 'hilbert'
New component: 'simplex'
New component: 'automata'
New component: 'interval'
New component: 'realclosure'
New component: 'subpaving'
New component: 'ast'
New component: 'rewriter'
New component: 'macros'
New component: 'normal_forms'
New component: 'model'
New component: 'tactic'
New component: 'substitution'
New component: 'parser_util'
New component: 'grobner'
New component: 'euclid'
New component: 'proofs'
New component: 'solver'
New component: 'cmd_context'
New component: 'sat_tactic'
New component: 'smt2parser'
New component: 'pattern'
New component: 'core_tactics'
New component: 'arith_tactics'
New component: 'nlsat_tactic'
New component: 'subpaving_tactic'
New component: 'aig_tactic'
New component: 'ackermannization'
New component: 'fpa'
New component: 'bit_blaster'
New component: 'smt_params'
New component: 'proto_model'
New component: 'smt'
New component: 'bv_tactics'
New component: 'fuzzing'
New component: 'smt_tactic'
New component: 'sls_tactic'
New component: 'qe'
New component: 'sat_solver'
New component: 'fd_solver'
New component: 'muz'
New component: 'dataflow'
New component: 'transforms'
New component: 'rel'
New component: 'spacer'
New component: 'clp'
New component: 'tab'
New component: 'ddnf'
New component: 'bmc'
New component: 'fp'
New component: 'ufbv_tactic'
New component: 'smtlogic_tactics'
New component: 'fpa_tactics'
New component: 'portfolio'
New component: 'opt'
New component: 'api'
New component: 'extra_cmds'
New component: 'shell'
New component: 'test'
New component: 'api_dll'
New component: 'dotnet'
New component: 'java'
New component: 'ml'
New component: 'cpp'
Python bindings directory was detected.
New component: 'python'
New component: 'python_install'
New component: 'js'
New component: 'cpp_example'
New component: 'z3_tptp'
New component: 'c_example'
New component: 'maxsat'
New component: 'dotnet_example'
New component: 'java_example'
New component: 'py_example'
Generating src/util/z3_version.h from src/util/z3_version.h.in
Generated 'src/util/z3_version.h'
Generated 'src/ackermannization/ackermannization_params.hpp'
Generated 'src/ackermannization/ackermannize_bv_tactic_params.hpp'
Generated 'src/ast/pp_params.hpp'
Generated 'src/ast/fpa/fpa2bv_rewriter_params.hpp'
Generated 'src/ast/normal_forms/nnf_params.hpp'
Generated 'src/ast/pattern/pattern_inference_params_helper.hpp'
Generated 'src/ast/rewriter/arith_rewriter_params.hpp'
Generated 'src/ast/rewriter/array_rewriter_params.hpp'
Generated 'src/ast/rewriter/bool_rewriter_params.hpp'
Generated 'src/ast/rewriter/bv_rewriter_params.hpp'
Generated 'src/ast/rewriter/fpa_rewriter_params.hpp'
Generated 'src/ast/rewriter/poly_rewriter_params.hpp'
Generated 'src/ast/rewriter/rewriter_params.hpp'
Generated 'src/math/polynomial/algebraic_params.hpp'
Generated 'src/math/realclosure/rcf_params.hpp'
Generated 'src/model/model_evaluator_params.hpp'
Generated 'src/model/model_params.hpp'
Generated 'src/muz/base/fp_params.hpp'
Generated 'src/nlsat/nlsat_params.hpp'
Generated 'src/opt/opt_params.hpp'
Generated 'src/parsers/util/parser_params.hpp'
Generated 'src/sat/sat_asymm_branch_params.hpp'
Generated 'src/sat/sat_params.hpp'
Generated 'src/sat/sat_scc_params.hpp'
Generated 'src/sat/sat_simplifier_params.hpp'
Generated 'src/smt/params/smt_params_helper.hpp'
Generated 'src/solver/combined_solver_params.hpp'
Generated 'src/solver/parallel_params.hpp'
Generated 'src/solver/solver_params.hpp'
Generated 'src/tactic/tactic_params.hpp'
Generated 'src/tactic/sls/sls_params.hpp'
Generated 'src/tactic/smtlogics/qfufbv_tactic_params.hpp'
Generated 'src/util/lp/lp_params.hpp'
Generated 'src/ast/pattern/database.h'
Component api
Component portfolio
Component smtlogic_tactics
Component ackermannization
Component model
Component rewriter
Component ast
Component util
Component polynomial
Component automata
Component solver
Component tactic
Component proofs
Component sat_solver
Component core_tactics
Component macros
Component normal_forms
Component pattern
Component smt2parser
Component cmd_context
Component parser_util
Component aig_tactic
Component bv_tactics
Component bit_blaster
Component arith_tactics
Component sat
Component sat_tactic
Component nlsat_tactic
Component nlsat
Component smt_tactic
Component smt
Component proto_model
Component smt_params
Component substitution
Component grobner
Component euclid
Component simplex
Component fpa
Component lp
Component fp
Component muz
Component qe
Component clp
Component transforms
Component hilbert
Component dataflow
Component tab
Component rel
Component bmc
Component fd_solver
Component ddnf
Component spacer
Component ufbv_tactic
Component fpa_tactics
Component sls_tactic
Component subpaving_tactic
Component subpaving
Component interval
Component realclosure
Component opt
Component extra_cmds
Component shell
Generated 'src/shell/install_tactic.cpp'
Component api
Component portfolio
Component smtlogic_tactics
Component ackermannization
Component model
Component rewriter
Component ast
Component util
Component polynomial
Component automata
Component solver
Component tactic
Component proofs
Component sat_solver
Component core_tactics
Component macros
Component normal_forms
Component pattern
Component smt2parser
Component cmd_context
Component parser_util
Component aig_tactic
Component bv_tactics
Component bit_blaster
Component arith_tactics
Component sat
Component sat_tactic
Component nlsat_tactic
Component nlsat
Component smt_tactic
Component smt
Component proto_model
Component smt_params
Component substitution
Component grobner
Component euclid
Component simplex
Component fpa
Component lp
Component fp
Component muz
Component qe
Component clp
Component transforms
Component hilbert
Component dataflow
Component tab
Component rel
Component bmc
Component fd_solver
Component ddnf
Component spacer
Component ufbv_tactic
Component fpa_tactics
Component sls_tactic
Component subpaving_tactic
Component subpaving
Component interval
Component realclosure
Component opt
Component fuzzing
Component test
Generated 'src/test/install_tactic.cpp'
Component api
Component portfolio
Component smtlogic_tactics
Component ackermannization
Component model
Component rewriter
Component ast
Component util
Component polynomial
Component automata
Component solver
Component tactic
Component proofs
Component sat_solver
Component core_tactics
Component macros
Component normal_forms
Component pattern
Component smt2parser
Component cmd_context
Component parser_util
Component aig_tactic
Component bv_tactics
Component bit_blaster
Component arith_tactics
Component sat
Component sat_tactic
Component nlsat_tactic
Component nlsat
Component smt_tactic
Component smt
Component proto_model
Component smt_params
Component substitution
Component grobner
Component euclid
Component simplex
Component fpa
Component lp
Component fp
Component muz
Component qe
Component clp
Component transforms
Component hilbert
Component dataflow
Component tab
Component rel
Component bmc
Component fd_solver
Component ddnf
Component spacer
Component ufbv_tactic
Component fpa_tactics
Component sls_tactic
Component subpaving_tactic
Component subpaving
Component interval
Component realclosure
Component opt
Component extra_cmds
Component api_dll
Generated 'src/api/dll/install_tactic.cpp'
Generated 'src/shell/mem_initializer.cpp'
Generated 'src/test/mem_initializer.cpp'
Generated 'src/api/dll/mem_initializer.cpp'
Generated 'src/shell/gparams_register_modules.cpp'
Generated 'src/test/gparams_register_modules.cpp'
Generated 'src/api/dll/gparams_register_modules.cpp'
Generated 'src/api/python/z3/z3consts.py
Finding javac ...
Finding jar ...
Testing /usr/bin/javac...
Finding jni.h...
Generated 'src/api/java/enumerations/Z3_lbool.java'
Generated 'src/api/java/enumerations/Z3_symbol_kind.java'
Generated 'src/api/java/enumerations/Z3_parameter_kind.java'
Generated 'src/api/java/enumerations/Z3_sort_kind.java'
Generated 'src/api/java/enumerations/Z3_ast_kind.java'
Generated 'src/api/java/enumerations/Z3_decl_kind.java'
Generated 'src/api/java/enumerations/Z3_param_kind.java'
Generated 'src/api/java/enumerations/Z3_ast_print_mode.java'
Generated 'src/api/java/enumerations/Z3_error_code.java'
Generated 'src/api/java/enumerations/Z3_goal_prec.java'
Generated 'src/api/api_log_macros.h'
Generated 'src/api/api_log_macros.cpp'
Generated 'src/api/api_commands.cpp'
Generated 'src/api/python/z3/z3core.py'
Generated 'src/api/java/Native.java'
Generated "src/api/ml/z3native.ml"
Generated "src/api/ml/z3native_stubs.c"
Listing 'src/api/python/z3'...
Compiling 'src/api/python/z3/__init__.py'...
Compiling 'src/api/python/z3/z3.py'...
Compiling 'src/api/python/z3/z3consts.py'...
Compiling 'src/api/python/z3/z3core.py'...
Compiling 'src/api/python/z3/z3num.py'...
Compiling 'src/api/python/z3/z3poly.py'...
Compiling 'src/api/python/z3/z3printer.py'...
Compiling 'src/api/python/z3/z3rcf.py'...
Compiling 'src/api/python/z3/z3types.py'...
Compiling 'src/api/python/z3/z3util.py'...
Generated python bytecode
Copied '__init__.py'
Copied 'z3.py'
Copied 'z3num.py'
Copied 'z3poly.py'
Copied 'z3printer.py'
Copied 'z3rcf.py'
Copied 'z3types.py'
Copied 'z3util.py'
Copied 'z3consts.py'
Copied 'z3core.py'
Copied '__init__.cpython-37.pyc'
Copied 'z3.cpython-37.pyc'
Copied 'z3consts.cpython-37.pyc'
Copied 'z3core.cpython-37.pyc'
Copied 'z3num.cpython-37.pyc'
Copied 'z3poly.cpython-37.pyc'
Copied 'z3printer.cpython-37.pyc'
Copied 'z3rcf.cpython-37.pyc'
Copied 'z3types.cpython-37.pyc'
Copied 'z3util.cpython-37.pyc'
Testing ocamlc...
Finding OCAML_LIB...
OCAML_LIB=/usr/lib/ocaml
Testing ocamlfind...
Generated "src/api/ml/z3enums.ml"
Testing ar...
Testing g++...
Testing gcc...
Testing floating point support...
Host platform:  Linux
C++ Compiler:   g++
C Compiler  :   gcc
Archive Tool:   ar
Arithmetic:     internal
Prefix:         /<<PKGBUILDDIR>>/debian/tmp/usr
64-bit:         False
FP math:        ARM-VFP
Python pkg dir: /<<PKGBUILDDIR>>/debian/tmp/usr/lib/python3/dist-packages
Python version: 3.7
JNI Bindings:   /usr/lib/jvm/java-11-openjdk-armhf/include
Java Compiler:  /usr/bin/javac
OCaml Compiler: ocamlc
OCaml Find tool: 
OCaml Native:   true
OCaml Library:  /usr/lib/ocaml
Writing build/Makefile
Generating build/api/ml/META from src/api/ml/META.in
Copied Z3Py example 'all_interval_series.py' to 'build/python'
Copied Z3Py example 'example.py' to 'build/python'
Copied Z3Py example 'mini_ic3.py' to 'build/python'
Copied Z3Py example 'mini_quip.py' to 'build/python'
Copied Z3Py example 'parallel.py' to 'build/python'
Copied Z3Py example 'rc2.py' to 'build/python'
Copied Z3Py example 'socrates.py' to 'build/python'
Copied Z3Py example 'trafficjam.py' to 'build/python'
Copied Z3Py example 'union_sort.py' to 'build/python'
Copied Z3Py example 'visitor.py' to 'build/python'
WARNING: Could not find ocamlfind utility. OCaml bindings will not be installed
Makefile was successfully generated.
  compilation mode: Release
Type 'cd build; make' to build Z3
sed -i 's/^SLINK_FLAGS=/SLINK_FLAGS=$(LDFLAGS) -fPIC /' build/config.mk
echo 'libz3$(SO_EXT): SLINK_FLAGS += -Wl,-soname,libz3.so.4' >> build/Makefile
printf '%%:\n\t$(MAKE) -C build $@\n' > Makefile
printf '\nall:\n\t$(MAKE) -C build $@\n' >> Makefile
ln -s libz3.so build/libz3.dll
# from T2 README, with fixes
printf '<configuration>\n <dllmap dll="libz3.dll" target="/usr/lib/arm-linux-gnueabihf/libz3.so" os="linux"/>\n</configuration>\n' > build/Microsoft.Z3.dll.config
make[1]: Leaving directory '/<<PKGBUILDDIR>>'
   jh_linkjars -a -O--parallel
   dh_auto_build -a -O--parallel
	make -j4
make[1]: Entering directory '/<<PKGBUILDDIR>>'
make -C build all
make[2]: Entering directory '/<<PKGBUILDDIR>>/build'
src/smt/smt_statistics.cpp
src/util/approx_nat.cpp
src/util/common_msgs.cpp
src/util/luby.cpp
src/api/dll/dll.cpp
ocamlc  -i -I api/ml -c ../src/api/ml/z3enums.ml > api/ml/z3enums.mli
ocamlc  -I api/ml -o api/ml/z3enums.cmi -c api/ml/z3enums.mli
src/util/approx_set.cpp
ocamlc  -I api/ml -o api/ml/z3enums.cmo -c ../src/api/ml/z3enums.ml
src/util/memory_manager.cpp
src/util/page.cpp
src/util/z3_exception.cpp
ocamlc  -i -I api/ml -c ../src/api/ml/z3native.ml > api/ml/z3native.mli
ocamlc  -I api/ml -o api/ml/z3native.cmi -c api/ml/z3native.mli
ocamlc  -I api/ml -o api/ml/z3native.cmo -c ../src/api/ml/z3native.ml
src/api/api_commands.cpp
src/util/bit_util.cpp
src/util/lbool.cpp
src/util/scoped_ctrl_c.cpp
src/util/scoped_timer.cpp
src/util/stack.cpp
src/util/timeit.cpp
src/util/timeout.cpp
src/util/util.cpp
cp ../src/api/ml/z3.mli api/ml/z3.mli
ocamlc  -I api/ml -o api/ml/z3.cmi -c api/ml/z3.mli
ocamlc  -I api/ml -o api/ml/z3.cmo -c ../src/api/ml/z3.ml
File "../src/api/ml/z3.ml", line 206, characters 16-34:
206 |   let compare = Pervasives.compare
                      ^^^^^^^^^^^^^^^^^^
Alert deprecated: module Stdlib.Pervasives
Use Stdlib instead.

If you need to stay compatible with OCaml < 4.07, you can use the 
stdlib-shims library: https://github.com/ocaml/stdlib-shims
src/shell/z3_log_frontend.cpp
src/api/api_log.cpp
src/solver/smt_logics.cpp
src/util/cmd_context_types.cpp
src/util/fixed_bit_vector.cpp
src/util/hash.cpp
src/util/mpn.cpp
src/util/smt2_util.cpp
true  -I api/ml -o api/ml/z3enums.cmx -c ../src/api/ml/z3enums.ml
src/api/api_log_macros.cpp
true  -I api/ml -o api/ml/z3native.cmx -c ../src/api/ml/z3native.ml
true  -I api/ml -o api/ml/z3.cmx -c ../src/api/ml/z3.ml
src/api/z3_replayer.cpp
src/math/automata/automaton.cpp
src/util/bit_vector.cpp
src/util/debug.cpp
src/util/min_cut.cpp
src/util/permutation.cpp
src/util/prime_generator.cpp
src/util/region.cpp
src/util/rlimit.cpp
src/util/small_object_allocator.cpp
src/util/statistics.cpp
src/util/symbol.cpp
src/util/trace.cpp
src/util/warning.cpp
src/ast/pattern/pattern_inference_params.cpp
src/sat/sat_bdd.cpp
src/sat/sat_clause.cpp
src/sat/sat_clause_set.cpp
src/sat/sat_clause_use_list.cpp
src/sat/sat_config.cpp
src/sat/sat_watched.cpp
src/util/env_params.cpp
src/util/gparams.cpp
src/util/mpz.cpp
src/smt/params/dyn_ack_params.cpp
src/smt/params/preprocessor_params.cpp
src/smt/params/qi_params.cpp
src/smt/params/theory_arith_params.cpp
src/smt/params/theory_array_params.cpp
src/smt/params/theory_bv_params.cpp
src/smt/params/theory_pb_params.cpp
src/smt/params/theory_seq_params.cpp
src/smt/params/theory_str_params.cpp
src/math/euclid/euclidean_solver.cpp
src/math/realclosure/mpz_matrix.cpp
src/math/interval/interval_mpq.cpp
src/util/mpf.cpp
src/util/mpff.cpp
src/util/mpfx.cpp
src/util/mpq.cpp
src/util/mpq_inf.cpp
src/util/hwf.cpp
src/shell/mem_initializer.cpp
src/smt/old_interval.cpp
src/tactic/arith/linear_equation.cpp
src/math/realclosure/realclosure.cpp
src/sat/dimacs.cpp
src/sat/sat_asymm_branch.cpp
src/sat/sat_big.cpp
src/sat/sat_cleaner.cpp
src/sat/sat_ddfw.cpp
src/sat/sat_drat.cpp
src/sat/sat_elim_eqs.cpp
src/sat/sat_elim_vars.cpp
src/sat/sat_iff3_finder.cpp
src/sat/sat_integrity_checker.cpp
src/sat/sat_lookahead.cpp
src/sat/sat_model_converter.cpp
src/sat/sat_mus.cpp
src/sat/sat_parallel.cpp
src/sat/sat_prob.cpp
src/sat/sat_probing.cpp
src/sat/sat_scc.cpp
src/sat/sat_simplifier.cpp
src/util/inf_int_rational.cpp
src/util/inf_rational.cpp
src/util/mpbq.cpp
src/util/params.cpp
src/util/rational.cpp
src/util/s_integer.cpp
src/util/sexpr.cpp
src/api/dll/mem_initializer.cpp
src/muz/spacer/spacer_matrix.cpp
src/muz/rel/tbv.cpp
src/smt/smt_quantifier_stat.cpp
src/smt/uses_theory.cpp
src/smt/proto_model/value_factory.cpp
src/tactic/arith/bound_propagator.cpp
src/ast/rewriter/func_decl_replace.cpp
src/ast/ast_lt.cpp
src/ast/display_dimacs.cpp
src/ast/expr_stat.cpp
src/ast/for_each_ast.cpp
src/ast/for_each_expr.cpp
src/ast/func_decl_dependencies.cpp
src/ast/has_free_vars.cpp
src/ast/num_occurs.cpp
src/ast/occurs.cpp
src/ast/special_relations_decl_plugin.cpp
src/math/subpaving/subpaving.cpp
src/math/subpaving/subpaving_hwf.cpp
src/math/subpaving/subpaving_mpf.cpp
src/math/subpaving/subpaving_mpff.cpp
src/math/subpaving/subpaving_mpfx.cpp
src/math/subpaving/subpaving_mpq.cpp
src/math/simplex/simplex.cpp
src/math/hilbert/hilbert_basis.cpp
src/util/lp/lp_utils.cpp
src/sat/sat_solver.cpp
src/sat/sat_unit_walk.cpp
src/util/inf_s_integer.cpp
src/muz/base/bind_variables.cpp
src/smt/arith_eq_solver.cpp
src/smt/fingerprints.cpp
src/smt/smt_almost_cg_table.cpp
src/smt/smt_value_sort.cpp
src/smt/params/smt_params.cpp
src/ackermannization/ackr_helper.cpp
src/math/subpaving/tactic/expr2subpaving.cpp
src/cmd_context/tactic_manager.cpp
src/parsers/util/cost_parser.cpp
src/parsers/util/scanner.cpp
src/parsers/util/simple_parser.cpp
src/ast/rewriter/datatype_rewriter.cpp
../src/parsers/util/scanner.cpp: In member function 'scanner::token scanner::scan()':
../src/parsers/util/scanner.cpp:483:9: warning: case label value is less than minimum value for type
  483 |         case -1:
      |         ^~~~
src/ast/rewriter/mk_extract_proc.cpp
src/ast/act_cache.cpp
src/ast/ast_ll_pp.cpp
src/ast/ast_util.cpp
src/ast/csp_decl_plugin.cpp
src/ast/expr_map.cpp
src/ast/format.cpp
src/ast/fpa_decl_plugin.cpp
src/ast/macro_substitution.cpp
src/ast/pp.cpp
src/ast/reg_decl_plugins.cpp
src/ast/used_vars.cpp
src/math/simplex/model_based_opt.cpp
src/sat/ba_solver.cpp
src/sat/sat_local_search.cpp
src/math/polynomial/polynomial_cache.cpp
In file included from ../src/util/vector.h:17,
                 from ../src/sat/sat_local_search.h:22,
                 from ../src/sat/sat_local_search.cpp:20:
../src/util/old_vector.h: In member function 'bool sat::local_search::verify_goodvar() const':
../src/util/old_vector.h:376:26: warning: iteration 44739243 invokes undefined behavior [-Waggressive-loop-optimizations]
  376 |         return m_data[idx];
      |                          ^
../src/sat/sat_local_search.cpp:244:32: note: within this loop
  244 |         for (unsigned v = 0; v < num_vars(); ++v) {
      |                              ~~^~~~~~~~~~~~
src/api/dll/gparams_register_modules.cpp
src/shell/main.cpp
In file included from ../src/util/vector.h:17,
                 from ../src/sat/sat_local_search.h:22,
                 from ../src/sat/sat_local_search.cpp:20:
../src/util/old_vector.h: In member function 'void sat::local_search::walksat()':
../src/util/old_vector.h:371:26: warning: iteration 44739243 invokes undefined behavior [-Waggressive-loop-optimizations]
  371 |         return m_data[idx];
      |                          ^
../src/sat/sat_local_search.cpp:544:40: note: within this loop
  544 |                 for (unsigned v = 0; v < num_vars(); ++v) {
      |                                      ~~^~~~~~~~~~~~
src/shell/gparams_register_modules.cpp
src/qe/qe_solve_plugin.cpp
src/smt/cost_evaluator.cpp
src/smt/elim_term_ite.cpp
src/smt/smt_cg_table.cpp
src/smt/smt_farkas_util.cpp
src/smt/smt_literal.cpp
src/smt/theory_opt.cpp
src/smt/proto_model/numeral_factory.cpp
src/ast/pattern/pattern_inference.cpp
src/cmd_context/check_logic.cpp
src/cmd_context/pdecl.cpp
src/math/grobner/grobner.cpp
src/parsers/util/pattern_validation.cpp
src/tactic/equiv_proof_converter.cpp
src/tactic/replace_proof_converter.cpp
src/ast/normal_forms/name_exprs.cpp
src/ast/rewriter/arith_rewriter.cpp
src/ast/rewriter/bool_rewriter.cpp
src/ast/rewriter/bv_bounds.cpp
src/ast/rewriter/bv_trailing.cpp
src/ast/rewriter/dl_rewriter.cpp
src/ast/rewriter/enum2bv_rewriter.cpp
src/ast/rewriter/expr_replacer.cpp
src/ast/rewriter/factor_equivs.cpp
src/ast/rewriter/factor_rewriter.cpp
src/ast/rewriter/fpa_rewriter.cpp
src/ast/rewriter/hoist_rewriter.cpp
src/ast/rewriter/inj_axiom.cpp
src/ast/rewriter/label_rewriter.cpp
src/ast/rewriter/maximize_ac_sharing.cpp
src/ast/rewriter/pb2bv_rewriter.cpp
src/ast/rewriter/pb_rewriter.cpp
src/ast/rewriter/push_app_ite.cpp
src/ast/rewriter/rewriter.cpp
src/ast/arith_decl_plugin.cpp
src/ast/array_decl_plugin.cpp
src/ast/ast.cpp
src/ast/ast_pp_dot.cpp
src/ast/ast_printer.cpp
src/ast/ast_smt2_pp.cpp
src/ast/ast_smt_pp.cpp
src/ast/ast_translation.cpp
src/ast/bv_decl_plugin.cpp
src/ast/datatype_decl_plugin.cpp
src/ast/decl_collector.cpp
src/ast/dl_decl_plugin.cpp
src/ast/expr2polynomial.cpp
src/ast/expr2var.cpp
src/ast/expr_abstract.cpp
src/ast/expr_functors.cpp
src/ast/expr_substitution.cpp
src/ast/pb_decl_plugin.cpp
src/ast/recfun_decl_plugin.cpp
src/ast/seq_decl_plugin.cpp
src/ast/shared_occs.cpp
src/ast/static_features.cpp
src/ast/well_sorted.cpp
src/util/lp/binary_heap_priority_queue.cpp
src/util/lp/lp_settings.cpp
src/nlsat/nlsat_types.cpp
src/math/polynomial/rpolynomial.cpp
src/math/polynomial/sexpr2upolynomial.cpp
src/math/polynomial/upolynomial.cpp
src/muz/spacer/spacer_antiunify.cpp
src/smt/smt_clause.cpp
src/ast/rewriter/bit_blaster/bit_blaster.cpp
src/ast/rewriter/bit_blaster/bit_blaster_rewriter.cpp
src/ast/fpa/bv2fpa_converter.cpp
src/ast/fpa/fpa2bv_converter.cpp
src/ast/fpa/fpa2bv_rewriter.cpp
src/tactic/arith/bv2real_rewriter.cpp
src/ast/proofs/proof_checker.cpp
src/ast/proofs/proof_utils.cpp
src/ast/substitution/matcher.cpp
src/ast/substitution/substitution.cpp
src/ast/substitution/substitution_tree.cpp
src/ast/substitution/unifier.cpp
src/model/func_interp.cpp
src/model/model_core.cpp
src/model/model_pp.cpp
src/model/model_smt2_pp.cpp
src/model/model_v2_pp.cpp
src/ast/normal_forms/defined_names.cpp
src/ast/normal_forms/nnf.cpp
src/ast/normal_forms/pull_quant.cpp
src/ast/macros/macro_util.cpp
src/ast/rewriter/array_rewriter.cpp
src/ast/rewriter/bv_elim.cpp
src/ast/rewriter/bv_rewriter.cpp
src/ast/rewriter/der.cpp
src/ast/rewriter/distribute_forall.cpp
src/ast/rewriter/elim_bounds.cpp
src/ast/rewriter/expr_safe_replace.cpp
src/ast/rewriter/mk_simplified_app.cpp
src/ast/rewriter/seq_rewriter.cpp
src/ast/rewriter/th_rewriter.cpp
src/ast/rewriter/var_subst.cpp
src/ast/ast_pp_util.cpp
src/util/lp/binary_heap_upair_queue.cpp
src/util/lp/dense_matrix.cpp
src/util/lp/indexed_vector.cpp
src/nlsat/nlsat_clause.cpp
src/nlsat/nlsat_interval_set.cpp
src/math/polynomial/algebraic_numbers.cpp
src/math/polynomial/polynomial.cpp
src/math/polynomial/upolynomial_factorization.cpp
src/tactic/ufbv/ufbv_rewriter.cpp
src/muz/spacer/spacer_iuc_proof.cpp
src/muz/spacer/spacer_mev_array.cpp
src/muz/spacer/spacer_sem_matcher.cpp
src/muz/spacer/spacer_sym_mux.cpp
src/muz/spacer/spacer_unsat_core_learner.cpp
src/muz/rel/doc.cpp
src/qe/nlarith_util.cpp
src/qe/qe_arith.cpp
src/qe/qe_arith_plugin.cpp
src/qe/qe_array_plugin.cpp
src/qe/qe_bool_plugin.cpp
src/qe/qe_bv_plugin.cpp
src/qe/qe_datatype_plugin.cpp
src/qe/qe_dl_plugin.cpp
src/qe/qe_mbp.cpp
src/qe/qe_term_graph.cpp
src/smt/cached_var_subst.cpp
src/smt/expr_context_simplifier.cpp
src/smt/watch_list.cpp
src/smt/proto_model/array_factory.cpp
src/smt/proto_model/datatype_factory.cpp
src/smt/proto_model/proto_model.cpp
src/smt/proto_model/struct_factory.cpp
src/model/model.cpp
src/model/model2expr.cpp
src/model/model_evaluator.cpp
src/model/model_implicant.cpp
src/ast/macros/macro_manager.cpp
src/ast/macros/quasi_macros.cpp
src/ast/rewriter/ast_counter.cpp
src/ast/rewriter/bit2int.cpp
src/ast/rewriter/quant_hoist.cpp
src/nlsat/nlsat_evaluator.cpp
src/nlsat/nlsat_explain.cpp
src/nlsat/nlsat_solver.cpp
src/opt/pb_sls.cpp
src/muz/spacer/spacer_mbc.cpp
src/muz/spacer/spacer_qe_project.cpp
src/muz/base/dl_boogie_proof.cpp
src/qe/qe_arrays.cpp
src/qe/qe_datatypes.cpp
src/tactic/bv/bit_blaster_model_converter.cpp
src/ackermannization/ackr_model_converter.cpp
src/ackermannization/lackr_model_constructor.cpp
src/solver/check_sat_result.cpp
src/tactic/model_converter.cpp
src/ast/macros/macro_finder.cpp
src/util/lp/matrix.cpp
src/util/lp/permutation_matrix.cpp
src/cmd_context/extra_cmds/dbg_cmds.cpp
src/cmd_context/extra_cmds/polynomial_cmds.cpp
src/cmd_context/extra_cmds/subpaving_cmds.cpp
src/api/api_model.cpp
src/api/api_numeral.cpp
src/api/api_params.cpp
src/api/api_pb.cpp
src/api/api_polynomial.cpp
src/api/api_qe.cpp
src/api/api_quant.cpp
src/api/api_rcf.cpp
src/api/api_seq.cpp
src/api/api_special_relations.cpp
src/api/api_stats.cpp
src/tactic/portfolio/solver2lookahead.cpp
src/tactic/fpa/fpa2bv_model_converter.cpp
src/tactic/smtlogics/qfufbv_ackr_model_converter.cpp
src/muz/spacer/spacer_unsat_core_plugin.cpp
src/tactic/fd_solver/fd_solver.cpp
src/qe/nlqsat.cpp
src/qe/qe_cmd.cpp
src/qe/qe_mbi.cpp
src/qe/qe_sat_tactic.cpp
src/qe/qsat.cpp
src/smt/asserted_formulas.cpp
src/smt/smt_implied_equalities.cpp
src/ackermannization/ackermannize_bv_model_converter.cpp
src/ackermannization/lackr.cpp
src/ackermannization/lackr_model_converter_lazy.cpp
src/tactic/aig/aig.cpp
src/nlsat/tactic/goal2nlsat.cpp
src/tactic/arith/arith_bounds_tactic.cpp
src/tactic/arith/bound_manager.cpp
src/tactic/arith/bv2int_rewriter.cpp
src/tactic/arith/pb2bv_model_converter.cpp
src/tactic/arith/probe_arith.cpp
src/tactic/core/cofactor_elim_term_ite.cpp
src/tactic/core/collect_occs.cpp
src/tactic/core/reduce_invertible_tactic.cpp
src/sat/tactic/atom2bool_var.cpp
src/cmd_context/basic_cmds.cpp
src/cmd_context/cmd_context.cpp
src/cmd_context/cmd_context_to_goal.cpp
src/cmd_context/cmd_util.cpp
src/cmd_context/context_params.cpp
src/cmd_context/echo_tactic.cpp
src/cmd_context/eval_cmd.cpp
src/cmd_context/parametric_cmd.cpp
src/cmd_context/simplify_cmd.cpp
src/solver/combined_solver.cpp
src/solver/mus.cpp
src/solver/solver.cpp
src/solver/solver2tactic.cpp
src/tactic/dependency_converter.cpp
src/tactic/generic_model_converter.cpp
src/tactic/goal.cpp
src/tactic/goal_num_occurs.cpp
src/tactic/goal_shared_occs.cpp
src/tactic/goal_util.cpp
src/tactic/horn_subsume_model_converter.cpp
src/tactic/probe.cpp
src/tactic/proof_converter.cpp
src/tactic/tactic.cpp
src/util/lp/eta_matrix.cpp
src/util/lp/scaler.cpp
src/api/api_algebraic.cpp
src/api/api_arith.cpp
src/api/api_array.cpp
src/api/api_ast.cpp
src/api/api_ast_map.cpp
src/api/api_ast_vector.cpp
src/api/api_bv.cpp
src/api/api_config_params.cpp
src/api/api_context.cpp
src/api/api_datatype.cpp
src/api/api_fpa.cpp
src/api/api_goal.cpp
src/api/api_parsers.cpp
src/opt/opt_pareto.cpp
src/tactic/portfolio/default_tactic.cpp
src/tactic/portfolio/smt_strategic_solver.cpp
src/tactic/fpa/fpa2bv_tactic.cpp
src/tactic/fpa/qffplra_tactic.cpp
src/tactic/smtlogics/nra_tactic.cpp
src/tactic/smtlogics/qfauflia_tactic.cpp
src/tactic/smtlogics/qfidl_tactic.cpp
src/tactic/smtlogics/qflia_tactic.cpp
src/tactic/smtlogics/qflra_tactic.cpp
src/tactic/smtlogics/qfnia_tactic.cpp
src/tactic/smtlogics/qfnra_tactic.cpp
src/tactic/smtlogics/qfuf_tactic.cpp
src/tactic/smtlogics/quant_tactics.cpp
src/tactic/ufbv/macro_finder_tactic.cpp
src/tactic/ufbv/quasi_macros_tactic.cpp
src/tactic/ufbv/ufbv_rewriter_tactic.cpp
src/tactic/ufbv/ufbv_tactic.cpp
src/muz/spacer/spacer_farkas_learner.cpp
src/muz/spacer/spacer_iuc_solver.cpp
src/muz/spacer/spacer_proof_utils.cpp
src/muz/spacer/spacer_prop_solver.cpp
src/muz/base/hnf.cpp
src/tactic/fd_solver/bounded_int2bv_solver.cpp
src/tactic/fd_solver/enum2bv_solver.cpp
src/tactic/fd_solver/pb2bv_solver.cpp
src/tactic/fd_solver/smtfd_solver.cpp
src/sat/sat_solver/inc_sat_solver.cpp
src/qe/qe.cpp
src/qe/qe_lite.cpp
src/qe/qe_tactic.cpp
src/tactic/sls/sls_engine.cpp
src/tactic/sls/sls_tactic.cpp
src/smt/tactic/ctx_solver_simplify_tactic.cpp
src/smt/tactic/smt_tactic.cpp
src/smt/tactic/unit_subsumption_tactic.cpp
src/tactic/bv/bit_blaster_tactic.cpp
src/tactic/bv/bv1_blaster_tactic.cpp
src/tactic/bv/bv_bound_chk_tactic.cpp
src/tactic/bv/bv_bounds_tactic.cpp
src/tactic/bv/bv_size_reduction_tactic.cpp
src/tactic/bv/bvarray2uf_rewriter.cpp
src/tactic/bv/bvarray2uf_tactic.cpp
src/tactic/bv/dt2bv_tactic.cpp
src/tactic/bv/elim_small_bv_tactic.cpp
src/tactic/bv/max_bv_sharing_tactic.cpp
src/smt/arith_eq_adapter.cpp
src/smt/dyn_ack.cpp
src/smt/mam.cpp
src/smt/qi_queue.cpp
src/smt/smt2_extra_cmds.cpp
src/smt/smt_case_split_queue.cpp
src/smt/smt_checker.cpp
src/smt/smt_clause_proof.cpp
src/smt/smt_conflict_resolution.cpp
src/smt/smt_consequences.cpp
src/smt/smt_context.cpp
src/smt/smt_context_inv.cpp
src/smt/smt_context_pp.cpp
src/smt/smt_context_stat.cpp
src/smt/smt_enode.cpp
src/smt/smt_for_each_relevant_expr.cpp
src/smt/smt_internalizer.cpp
src/smt/smt_justification.cpp
src/smt/smt_kernel.cpp
src/smt/smt_lookahead.cpp
src/smt/smt_model_checker.cpp
src/smt/smt_model_finder.cpp
src/smt/smt_model_generator.cpp
src/smt/smt_quantifier.cpp
src/smt/smt_quick_checker.cpp
src/smt/smt_relevancy.cpp
src/smt/smt_solver.cpp
src/smt/smt_theory.cpp
src/smt/theory_array.cpp
src/smt/theory_array_bapa.cpp
src/smt/theory_array_base.cpp
src/smt/theory_array_full.cpp
src/smt/theory_bv.cpp
src/smt/theory_datatype.cpp
src/smt/theory_dl.cpp
src/smt/theory_dummy.cpp
src/smt/theory_fpa.cpp
src/smt/theory_jobscheduler.cpp
src/smt/theory_pb.cpp
src/smt/theory_recfun.cpp
src/smt/theory_seq.cpp
src/smt/theory_special_relations.cpp
src/smt/theory_str.cpp
src/smt/theory_wmaxsat.cpp
src/ackermannization/ackr_bound_probe.cpp
src/tactic/aig/aig_tactic.cpp
src/math/subpaving/tactic/subpaving_tactic.cpp
src/nlsat/tactic/nlsat_tactic.cpp
src/nlsat/tactic/qfnra_nlsat_tactic.cpp
src/tactic/arith/add_bounds_tactic.cpp
src/tactic/arith/card2bv_tactic.cpp
src/tactic/arith/degree_shift_tactic.cpp
src/tactic/arith/diff_neq_tactic.cpp
src/tactic/arith/eq2bv_tactic.cpp
src/tactic/arith/factor_tactic.cpp
src/tactic/arith/fix_dl_var_tactic.cpp
src/tactic/arith/fm_tactic.cpp
src/tactic/arith/lia2card_tactic.cpp
src/tactic/arith/lia2pb_tactic.cpp
src/tactic/arith/nla2bv_tactic.cpp
src/tactic/arith/normalize_bounds_tactic.cpp
src/tactic/arith/pb2bv_tactic.cpp
src/tactic/arith/propagate_ineqs_tactic.cpp
src/tactic/arith/purify_arith_tactic.cpp
src/tactic/arith/recover_01_tactic.cpp
src/tactic/core/blast_term_ite_tactic.cpp
src/tactic/core/cofactor_term_ite_tactic.cpp
src/tactic/core/collect_statistics_tactic.cpp
src/tactic/core/ctx_simplify_tactic.cpp
src/tactic/core/der_tactic.cpp
src/tactic/core/distribute_forall_tactic.cpp
src/tactic/core/dom_simplify_tactic.cpp
src/tactic/core/elim_term_ite_tactic.cpp
src/tactic/core/elim_uncnstr_tactic.cpp
src/tactic/core/injectivity_tactic.cpp
src/tactic/core/nnf_tactic.cpp
src/tactic/core/occf_tactic.cpp
src/tactic/core/pb_preprocess_tactic.cpp
src/tactic/core/propagate_values_tactic.cpp
src/tactic/core/reduce_args_tactic.cpp
src/tactic/core/simplify_tactic.cpp
src/tactic/core/solve_eqs_tactic.cpp
src/tactic/core/special_relations_tactic.cpp
src/tactic/core/split_clause_tactic.cpp
src/tactic/core/symmetry_reduce_tactic.cpp
src/tactic/core/tseitin_cnf_tactic.cpp
src/ast/pattern/expr_pattern_match.cpp
src/parsers/smt2/marshal.cpp
src/parsers/smt2/smt2parser.cpp
src/parsers/smt2/smt2scanner.cpp
src/sat/tactic/goal2sat.cpp
src/sat/tactic/sat_tactic.cpp
src/cmd_context/tactic_cmds.cpp
src/solver/parallel_tactic.cpp
src/solver/solver_na2as.cpp
src/solver/solver_pool.cpp
src/solver/tactic2solver.cpp
src/tactic/sine_filter.cpp
src/tactic/tactical.cpp
src/shell/dimacs_frontend.cpp
src/api/api_solver.cpp
src/api/api_tactic.cpp
src/tactic/fpa/qffp_tactic.cpp
src/tactic/smtlogics/qfaufbv_tactic.cpp
src/tactic/smtlogics/qfbv_tactic.cpp
src/tactic/smtlogics/qfufbv_tactic.cpp
src/tactic/sls/bvsls_opt_engine.cpp
src/smt/smt_arith_value.cpp
src/smt/smt_setup.cpp
src/smt/theory_diff_logic.cpp
src/smt/theory_utvpi.cpp
src/ackermannization/ackermannize_bv_tactic.cpp
src/util/lp/row_eta_matrix.cpp
src/util/lp/square_dense_submatrix.cpp
src/util/lp/square_sparse_matrix.cpp
src/api/dll/install_tactic.cpp
src/shell/install_tactic.cpp
src/opt/opt_solver.cpp
src/muz/spacer/spacer_legacy_mbp.cpp
src/muz/spacer/spacer_legacy_mev.cpp
src/muz/spacer/spacer_manager.cpp
src/muz/spacer/spacer_util.cpp
src/smt/theory_arith.cpp
src/smt/theory_dense_diff_logic.cpp
src/util/lp/lu.cpp
src/muz/spacer/spacer_generalizers.cpp
src/muz/spacer/spacer_json.cpp
src/muz/spacer/spacer_quant_generalizer.cpp
In file included from /usr/include/c++/9/map:60,
                 from ../src/muz/spacer/spacer_manager.h:26,
                 from ../src/muz/spacer/spacer_context.h:28,
                 from ../src/muz/spacer/spacer_json.cpp:21:
/usr/include/c++/9/bits/stl_tree.h: In function 'std::_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator std::_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::_M_emplace_hint_unique(std::_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::const_iterator, _Args&& ...) [with _Args = {const std::piecewise_construct_t&, std::tuple<const unsigned int&>, std::tuple<>}; _Key = unsigned int; _Val = std::pair<const unsigned int, stopwatch>; _KeyOfValue = std::_Select1st<std::pair<const unsigned int, stopwatch> >; _Compare = std::less<unsigned int>; _Alloc = std::allocator<std::pair<const unsigned int, stopwatch> >]':
/usr/include/c++/9/bits/stl_tree.h:2452:7: note: parameter passing for argument of type 'std::_Rb_tree<unsigned int, std::pair<const unsigned int, stopwatch>, std::_Select1st<std::pair<const unsigned int, stopwatch> >, std::less<unsigned int>, std::allocator<std::pair<const unsigned int, stopwatch> > >::const_iterator' {aka 'std::_Rb_tree_const_iterator<std::pair<const unsigned int, stopwatch> >'} changed in GCC 7.1
 2452 |       _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
      |       ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In file included from /usr/include/c++/9/map:61,
                 from ../src/muz/spacer/spacer_manager.h:26,
                 from ../src/muz/spacer/spacer_context.h:28,
                 from ../src/muz/spacer/spacer_json.cpp:21:
/usr/include/c++/9/bits/stl_map.h: In member function 'std::ostream& spacer::json_marshaller::marshal(std::ostream&) const':
/usr/include/c++/9/bits/stl_map.h:499:8: note: parameter passing for argument of type 'std::_Rb_tree<unsigned int, std::pair<const unsigned int, stopwatch>, std::_Select1st<std::pair<const unsigned int, stopwatch> >, std::less<unsigned int>, std::allocator<std::pair<const unsigned int, stopwatch> > >::const_iterator' {aka 'std::_Rb_tree_const_iterator<std::pair<const unsigned int, stopwatch> >'} changed in GCC 7.1
  499 |    __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
/usr/include/c++/9/bits/stl_map.h:499:8: note: parameter passing for argument of type 'std::_Rb_tree<unsigned int, std::pair<const unsigned int, stopwatch>, std::_Select1st<std::pair<const unsigned int, stopwatch> >, std::less<unsigned int>, std::allocator<std::pair<const unsigned int, stopwatch> > >::const_iterator' {aka 'std::_Rb_tree_const_iterator<std::pair<const unsigned int, stopwatch> >'} changed in GCC 7.1
  499 |    __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
src/muz/dataflow/dataflow.cpp
src/util/lp/core_solver_pretty_printer.cpp
src/util/lp/lp_core_solver_base.cpp
src/shell/opt_frontend.cpp
src/opt/maxlex.cpp
src/opt/maxres.cpp
src/opt/maxsmt.cpp
src/opt/opt_cmds.cpp
src/opt/opt_context.cpp
src/opt/opt_parse.cpp
src/opt/optsmt.cpp
src/opt/sortmax.cpp
src/opt/wmax.cpp
src/muz/fp/datalog_parser.cpp
src/muz/ddnf/ddnf.cpp
src/muz/clp/clp_context.cpp
src/muz/spacer/spacer_arith_generalizers.cpp
src/muz/spacer/spacer_callback.cpp
src/muz/spacer/spacer_pdr.cpp
src/muz/spacer/spacer_sat_answer.cpp
src/muz/transforms/dl_mk_array_eq_rewrite.cpp
src/muz/transforms/dl_mk_array_instantiation.cpp
src/muz/transforms/dl_mk_backwards.cpp
src/muz/transforms/dl_mk_bit_blast.cpp
src/muz/transforms/dl_mk_coi_filter.cpp
src/muz/transforms/dl_mk_filter_rules.cpp
src/muz/transforms/dl_mk_karr_invariants.cpp
src/muz/transforms/dl_mk_loop_counter.cpp
src/muz/transforms/dl_mk_magic_sets.cpp
src/muz/transforms/dl_mk_magic_symbolic.cpp
src/muz/transforms/dl_mk_quantifier_abstraction.cpp
src/muz/transforms/dl_mk_quantifier_instantiation.cpp
src/muz/transforms/dl_mk_scale.cpp
src/muz/transforms/dl_mk_separate_negated_tails.cpp
src/muz/transforms/dl_mk_unbound_compressor.cpp
src/muz/base/dl_context.cpp
src/muz/base/dl_costs.cpp
src/muz/base/dl_rule.cpp
src/muz/base/dl_rule_set.cpp
src/muz/base/dl_rule_subsumption_index.cpp
src/muz/base/dl_rule_transformer.cpp
src/muz/base/dl_util.cpp
src/muz/base/rule_properties.cpp
src/util/lp/lp_dual_core_solver.cpp
src/util/lp/lp_solver.cpp
src/shell/smtlib_frontend.cpp
src/api/api_opt.cpp
src/muz/fp/horn_tactic.cpp
src/muz/tab/tab_context.cpp
src/muz/spacer/spacer_context.cpp
src/muz/spacer/spacer_legacy_frames.cpp
src/muz/rel/dl_external_relation.cpp
src/muz/transforms/dl_mk_array_blast.cpp
src/muz/transforms/dl_mk_coalesce.cpp
src/muz/transforms/dl_mk_elim_term_ite.cpp
In file included from /usr/include/c++/9/map:60,
                 from ../src/muz/spacer/spacer_prop_solver.h:23,
                 from ../src/muz/spacer/spacer_context.cpp:32:
/usr/include/c++/9/bits/stl_tree.h: In function 'std::_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator std::_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::_M_emplace_hint_unique(std::_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::const_iterator, _Args&& ...) [with _Args = {const std::piecewise_construct_t&, std::tuple<const unsigned int&>, std::tuple<>}; _Key = unsigned int; _Val = std::pair<const unsigned int, stopwatch>; _KeyOfValue = std::_Select1st<std::pair<const unsigned int, stopwatch> >; _Compare = std::less<unsigned int>; _Alloc = std::allocator<std::pair<const unsigned int, stopwatch> >]':
/usr/include/c++/9/bits/stl_tree.h:2452:7: note: parameter passing for argument of type 'std::_Rb_tree<unsigned int, std::pair<const unsigned int, stopwatch>, std::_Select1st<std::pair<const unsigned int, stopwatch> >, std::less<unsigned int>, std::allocator<std::pair<const unsigned int, stopwatch> > >::const_iterator' {aka 'std::_Rb_tree_const_iterator<std::pair<const unsigned int, stopwatch> >'} changed in GCC 7.1
 2452 |       _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::
      |       ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In file included from /usr/include/c++/9/map:61,
                 from ../src/muz/spacer/spacer_prop_solver.h:23,
                 from ../src/muz/spacer/spacer_context.cpp:32:
/usr/include/c++/9/bits/stl_map.h: In member function 'void spacer::pob::on_expand()':
/usr/include/c++/9/bits/stl_map.h:499:8: note: parameter passing for argument of type 'std::_Rb_tree<unsigned int, std::pair<const unsigned int, stopwatch>, std::_Select1st<std::pair<const unsigned int, stopwatch> >, std::less<unsigned int>, std::allocator<std::pair<const unsigned int, stopwatch> > >::const_iterator' {aka 'std::_Rb_tree_const_iterator<std::pair<const unsigned int, stopwatch> >'} changed in GCC 7.1
  499 |    __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
/usr/include/c++/9/bits/stl_map.h: In member function 'void spacer::pob::off_expand()':
/usr/include/c++/9/bits/stl_map.h:499:8: note: parameter passing for argument of type 'std::_Rb_tree<unsigned int, std::pair<const unsigned int, stopwatch>, std::_Select1st<std::pair<const unsigned int, stopwatch> >, std::less<unsigned int>, std::allocator<std::pair<const unsigned int, stopwatch> > >::const_iterator' {aka 'std::_Rb_tree_const_iterator<std::pair<const unsigned int, stopwatch> >'} changed in GCC 7.1
  499 |    __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
src/muz/transforms/dl_mk_interp_tail_simplifier.cpp
src/muz/transforms/dl_mk_rule_inliner.cpp
src/muz/transforms/dl_mk_slice.cpp
/usr/include/c++/9/bits/stl_map.h: In member function 'lbool spacer::context::expand_pob(spacer::pob&, spacer::pob_ref_buffer&)':
/usr/include/c++/9/bits/stl_map.h:499:8: note: parameter passing for argument of type 'std::_Rb_tree<unsigned int, std::pair<const unsigned int, stopwatch>, std::_Select1st<std::pair<const unsigned int, stopwatch> >, std::less<unsigned int>, std::allocator<std::pair<const unsigned int, stopwatch> > >::const_iterator' {aka 'std::_Rb_tree_const_iterator<std::pair<const unsigned int, stopwatch> >'} changed in GCC 7.1
  499 |    __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
/usr/include/c++/9/bits/stl_map.h:499:8: note: parameter passing for argument of type 'std::_Rb_tree<unsigned int, std::pair<const unsigned int, stopwatch>, std::_Select1st<std::pair<const unsigned int, stopwatch> >, std::less<unsigned int>, std::allocator<std::pair<const unsigned int, stopwatch> > >::const_iterator' {aka 'std::_Rb_tree_const_iterator<std::pair<const unsigned int, stopwatch> >'} changed in GCC 7.1
  499 |    __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
/usr/include/c++/9/bits/stl_map.h:499:8: note: parameter passing for argument of type 'std::_Rb_tree<unsigned int, std::pair<const unsigned int, stopwatch>, std::_Select1st<std::pair<const unsigned int, stopwatch> >, std::less<unsigned int>, std::allocator<std::pair<const unsigned int, stopwatch> > >::const_iterator' {aka 'std::_Rb_tree_const_iterator<std::pair<const unsigned int, stopwatch> >'} changed in GCC 7.1
  499 |    __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
src/muz/transforms/dl_mk_subsumption_checker.cpp
src/muz/transforms/dl_mk_unfold.cpp
src/muz/transforms/dl_transforms.cpp
src/smt/theory_lra.cpp
src/util/lp/gomory.cpp
src/util/lp/int_solver.cpp
src/util/lp/lar_core_solver.cpp
src/util/lp/lar_solver.cpp
src/util/lp/lp_bound_propagator.cpp
src/util/lp/lp_dual_simplex.cpp
src/util/lp/lp_primal_core_solver.cpp
src/util/lp/nra_solver.cpp
src/util/lp/static_matrix.cpp
src/api/api_datalog.cpp
src/muz/fp/dl_register_engine.cpp
src/muz/bmc/dl_bmc_engine.cpp
src/muz/spacer/spacer_dl_interface.cpp
src/muz/rel/check_relation.cpp
src/muz/rel/dl_base.cpp
src/muz/rel/dl_instruction.cpp
src/muz/rel/dl_interval_relation.cpp
src/muz/rel/dl_lazy_table.cpp
src/muz/rel/dl_mk_similarity_compressor.cpp
src/muz/rel/dl_mk_simple_joins.cpp
src/muz/rel/dl_product_relation.cpp
src/muz/rel/dl_sieve_relation.cpp
src/muz/rel/dl_sparse_table.cpp
src/muz/rel/dl_table.cpp
src/muz/rel/dl_table_relation.cpp
src/muz/rel/udoc_relation.cpp
In member function 'virtual datalog::relation_transformer_fn* datalog::table_relation_plugin::mk_select_equal_and_project_fn(const datalog::relation_base&, app* const&, unsigned int)':
cc1plus: warning: 'void* __builtin_memset(void*, int, unsigned int)' specified bound 4294967292 exceeds maximum object size 2147483647 [-Wstringop-overflow=]
src/muz/transforms/dl_mk_synchronize.cpp
src/util/lp/lp_primal_simplex.cpp
src/util/lp/random_updater.cpp
src/shell/lp_frontend.cpp
src/muz/fp/dl_cmds.cpp
src/muz/rel/aig_exporter.cpp
src/muz/rel/dl_check_table.cpp
src/muz/rel/dl_compiler.cpp
src/muz/rel/dl_finite_product_relation.cpp
src/muz/rel/dl_mk_explanations.cpp
In member function 'void datalog::compiler::make_select_equal_and_project(datalog::compiler::reg_idx, datalog::relation_element, unsigned int, datalog::compiler::reg_idx&, bool, datalog::instruction_block&)':
cc1plus: warning: 'void* __builtin_memset(void*, int, unsigned int)' specified bound 4294967292 exceeds maximum object size 2147483647 [-Wstringop-overflow=]
src/muz/rel/dl_relation_manager.cpp
src/muz/rel/karr_relation.cpp
src/muz/rel/rel_context.cpp
src/shell/datalog_frontend.cpp
src/muz/rel/dl_bound_relation.cpp
g++  -o z3  shell/datalog_frontend.o shell/dimacs_frontend.o shell/lp_frontend.o shell/main.o shell/opt_frontend.o shell/smtlib_frontend.o shell/z3_log_frontend.o shell/install_tactic.o shell/mem_initializer.o shell/gparams_register_modules.o cmd_context/extra_cmds/extra_cmds.a api/api.a opt/opt.a tactic/portfolio/portfolio.a tactic/fpa/fpa_tactics.a tactic/smtlogics/smtlogic_tactics.a tactic/ufbv/ufbv_tactic.a muz/fp/fp.a muz/bmc/bmc.a muz/ddnf/ddnf.a muz/tab/tab.a muz/clp/clp.a muz/spacer/spacer.a muz/rel/rel.a muz/transforms/transforms.a muz/dataflow/dataflow.a muz/base/muz.a tactic/fd_solver/fd_solver.a sat/sat_solver/sat_solver.a qe/qe.a tactic/sls/sls_tactic.a smt/tactic/smt_tactic.a tactic/bv/bv_tactics.a smt/smt.a smt/proto_model/proto_model.a smt/params/smt_params.a ast/rewriter/bit_blaster/bit_blaster.a ast/fpa/fpa.a ackermannization/ackermannization.a tactic/aig/aig_tactic.a math/subpaving/tactic/subpaving_tactic.a nlsat/tactic/nlsat_tactic.a tactic/arith/arith_tactics.a tactic/core/core_tactics.a ast/pattern/pattern.a parsers/smt2/smt2parser.a sat/tactic/sat_tactic.a cmd_context/cmd_context.a solver/solver.a ast/proofs/proofs.a math/euclid/euclid.a math/grobner/grobner.a parsers/util/parser_util.a ast/substitution/substitution.a tactic/tactic.a model/model.a ast/normal_forms/normal_forms.a ast/macros/macros.a ast/rewriter/rewriter.a ast/ast.a math/subpaving/subpaving.a math/realclosure/realclosure.a math/interval/interval.a math/automata/automata.a math/simplex/simplex.a math/hilbert/hilbert.a util/lp/lp.a nlsat/nlsat.a sat/sat.a math/polynomial/polynomial.a util/util.a -lpthread -Wl,-z,relro -Wl,-z,now
g++ -o libz3.so -Wl,-z,relro -Wl,-z,now -fPIC -shared -Wl,-soname,libz3.so.4 api/dll/dll.o api/dll/install_tactic.o api/dll/mem_initializer.o api/dll/gparams_register_modules.o api/api_algebraic.o api/api_arith.o api/api_array.o api/api_ast.o api/api_ast_map.o api/api_ast_vector.o api/api_bv.o api/api_config_params.o api/api_context.o api/api_datalog.o api/api_datatype.o api/api_fpa.o api/api_goal.o api/api_model.o api/api_numeral.o api/api_opt.o api/api_params.o api/api_parsers.o api/api_pb.o api/api_polynomial.o api/api_qe.o api/api_quant.o api/api_rcf.o api/api_seq.o api/api_solver.o api/api_special_relations.o api/api_stats.o api/api_tactic.o api/z3_replayer.o api/api_log.o api/api_log_macros.o api/api_commands.o cmd_context/extra_cmds/extra_cmds.a opt/opt.a tactic/portfolio/portfolio.a tactic/fpa/fpa_tactics.a tactic/smtlogics/smtlogic_tactics.a tactic/ufbv/ufbv_tactic.a muz/fp/fp.a muz/bmc/bmc.a muz/ddnf/ddnf.a muz/tab/tab.a muz/clp/clp.a muz/spacer/spacer.a muz/rel/rel.a muz/transforms/transforms.a muz/dataflow/dataflow.a muz/base/muz.a tactic/fd_solver/fd_solver.a sat/sat_solver/sat_solver.a qe/qe.a tactic/sls/sls_tactic.a smt/tactic/smt_tactic.a tactic/bv/bv_tactics.a smt/smt.a smt/proto_model/proto_model.a smt/params/smt_params.a ast/rewriter/bit_blaster/bit_blaster.a ast/fpa/fpa.a ackermannization/ackermannization.a tactic/aig/aig_tactic.a math/subpaving/tactic/subpaving_tactic.a nlsat/tactic/nlsat_tactic.a tactic/arith/arith_tactics.a tactic/core/core_tactics.a ast/pattern/pattern.a parsers/smt2/smt2parser.a sat/tactic/sat_tactic.a cmd_context/cmd_context.a solver/solver.a ast/proofs/proofs.a math/euclid/euclid.a math/grobner/grobner.a parsers/util/parser_util.a ast/substitution/substitution.a tactic/tactic.a model/model.a ast/normal_forms/normal_forms.a ast/macros/macros.a ast/rewriter/rewriter.a ast/ast.a math/subpaving/subpaving.a math/realclosure/realclosure.a math/interval/interval.a math/automata/automata.a math/simplex/simplex.a math/hilbert/hilbert.a util/lp/lp.a nlsat/nlsat.a sat/sat.a math/polynomial/polynomial.a util/util.a -lpthread  -Wl,-soname,libz3.so.4
ln -f -s ../libz3.so python
g++ -Wdate-time -D_FORTIFY_SOURCE=2 -D_MP_INTERNAL -DNDEBUG -D_EXTERNAL_RELEASE -g -O2 -fdebug-prefix-map=/<<PKGBUILDDIR>>=. -fstack-protector-strong -Wformat -Werror=format-security -fPIC -std=c++11 -fvisibility=hidden -c -mfpu=vfp -mfloat-abi=hard -O3 -D_LINUX_ -fpic -o api/java/Native.o -I"/usr/lib/jvm/java-11-openjdk-armhf/include" -I"/usr/lib/jvm/java-11-openjdk-armhf/include/linux" -I../src/api ../src/api/java/Native.cpp
ocamlc  -ccopt "-Wdate-time -D_FORTIFY_SOURCE=2 -D_MP_INTERNAL -DNDEBUG -D_EXTERNAL_RELEASE -g -O2 -fdebug-prefix-map=/<<PKGBUILDDIR>>=. -fstack-protector-strong -Wformat -Werror=format-security -fPIC  -fvisibility=hidden -c -mfpu=vfp -mfloat-abi=hard -O3 -D_LINUX_ -fpic -I /usr/lib/ocaml -I ../src/api -I ../src/api/ml -o api/ml/z3native_stubs.o" -c ../src/api/ml/z3native_stubs.c
g++ -o libz3java.so -Wl,-z,relro -Wl,-z,now -fPIC -shared api/java/Native.o libz3.so
"/usr/bin/javac" ../src/api/java/enumerations/*.java -d api/java/classes
"/usr/bin/javac" -cp api/java/classes ../src/api/java/*.java -d api/java/classes
"/usr/bin/jar" cfm com.microsoft.z3.jar ../src/api/java/manifest -C api/java/classes .
ocamlmklib -o api/ml/z3ml -I api/ml api/ml/z3native_stubs.o api/ml/z3enums.cmo api/ml/z3native.cmo api/ml/z3.cmo  -cclib -lz3 -ldopt -Wl,-z,relro -ldopt -Wl,-z,now -cclib -Wl,-z,relro -cclib -Wl,-z,now
ocamlmklib -o api/ml/z3ml -I api/ml api/ml/z3native_stubs.o  api/ml/z3enums.cmx api/ml/z3native.cmx api/ml/z3.cmx -cclib -lz3 -ldopt -Wl,-z,relro -ldopt -Wl,-z,now -cclib -Wl,-z,relro -cclib -Wl,-z,now
File "_none_", line 1:
Error: Cannot find file api/ml/z3enums.cmx
make[2]: [Makefile:4482: api/ml/z3ml.cmxa] Error 2 (ignored)
true  -linkall -shared -o api/ml/z3ml.cmxs -I . -I api/ml api/ml/z3ml.cmxa
Z3 was successfully built.
Z3Py scripts can already be executed in the 'build/python' directory.
Z3Py scripts stored in arbitrary directories can be executed if the 'build/python' directory is added to the PYTHONPATH environment variable and the 'build' directory is added to the LD_LIBRARY_PATH environment variable.
Use the following command to install Z3 at prefix /<<PKGBUILDDIR>>/debian/tmp/usr.
    sudo make install
make[2]: Leaving directory '/<<PKGBUILDDIR>>/build'
make[1]: Leaving directory '/<<PKGBUILDDIR>>'
   jh_build -a -O--parallel
   debian/rules override_dh_auto_test
make[1]: Entering directory '/<<PKGBUILDDIR>>'
/usr/bin/make test-z3
make[2]: Entering directory '/<<PKGBUILDDIR>>'
/usr/bin/make -C build test-z3
make[3]: Entering directory '/<<PKGBUILDDIR>>/build'
src/test/algebraic.cpp
src/test/api.cpp
src/test/api_bug.cpp
src/test/arith_rewriter.cpp
src/test/arith_simplifier_plugin.cpp
src/test/ast.cpp
src/test/bdd.cpp
src/test/bit_blaster.cpp
src/test/bit_vector.cpp
src/test/bits.cpp
src/test/buffer.cpp
src/test/chashtable.cpp
src/test/check_assumptions.cpp
src/test/cnf_backbones.cpp
src/test/cube_clause.cpp
src/test/datalog_parser.cpp
src/test/ddnf.cpp
src/test/diff_logic.cpp
src/test/dl_context.cpp
src/test/dl_product_relation.cpp
src/test/dl_query.cpp
src/test/dl_relation.cpp
src/test/dl_table.cpp
src/test/dl_util.cpp
src/test/doc.cpp
src/test/escaped.cpp
src/test/ex.cpp
src/test/expr_rand.cpp
src/test/expr_substitution.cpp
src/test/ext_numeral.cpp
src/test/f2n.cpp
src/test/factor_rewriter.cpp
src/test/fixed_bit_vector.cpp
src/test/for_each_file.cpp
src/test/get_consequences.cpp
src/test/get_implied_equalities.cpp
src/test/hashtable.cpp
src/test/heap.cpp
src/test/heap_trie.cpp
src/test/hilbert_basis.cpp
src/test/horn_subsume_model_converter.cpp
src/test/hwf.cpp
src/test/inf_rational.cpp
src/test/interval.cpp
src/test/karr.cpp
src/test/list.cpp
src/test/main.cpp
src/test/map.cpp
src/test/matcher.cpp
src/test/memory.cpp
src/test/model2expr.cpp
src/test/model_based_opt.cpp
src/test/model_evaluator.cpp
src/test/model_retrieval.cpp
src/test/mpbq.cpp
src/test/mpf.cpp
src/test/mpff.cpp
src/test/mpfx.cpp
src/test/mpq.cpp
src/test/mpz.cpp
src/test/nlarith_util.cpp
src/test/nlsat.cpp
src/test/no_overflow.cpp
src/test/object_allocator.cpp
src/test/old_interval.cpp
src/test/optional.cpp
src/test/parray.cpp
src/test/pb2bv.cpp
src/test/permutation.cpp
src/test/polynomial.cpp
src/test/polynorm.cpp
src/test/prime_generator.cpp
src/test/proof_checker.cpp
src/test/qe_arith.cpp
src/test/quant_elim.cpp
src/test/quant_solve.cpp
src/test/random.cpp
src/test/rational.cpp
src/test/rcf.cpp
src/test/region.cpp
src/test/sat_local_search.cpp
src/test/sat_lookahead.cpp
src/test/sat_user_scope.cpp
src/test/simple_parser.cpp
src/test/simplex.cpp
src/test/simplifier.cpp
src/test/small_object_allocator.cpp
src/test/smt2print_parse.cpp
src/test/smt_context.cpp
src/test/solver_pool.cpp
src/test/sorting_network.cpp
src/test/stack.cpp
src/test/string_buffer.cpp
src/test/substitution.cpp
src/test/symbol.cpp
src/test/symbol_table.cpp
src/test/tbv.cpp
src/test/theory_dl.cpp
src/test/theory_pb.cpp
src/test/timeout.cpp
src/test/total_order.cpp
src/test/trigo.cpp
src/test/udoc_relation.cpp
src/test/uint_set.cpp
src/test/upolynomial.cpp
src/test/var_subst.cpp
src/test/vector.cpp
src/test/install_tactic.cpp
src/test/mem_initializer.cpp
src/test/gparams_register_modules.cpp
src/test/fuzzing/expr_delta.cpp
src/test/fuzzing/expr_rand.cpp
g++  -o test-z3  test/algebraic.o test/api.o test/api_bug.o test/arith_rewriter.o test/arith_simplifier_plugin.o test/ast.o test/bdd.o test/bit_blaster.o test/bit_vector.o test/bits.o test/buffer.o test/chashtable.o test/check_assumptions.o test/cnf_backbones.o test/cube_clause.o test/datalog_parser.o test/ddnf.o test/diff_logic.o test/dl_context.o test/dl_product_relation.o test/dl_query.o test/dl_relation.o test/dl_table.o test/dl_util.o test/doc.o test/escaped.o test/ex.o test/expr_rand.o test/expr_substitution.o test/ext_numeral.o test/f2n.o test/factor_rewriter.o test/fixed_bit_vector.o test/for_each_file.o test/get_consequences.o test/get_implied_equalities.o test/hashtable.o test/heap.o test/heap_trie.o test/hilbert_basis.o test/horn_subsume_model_converter.o test/hwf.o test/inf_rational.o test/interval.o test/karr.o test/list.o test/main.o test/map.o test/matcher.o test/memory.o test/model2expr.o test/model_based_opt.o test/model_evaluator.o test/model_retrieval.o test/mpbq.o test/mpf.o test/mpff.o test/mpfx.o test/mpq.o test/mpz.o test/nlarith_util.o test/nlsat.o test/no_overflow.o test/object_allocator.o test/old_interval.o test/optional.o test/parray.o test/pb2bv.o test/permutation.o test/polynomial.o test/polynorm.o test/prime_generator.o test/proof_checker.o test/qe_arith.o test/quant_elim.o test/quant_solve.o test/random.o test/rational.o test/rcf.o test/region.o test/sat_local_search.o test/sat_lookahead.o test/sat_user_scope.o test/simple_parser.o test/simplex.o test/simplifier.o test/small_object_allocator.o test/smt2print_parse.o test/smt_context.o test/solver_pool.o test/sorting_network.o test/stack.o test/string_buffer.o test/substitution.o test/symbol.o test/symbol_table.o test/tbv.o test/theory_dl.o test/theory_pb.o test/timeout.o test/total_order.o test/trigo.o test/udoc_relation.o test/uint_set.o test/upolynomial.o test/var_subst.o test/vector.o test/install_tactic.o test/mem_initializer.o test/gparams_register_modules.o api/api.a opt/opt.a tactic/portfolio/portfolio.a tactic/fpa/fpa_tactics.a tactic/smtlogics/smtlogic_tactics.a tactic/ufbv/ufbv_tactic.a muz/fp/fp.a muz/bmc/bmc.a muz/ddnf/ddnf.a muz/tab/tab.a muz/clp/clp.a muz/spacer/spacer.a muz/rel/rel.a muz/transforms/transforms.a muz/dataflow/dataflow.a muz/base/muz.a tactic/fd_solver/fd_solver.a sat/sat_solver/sat_solver.a qe/qe.a tactic/sls/sls_tactic.a smt/tactic/smt_tactic.a test/fuzzing/fuzzing.a tactic/bv/bv_tactics.a smt/smt.a smt/proto_model/proto_model.a smt/params/smt_params.a ast/rewriter/bit_blaster/bit_blaster.a ast/fpa/fpa.a ackermannization/ackermannization.a tactic/aig/aig_tactic.a math/subpaving/tactic/subpaving_tactic.a nlsat/tactic/nlsat_tactic.a tactic/arith/arith_tactics.a tactic/core/core_tactics.a ast/pattern/pattern.a parsers/smt2/smt2parser.a sat/tactic/sat_tactic.a cmd_context/cmd_context.a solver/solver.a ast/proofs/proofs.a math/euclid/euclid.a math/grobner/grobner.a parsers/util/parser_util.a ast/substitution/substitution.a tactic/tactic.a model/model.a ast/normal_forms/normal_forms.a ast/macros/macros.a ast/rewriter/rewriter.a ast/ast.a math/subpaving/subpaving.a math/realclosure/realclosure.a math/interval/interval.a math/automata/automata.a math/simplex/simplex.a math/hilbert/hilbert.a util/lp/lp.a nlsat/nlsat.a sat/sat.a math/polynomial/polynomial.a util/util.a -lpthread -Wl,-z,relro -Wl,-z,now
make[3]: Leaving directory '/<<PKGBUILDDIR>>/build'
make[2]: Leaving directory '/<<PKGBUILDDIR>>'
build/test-z3 -a
PASS
(test random :time 0.00 :before-memory 0.02 :after-memory 0.02)
PASS
(test random :time 0.00 :before-memory 0.02 :after-memory 0.02)
PASS
(test symbol_table :time 0.00 :before-memory 0.02 :after-memory 0.02)
PASS
(test symbol_table :time 0.00 :before-memory 0.02 :after-memory 0.02)
PASS
(test region :time 0.00 :before-memory 0.02 :after-memory 0.02)
PASS
(test region :time 0.00 :before-memory 0.02 :after-memory 0.02)
foo boo foo
PASS
(test symbol :time 0.00 :before-memory 0.02 :after-memory 0.02)
foo boo foo
PASS
(test symbol :time 0.00 :before-memory 0.02 :after-memory 0.02)
i: 0
i: 1000
i: 2000
i: 3000
i: 4000
i: 5000
i: 6000
i: 7000
i: 8000
i: 9000
i: 10000
i: 11000
i: 12000
i: 13000
i: 14000
i: 15000
i: 16000
i: 17000
i: 18000
i: 19000
i: 20000
i: 21000
i: 22000
i: 23000
i: 24000
i: 25000
i: 26000
i: 27000
i: 28000
i: 29000
i: 30000
i: 31000
i: 32000
i: 33000
i: 34000
i: 35000
i: 36000
i: 37000
i: 38000
i: 39000
i: 40000
i: 41000
i: 42000
i: 43000
i: 44000
i: 45000
i: 46000
i: 47000
i: 48000
i: 49000
i: 50000
i: 51000
i: 52000
i: 53000
i: 54000
i: 55000
i: 56000
i: 57000
i: 58000
i: 59000
i: 60000
i: 61000
i: 62000
i: 63000
i: 64000
i: 65000
i: 66000
i: 67000
i: 68000
i: 69000
i: 70000
i: 71000
i: 72000
i: 73000
i: 74000
i: 75000
i: 76000
i: 77000
i: 78000
i: 79000
i: 80000
i: 81000
i: 82000
i: 83000
i: 84000
i: 85000
i: 86000
i: 87000
i: 88000
i: 89000
i: 90000
i: 91000
i: 92000
i: 93000
i: 94000
i: 95000
i: 96000
i: 97000
i: 98000
i: 99000
i: 0
i: 1000
i: 2000
i: 3000
i: 4000
i: 5000
i: 6000
i: 7000
i: 8000
i: 9000
i: 10000
i: 11000
i: 12000
i: 13000
i: 14000
i: 15000
i: 16000
i: 17000
i: 18000
i: 19000
i: 20000
i: 21000
i: 22000
i: 23000
i: 24000
i: 25000
i: 26000
i: 27000
i: 28000
i: 29000
i: 30000
i: 31000
i: 32000
i: 33000
i: 34000
i: 35000
i: 36000
i: 37000
i: 38000
i: 39000
i: 40000
i: 41000
i: 42000
i: 43000
i: 44000
i: 45000
i: 46000
i: 47000
i: 48000
i: 49000
i: 50000
i: 51000
i: 52000
i: 53000
i: 54000
i: 55000
i: 56000
i: 57000
i: 58000
i: 59000
i: 60000
i: 61000
i: 62000
i: 63000
i: 64000
i: 65000
i: 66000
i: 67000
i: 68000
i: 69000
i: 70000
i: 71000
i: 72000
i: 73000
i: 74000
i: 75000
i: 76000
i: 77000
i: 78000
i: 79000
i: 80000
i: 81000
i: 82000
i: 83000
i: 84000
i: 85000
i: 86000
i: 87000
i: 88000
i: 89000
i: 90000
i: 91000
i: 92000
i: 93000
i: 94000
i: 95000
i: 96000
i: 97000
i: 98000
i: 99000
i: 0
i: 1000
i: 2000
i: 3000
i: 4000
i: 5000
i: 6000
i: 7000
i: 8000
i: 9000
i: 10000
i: 11000
i: 12000
i: 13000
i: 14000
i: 15000
i: 16000
i: 17000
i: 18000
i: 19000
i: 20000
i: 21000
i: 22000
i: 23000
i: 24000
i: 25000
i: 26000
i: 27000
i: 28000
i: 29000
i: 30000
i: 31000
i: 32000
i: 33000
i: 34000
i: 35000
i: 36000
i: 37000
i: 38000
i: 39000
i: 40000
i: 41000
i: 42000
i: 43000
i: 44000
i: 45000
i: 46000
i: 47000
i: 48000
i: 49000
i: 50000
i: 51000
i: 52000
i: 53000
i: 54000
i: 55000
i: 56000
i: 57000
i: 58000
i: 59000
i: 60000
i: 61000
i: 62000
i: 63000
i: 64000
i: 65000
i: 66000
i: 67000
i: 68000
i: 69000
i: 70000
i: 71000
i: 72000
i: 73000
i: 74000
i: 75000
i: 76000
i: 77000
i: 78000
i: 79000
i: 80000
i: 81000
i: 82000
i: 83000
i: 84000
i: 85000
i: 86000
i: 87000
i: 88000
i: 89000
i: 90000
i: 91000
i: 92000
i: 93000
i: 94000
i: 95000
i: 96000
i: 97000
i: 98000
i: 99000
PASS
(test heap :time 0.05 :before-memory 0.02 :after-memory 0.02)
i: 0
i: 1000
i: 2000
i: 3000
i: 4000
i: 5000
i: 6000
i: 7000
i: 8000
i: 9000
i: 10000
i: 11000
i: 12000
i: 13000
i: 14000
i: 15000
i: 16000
i: 17000
i: 18000
i: 19000
i: 20000
i: 21000
i: 22000
i: 23000
i: 24000
i: 25000
i: 26000
i: 27000
i: 28000
i: 29000
i: 30000
i: 31000
i: 32000
i: 33000
i: 34000
i: 35000
i: 36000
i: 37000
i: 38000
i: 39000
i: 40000
i: 41000
i: 42000
i: 43000
i: 44000
i: 45000
i: 46000
i: 47000
i: 48000
i: 49000
i: 50000
i: 51000
i: 52000
i: 53000
i: 54000
i: 55000
i: 56000
i: 57000
i: 58000
i: 59000
i: 60000
i: 61000
i: 62000
i: 63000
i: 64000
i: 65000
i: 66000
i: 67000
i: 68000
i: 69000
i: 70000
i: 71000
i: 72000
i: 73000
i: 74000
i: 75000
i: 76000
i: 77000
i: 78000
i: 79000
i: 80000
i: 81000
i: 82000
i: 83000
i: 84000
i: 85000
i: 86000
i: 87000
i: 88000
i: 89000
i: 90000
i: 91000
i: 92000
i: 93000
i: 94000
i: 95000
i: 96000
i: 97000
i: 98000
i: 99000
i: 0
i: 1000
i: 2000
i: 3000
i: 4000
i: 5000
i: 6000
i: 7000
i: 8000
i: 9000
i: 10000
i: 11000
i: 12000
i: 13000
i: 14000
i: 15000
i: 16000
i: 17000
i: 18000
i: 19000
i: 20000
i: 21000
i: 22000
i: 23000
i: 24000
i: 25000
i: 26000
i: 27000
i: 28000
i: 29000
i: 30000
i: 31000
i: 32000
i: 33000
i: 34000
i: 35000
i: 36000
i: 37000
i: 38000
i: 39000
i: 40000
i: 41000
i: 42000
i: 43000
i: 44000
i: 45000
i: 46000
i: 47000
i: 48000
i: 49000
i: 50000
i: 51000
i: 52000
i: 53000
i: 54000
i: 55000
i: 56000
i: 57000
i: 58000
i: 59000
i: 60000
i: 61000
i: 62000
i: 63000
i: 64000
i: 65000
i: 66000
i: 67000
i: 68000
i: 69000
i: 70000
i: 71000
i: 72000
i: 73000
i: 74000
i: 75000
i: 76000
i: 77000
i: 78000
i: 79000
i: 80000
i: 81000
i: 82000
i: 83000
i: 84000
i: 85000
i: 86000
i: 87000
i: 88000
i: 89000
i: 90000
i: 91000
i: 92000
i: 93000
i: 94000
i: 95000
i: 96000
i: 97000
i: 98000
i: 99000
i: 0
i: 1000
i: 2000
i: 3000
i: 4000
i: 5000
i: 6000
i: 7000
i: 8000
i: 9000
i: 10000
i: 11000
i: 12000
i: 13000
i: 14000
i: 15000
i: 16000
i: 17000
i: 18000
i: 19000
i: 20000
i: 21000
i: 22000
i: 23000
i: 24000
i: 25000
i: 26000
i: 27000
i: 28000
i: 29000
i: 30000
i: 31000
i: 32000
i: 33000
i: 34000
i: 35000
i: 36000
i: 37000
i: 38000
i: 39000
i: 40000
i: 41000
i: 42000
i: 43000
i: 44000
i: 45000
i: 46000
i: 47000
i: 48000
i: 49000
i: 50000
i: 51000
i: 52000
i: 53000
i: 54000
i: 55000
i: 56000
i: 57000
i: 58000
i: 59000
i: 60000
i: 61000
i: 62000
i: 63000
i: 64000
i: 65000
i: 66000
i: 67000
i: 68000
i: 69000
i: 70000
i: 71000
i: 72000
i: 73000
i: 74000
i: 75000
i: 76000
i: 77000
i: 78000
i: 79000
i: 80000
i: 81000
i: 82000
i: 83000
i: 84000
i: 85000
i: 86000
i: 87000
i: 88000
i: 89000
i: 90000
i: 91000
i: 92000
i: 93000
i: 94000
i: 95000
i: 96000
i: 97000
i: 98000
i: 99000
PASS
(test heap :time 0.04 :before-memory 0.02 :after-memory 0.02)
PASS
(test hashtable :time 0.00 :before-memory 0.02 :after-memory 0.02)
PASS
(test hashtable :time 0.00 :before-memory 0.02 :after-memory 0.02)
sizeof(rational): 24
int64_max: 9223372036854775807, INT64_MAX: 9223372036854775807, int64_max.get_int64(): 9223372036854775807, int64_max.get_uint64(): 9223372036854775807
running tst6
running tst7
running tst8
running tst9
41000000000000 -7000000000000 -5 6000000000000
41000000000000 == 41000000000000
-41000000000000 -7000000000000 6 1000000000000
-41000000000000 == -41000000000000
-41000000000000 7000000000000 -6 1000000000000
-41000000000000 == -41000000000000
41000000000000 7000000000000 5 6000000000000
41000000000000 == 41000000000000
41 -7 -5 6
41 == 41
-41 -7 6 1
-41 == -41
-41 7 -6 1
-41 == -41
41 7 5 6
41 == 41
running rational_tester::tst1
(multiplication with big rationals :time 8.82 :before-memory 0.35 :after-memory 35.62)
(multiplication with floats:  :time 0.00 :before-memory 35.62 :after-memory 35.62)

Testing multiplication performance using small ints
(multiplication with rationals :time 0.01 :before-memory 56.58 :after-memory 56.58)
(multiplication with floats:  :time 0.00 :before-memory 56.58 :after-memory 56.58)

Testing multiplication performance using small rationals
(multiplication with rationals :time 0.43 :before-memory 56.58 :after-memory 56.58)
(multiplication with floats:  :time 0.00 :before-memory 56.58 :after-memory 56.58)

PASS
(test rational :time 18.45 :before-memory 0.02 :after-memory 4.52)
sizeof(rational): 24
int64_max: 9223372036854775807, INT64_MAX: 9223372036854775807, int64_max.get_int64(): 9223372036854775807, int64_max.get_uint64(): 9223372036854775807
running tst6
running tst7
running tst8
running tst9
41000000000000 -7000000000000 -5 6000000000000
41000000000000 == 41000000000000
-41000000000000 -7000000000000 6 1000000000000
-41000000000000 == -41000000000000
-41000000000000 7000000000000 -6 1000000000000
-41000000000000 == -41000000000000
41000000000000 7000000000000 5 6000000000000
41000000000000 == 41000000000000
41 -7 -5 6
41 == 41
-41 -7 6 1
-41 == -41
-41 7 -6 1
-41 == -41
41 7 5 6
41 == 41
running rational_tester::tst1
(multiplication with big rationals :time 8.79 :before-memory 4.84 :after-memory 35.68)
(multiplication with floats:  :time 0.00 :before-memory 35.68 :after-memory 35.68)

Testing multiplication performance using small ints
(multiplication with rationals :time 0.01 :before-memory 56.65 :after-memory 56.65)
(multiplication with floats:  :time 0.00 :before-memory 56.65 :after-memory 56.65)

Testing multiplication performance using small rationals
(multiplication with rationals :time 0.43 :before-memory 56.65 :after-memory 56.65)
(multiplication with floats:  :time 0.00 :before-memory 56.65 :after-memory 56.65)

PASS
(test rational :time 18.42 :before-memory 4.52 :after-memory 4.59)
PASS
(test inf_rational :time 0.00 :before-memory 4.59 :after-memory 4.59)
PASS
(test inf_rational :time 0.00 :before-memory 4.59 :after-memory 4.59)
PASS
(test ast :time 0.00 :before-memory 4.59 :after-memory 4.59)
PASS
(test ast :time 0.00 :before-memory 4.59 :after-memory 4.59)
PASS
(test optional :time 0.00 :before-memory 4.59 :after-memory 4.59)
PASS
(test optional :time 0.00 :before-memory 4.59 :after-memory 4.59)
b: 000001000001100000001000000000100001000000000000000000000000000000000000000001111000000000000000000010000000000
b: 0000010000011000000010000000001000010000000000000000000000000000000000000000011110000000000000000000100000000000000000000000000
b: 00000100000110000000100000000010000100000000000000000000000000000000000000000111100000000000000000001000000000000000000000000000
b: 0000010000011000000010000000001000010000000000000000000000000000000000000000011110000000000000000000100000000000000000000000000000000000000000000000000000000000
b: 0000010000011000000010000000001000010000000000000000000000000000000000000000011110000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
b: 00000100000110000000100000000010000100000000000000000000000000000000000000000111100000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
b: 00000100000110000000100000000010000100000000000000000000000000000000000000000111100000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
10000
0100001110
0100011110
-----
10001
b1(size32): 00000000000000000000000100100011
------
b1: 10100
------
b1: 00100
PASS
(test bit_vector :time 0.00 :before-memory 4.59 :after-memory 4.59)
b: 000001000001100000001000000000100001000000000000000000000000000000000000000001111000000000000000000010000000000
b: 0000010000011000000010000000001000010000000000000000000000000000000000000000011110000000000000000000100000000000000000000000000
b: 00000100000110000000100000000010000100000000000000000000000000000000000000000111100000000000000000001000000000000000000000000000
b: 0000010000011000000010000000001000010000000000000000000000000000000000000000011110000000000000000000100000000000000000000000000000000000000000000000000000000000
b: 0000010000011000000010000000001000010000000000000000000000000000000000000000011110000000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
b: 00000100000110000000100000000010000100000000000000000000000000000000000000000111100000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
b: 00000100000110000000100000000010000100000000000000000000000000000000000000000111100000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
10000
0100001110
0100011110
-----
10001
b1(size32): 00000000000000000000000100100011
------
b1: 10100
------
b1: 00100
PASS
(test bit_vector :time 0.00 :before-memory 4.59 :after-memory 4.59)
0000010000
0100001110
0100011110
PASS
(test fixed_bit_vector :time 0.00 :before-memory 4.59 :after-memory 4.59)
0000010000
0100001110
0100011110
PASS
(test fixed_bit_vector :time 0.00 :before-memory 4.59 :after-memory 4.59)
[]
[]
[]
0000000000000000000000000000000
1111111111111111111111111111111
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
0000000000000000000000000011111
11111111111111111111111111x1011 -> 11111111111111111111111111x01
00000000000
11111111111
xxxxxxxxxxx
00000011111
111111x1011 -> 111111x01
000000000000000
111111111111111
xxxxxxxxxxxxxxx
000000000011111
1111111111x1011 -> 1111111111x01
0000000000000000
1111111111111111
xxxxxxxxxxxxxxxx
0000000000011111
11111111111x1011 -> 11111111111x01
00000000000000000
11111111111111111
xxxxxxxxxxxxxxxxx
00000000000011111
111111111111x1011 -> 111111111111x01
PASS
(test tbv :time 0.00 :before-memory 4.59 :after-memory 4.59)
[]
[]
[]
0000000000000000000000000000000
1111111111111111111111111111111
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
0000000000000000000000000011111
11111111111111111111111111x1011 -> 11111111111111111111111111x01
00000000000
11111111111
xxxxxxxxxxx
00000011111
111111x1011 -> 111111x01
000000000000000
111111111111111
xxxxxxxxxxxxxxx
000000000011111
1111111111x1011 -> 1111111111x01
0000000000000000
1111111111111111
xxxxxxxxxxxxxxxx
0000000000011111
11111111111x1011 -> 11111111111x01
00000000000000000
11111111111111111
xxxxxxxxxxxxxxxxx
00000000000011111
111111111111x1011 -> 111111111111x01
PASS
(test tbv :time 0.00 :before-memory 4.59 :after-memory 4.59)
xxxx \ {xxx0}
xxx
(or (and true (not (not true))) (and true (not (not false)))) true
{xx10}
{xxxx \ {x0x1, x1x0}}
{x110}
11111
00000
xxxxx
01010
10100
00000
xxxxx
11111 \ {00000} -> 11111
11111 -> 111
x1x11 -> xx1
x1x11 \ {11111} -> xx1 \ {111}
1111111111
0000000000
xxxxxxxxxx
0000001010
0000010100
0000000000
xxxxxxxxxx
1111111111 \ {
   0000000000} -> 1111111111
1111111111 -> 11111111
11111x1x11 -> 11111xx1
11111x1x11 \ {
   1111111111} -> 11111xx1 \ {11111111}
1111111111111111111111111111111111111111111111111111111111111111111111
0000000000000000000000000000000000000000000000000000000000000000000000
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
0000000000000000000000000000000000000000000000000000000000000000001010
0000000000000000000000000000000000000000000000000000000000000000010100
0000000000000000000000000000000000000000000000000000000000000000000000
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
1111111111111111111111111111111111111111111111111111111111111111111111 \ {
   0000000000000000000000000000000000000000000000000000000000000000000000} -> 1111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111 -> 11111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111111111111111111x1x11 -> 11111111111111111111111111111111111111111111111111111111111111111xx1
11111111111111111111111111111111111111111111111111111111111111111x1x11 \ {
   1111111111111111111111111111111111111111111111111111111111111111111111} -> 11111111111111111111111111111111111111111111111111111111111111111xx1 \ {
   11111111111111111111111111111111111111111111111111111111111111111111}
PASS
(test doc :time 77.97 :before-memory 4.59 :after-memory 4.65)
xxxx \ {xxx0}
xxx
(or (and true (not (not true))) (and true (not (not false)))) true
{xx10}
{xxxx \ {x0x1, x1x0}}
{x110}
11111
00000
xxxxx
01010
10100
00000
xxxxx
11111 \ {00000} -> 11111
11111 -> 111
x1x11 -> xx1
x1x11 \ {11111} -> xx1 \ {111}
1111111111
0000000000
xxxxxxxxxx
0000001010
0000010100
0000000000
xxxxxxxxxx
1111111111 \ {
   0000000000} -> 1111111111
1111111111 -> 11111111
11111x1x11 -> 11111xx1
11111x1x11 \ {
   1111111111} -> 11111xx1 \ {11111111}
1111111111111111111111111111111111111111111111111111111111111111111111
0000000000000000000000000000000000000000000000000000000000000000000000
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
0000000000000000000000000000000000000000000000000000000000000000001010
0000000000000000000000000000000000000000000000000000000000000000010100
0000000000000000000000000000000000000000000000000000000000000000000000
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
1111111111111111111111111111111111111111111111111111111111111111111111 \ {
   0000000000000000000000000000000000000000000000000000000000000000000000} -> 1111111111111111111111111111111111111111111111111111111111111111111111
1111111111111111111111111111111111111111111111111111111111111111111111 -> 11111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111111111111111111x1x11 -> 11111111111111111111111111111111111111111111111111111111111111111xx1
11111111111111111111111111111111111111111111111111111111111111111x1x11 \ {
   1111111111111111111111111111111111111111111111111111111111111111111111} -> 11111111111111111111111111111111111111111111111111111111111111111xx1 \ {
   11111111111111111111111111111111111111111111111111111111111111111111}
PASS
(test doc :time 76.84 :before-memory 4.65 :after-memory 4.65)
{xxx \ {0x1}}
{xxx \ {0x0, 1x1}}
{0xxx \ {00xx, 0101, 0111}}
{}
{}
{0x01 \ {0001, 0101, 0101}}
{}
{}
{x1xx \ {01xx, 0101, x100}, x1x1 \ {x111, 1101}}
{}
{}
{}
{}
{}
{}
{x1xx \ {x10x, 11x1, 0100}}
{}
{1xx1 \ {1001, 1x11, 1011}}
{1xx0 \ {1000, 1x00, 1100}, 1xxx \ {11x1, 1x11, 1111}}
{x1x1 \ {1101, 0111, x111, 11x1}}
{xxx0 \ {x110, 0010, x000}}
{}
{}
{xx00 \ {0000, x000}, 0x00 \ {0000, 0100, 0100}}
{10xx \ {1001, 1000, 1010}}
{0000 \ {0000}}
{1x1x \ {1x10, 1x11}}
{x11x \ {0111, x111}}
{1x1x \ {1110, 1011, 1x10, 1x11, 111x}}
{}
{1x0x \ {1x01, 1000, 1000}}
{}
{0xx0 \ {0000, 00x0, 0100}}
{}
{}
{x1x1 \ {0101, 11x1, 1111}, 0x11 \ {0011}}
{10x0 \ {1000, 1010}}
{}
{xxxx \ {011x, 1x01}, 0xx1 \ {0x01, 00x1, 0011}, 1xxx \ {11xx, 11x0, 100x}}
{x10x \ {110x, 0101, 0100}, 1x01 \ {1101}}
{0x0x \ {0100, 0001, 010x, 000x}, 0101}
{0xx0 \ {0000, 0110, 0x00}}
{}
{}
{10xx \ {10x1, 10x0, 1000}}
{1xx0 \ {1x10, 11x0, 1010}, xxx1 \ {x1x1, 0011, x101}}
{x0x0 \ {x0x0}, x1x1 \ {x1x1}}
{x1x1 \ {1101, x101}, 0x0x \ {0001, 0101, 010x}}
{}
{}
{01xx \ {011x, 010x, 0110}, x000 \ {1000, 0000}}
{xx1x \ {xx10, 101x, 101x}, 0x10 \ {0010, 0110, 0110}}
{1x1x \ {1x1x}, 1010 \ {1010}}
{x0x0 \ {x010, x000, 10x0}}
{0xx1 \ {0101, 0111, 0011}, 0x00 \ {0000}}
{0000 \ {0000}}
{x1x0 \ {1100, 1110, 0110}}
{100x \ {1001, 1000}}
{0000 \ {0000}}
{1xx1 \ {1111, 11x1, 1101}, x0xx \ {x001, x000, x0x0}}
{0x00 \ {0000}, xx1x \ {001x, 1x11, 1x11}}
{1111, 0000 \ {0000}, 1x1x \ {1110, 1011, 1x10}}
{1x1x \ {1111, 101x, 1010}}
{xx1x \ {111x, 001x, xx10}}
{1x1x \ {1110, 1011, 101x, 1x11}}
{}
{0xx0 \ {0x00, 0110, 0100}}
{}
{0x1x \ {0111, 001x, 0x11}}
{00x0 \ {0010, 0000}}
{1010 \ {1010}}
{100x \ {1000}, xx10 \ {0110, x010, 0x10}, xx0x \ {1101, 1100, 100x}}
{0x0x \ {000x, 0001, 0100}}
{0x0x \ {0100, 0001, 000x}}
{x0xx \ {x001, 10x1, x01x}}
{x0xx \ {1011, 0000}, 110x \ {1101, 1100, 1100}}
{xxxx \ {x1x0, x0x1, 1x0x, 0x1x, xx01, xx1x}, 0x0x \ {0100, 0001, 0x01, 010x, 000x, 000x}}
{x001 \ {1001, 0001}}
{xx0x \ {1100, 0x0x, x10x}, 000x \ {0001}}
{0101 \ {0101}}
{x001 \ {1001, 0001, 0001}}
{10xx \ {1011, 1001, 10x0}}
{0101 \ {0101}}
{}
{0x00 \ {0000, 0100}}
{}
{x1xx \ {01x1, 010x, x1x0}}
{011x \ {0111, 0110}, x00x \ {x001, 1000}, xxxx \ {0000, 00xx, 0111}}
{1x1x \ {1110, 1011, 1x10, 111x, 101x}, 0x0x \ {0100, 0001, 0x00, 010x}, xxxx \ {x1x0, x0x1, 1x0x, 0x1x, xxx0}}
{01xx \ {01x1, 0110}}
{}
{}
{x111 \ {0111, 1111}, 101x \ {1010, 1011}}
{}
{}
{x101 \ {1101}}
{x1xx \ {1101, 01xx, x101}, 1x0x \ {1x01, 1x00}}
{0101 \ {0101}}
{001x \ {0010}, 1x1x \ {1111, 1010, 1x10}}
{0x0x \ {0000, 0x01, 000x}, 10xx \ {100x, 10x0, 1011}}
{1x1x \ {1110, 1011, 1x10, 101x, 111x}}
{}
{1x00 \ {1000}}
{}
{xx11 \ {0011, 1111, 1111}}
{xxx1 \ {1101, 1111, 0111}}
{1111}
{00xx \ {00x0, 00x1, 0001}}
{10x0 \ {1000}, x10x \ {0100, x101, x100}}
{x0x0 \ {x0x0}, 0x0x \ {
   0100, 0001, 0x00, 0x01, 0x01, 010x, 000x}}
{xx01 \ {1001, 0x01, 0101}}
{011x \ {0111, 0110}}
{}
{}
{x1xx \ {x10x, 1101, 0111}, xx11 \ {0111, 1111, 1x11}}
{}
{xx00 \ {0000, 0x00, 0100}}
{x11x \ {0111, 111x, x111}, x01x \ {x011, x010, x010}}
{}
{11x1 \ {1101}}
{1x1x \ {1011, 1110, 1x10}}
{1111}
{0x00 \ {0000, 0100}}
{0xxx \ {0x00, 0101, 0001}}
{0000 \ {0000}}
{x0x0 \ {10x0, 1000}, 0x0x \ {0x00, 0000, 010x}}
{xxx1 \ {xx11, xx01, x0x1}, 0xx0 \ {0100, 01x0}}
{x0x0 \ {1000, 0010}, 0101 \ {0101}, 0000 \ {0000}}
{x1x0 \ {01x0, 0110}}
{x010 \ {1010, 0010}}
{1010 \ {1010}}
{x1x0 \ {1110, 1100, x100}}
{1xx1 \ {1011, 1111}}
{}
{0xx0 \ {0000, 0x00, 01x0}}
{x0x1 \ {x001, 1001, 0011}, 01xx \ {0111, 0110, 010x}, 0xx1 \ {0101, 0111, 0111}}
{x0x0 \ {1000, 0010, x000, 10x0, 00x0, x000}}
{1x0x \ {1x00, 1100}, x0xx \ {x00x, 1000, x001}, 100x \ {1001, 1000}}
{xx0x \ {xx01, 1100, 010x}}
{0x0x \ {0100, 0001, 0x00, 010x}}
{1x1x \ {111x, 1010}, x001 \ {1001, 0001}}
{xx0x \ {0000, x000, 1101}}
{0101 \ {0101}}
{xx11 \ {0111, 0011, 0011}, 00x0 \ {0010, 0000}}
{0xxx \ {0x1x, 011x, 011x}}
{1111 \ {1111}, x0x0 \ {1000, 0010, x010, x000, 10x0}}
{}
{11x1 \ {1101, 1111}, xxx1 \ {0x11, xx11, 1x01}}
{}
{0xx1 \ {0x01, 00x1, 0111}, xx01 \ {1001, x001, x101}, 1xx0 \ {1x10, 1000, 1100}}
{01xx \ {011x, 01x0, 01x1}}
{x1x1 \ {x1x1}, 0101 \ {0101}, x0x0 \ {x0x0}}
{x0xx \ {0000, 10x1, 10x1}}
{x010 \ {1010, 0010}}
{1010 \ {1010}}
{xx00 \ {1000, 0x00, x000}, 00x0 \ {0000, 0010}}
{x100 \ {0100, 1100, 1100}, xx00 \ {x100, x000, 1000}}
{0000 \ {0000}}
{x010 \ {1010, 0010, 0010}, 000x \ {0001}}
{10xx \ {10x1, 101x}}
{1010 \ {1010}, 0x0x \ {0100, 0001, 0x01, 010x}}
{x1xx \ {11x1, x10x, 1100}, 0x11 \ {0111, 0011}}
{}
{}
{0x10 \ {0110}}
{}
{}
{}
{xx11 \ {1x11, x011}, 111x \ {1110}}
{}
{xx1x \ {0x10, x011, 111x}}
{0xx0 \ {0100, 01x0, 00x0}, 10xx \ {10x1, 1010}}
{1010 \ {1010}, 1x1x \ {1110, 1011, 111x, 101x}}
{}
{011x \ {0111, 0110}, 01x1 \ {0111, 0101}}
{}
{x1x0 \ {1100, 01x0, 1110}, 1x0x \ {1000, 110x}}
{10xx \ {1000, 100x, 1011}, 0xx0 \ {0100, 0x10, 0x00}, 00xx \ {001x, 00x1, 0011}}
{x0x0 \ {1000, 0010, 00x0, 00x0, x000, x010}, x0x0 \ {1000, 0010, 10x0, x000, x010}, 0000 \ {0000}, 0x0x \ {0100, 0001, 010x, 0x00}}
{11x0 \ {1110, 1100, 1100}}
{1x1x \ {111x, 1x11, 1111}, x110 \ {0110, 1110, 1110}, 00xx \ {00x0, 000x, 0011}}
{1010 \ {1010}, x0x0 \ {x0x0}}
{0x11 \ {0111, 0011, 0011}, x1xx \ {110x, 111x, 0100}}
{xxxx \ {110x, xx10, 11x0}}
{1111 \ {1111}, xxxx \ {x1x0, x0x1, 1x0x, 0x1x, 10xx, xx00}}
{}
{xx0x \ {xx00, 0000, x001}, 0x01 \ {0101}, xx0x \ {xx01, 1001, x100}}
{}
{0xxx \ {0010, 0x00, 0xx0}}
{xx00 \ {x100, 1x00, 1000}}
{0000 \ {0000}}
{xxx0 \ {1100, 0010, 1x10}, xx01 \ {1001, 0101}}
{x010 \ {0010, 1010}}
{1010 \ {1010}}
{x111 \ {1111, 0111}, x00x \ {1001, 0001, 0001}}
{010x \ {0100}}
{0x0x \ {0100, 0001, 000x, 0x01, 0x01}}
{xx11 \ {0011, x111, 0x11}, 1x00 \ {1000, 1100}}
{1xx1 \ {1x01, 1101, 1101}, 010x \ {0101, 0100}}
{1111, 0000 \ {0000}}
{00xx \ {00x1, 001x, 0001}}
{x11x \ {0111, 0110, 011x}}
{1x1x \ {1x1x}}
{0xxx \ {010x, 0x01}}
{1x11 \ {1111, 1011, 1011}}
{1111 \ {1111}}
{x1x0 \ {0110, 0100}, x01x \ {x010, 001x, 0010}}
{}
{}
{1xxx \ {1101, 10x0, 1x11}, x1x1 \ {01x1, 1111}}
{00x1 \ {0001, 0011}}
{x1x1 \ {1101, 0111, x111, 01x1, 11x1}}
{0x01 \ {0001}, xxx1 \ {1x01, 0001, 10x1}}
{1x1x \ {1x11, 1011, 1011}, 00xx \ {000x, 001x, 00x1}}
{0101 \ {0101}, 1111 \ {1111}, x1x1 \ {x1x1}}
{1xxx \ {1xx0, 111x, 1x1x}, x0x1 \ {0011, 10x1}, x01x \ {101x, 001x}}
{10x0 \ {1010, 1000}, 11x1 \ {1111, 1101, 1101}}
{x0x0 \ {x0x0}, x1x1 \ {1101, 0111, x111, 11x1, 01x1, 01x1}, 1010 \ {1010}, 1111 \ {1111}}
{x01x \ {1010, x010, 0011}}
{1x11 \ {1111, 1011}}
{1111 \ {1111}}
{}
{010x \ {0100, 0101}, xx00 \ {x000, 0100}}
{}
{xxx0 \ {x100, x010, 1x00}, xxx1 \ {0001, 1011, 1x01}}
{x010 \ {1010, 0010}, xx0x \ {x101, x10x, 1000}}
{1010 \ {1010}, 0000, 0101}
{x0xx \ {1000, 1010, 00x0}, xx00 \ {0100, 1x00, 0x00}}
{01xx \ {0101, 01x0, 0100}}
{xxxx \ {
   x1x0, x0x1, 1x0x, 0x1x, 01xx, x0xx, 00xx, xx00, xx10}, 0000 \ {0000}}
{x0x1 \ {0001, 1011}, 010x \ {0101}}
{x110 \ {1110, 0110, 0110}, 0x00 \ {0000}, 10xx \ {1001, 101x, 1010}}
{x1x1 \ {1101, 0111, 01x1, 11x1}, 0000, 0x0x \ {0100, 0001, 0x01, 010x}}
{00xx \ {00x0, 000x, 0001}}
{101x \ {1011, 1010, 1010}}
{1x1x \ {1110, 1011, 1x10, 111x, 101x, 101x}}
{01xx \ {0100, 0101}, 10xx \ {10x1, 1001, 1011}}
{xx01 \ {1001, x001, 0001}, 0xx1 \ {0111, 0001, 0101}}
{0101 \ {0101}, x1x1 \ {1101, 0111, x101, 01x1}}
{11x1 \ {1111, 1101, 1101}, x0x1 \ {10x1, 00x1}}
{xxxx \ {0x11, 0x1x, 00x0}, x111 \ {0111, 1111}, x10x \ {0101, 110x, 1101}}
{x1x1 \ {1101, 0111, x111, x101, x101}, 1111 \ {1111}, 0101 \ {0101}}
{000x \ {0001, 0000, 0000}, xx10 \ {0110, x010, 1x10}}
{01xx \ {01x1, 011x, 0101}}
{0x0x \ {
   0100, 0001, 0x01, 0x00, 0x00, 010x, 010x}, 1010 \ {1010}}
{10xx \ {101x, 10x0, 10x0}, 1x0x \ {1x01, 1000, 110x}}
{x011 \ {0011, 1011}, xxx1 \ {1011, 0x01, 1x11}}
{1111 \ {1111}, x1x1 \ {1101, 0111, x111}, 0101 \ {0101}}
{xx01 \ {x001, 0001, 0001}, xxxx \ {x10x, 1011, 10x1}, xx00 \ {0x00, 1x00, x000}}
{0xx0 \ {0x00, 0110, 0000}, x1x0 \ {x110, 0100, x100}}
{x0x0 \ {1000, 0010, 00x0}, 0000 \ {0000}}
{0xx0 \ {01x0, 0010, 0110}, 111x \ {1111, 1110, 1110}}
{xx1x \ {001x, 0010, 011x}}
{1010 \ {1010}, 1x1x \ {1110, 1011, 1x11, 1x10, 1x10}}
{11xx \ {111x, 110x}}
{x10x \ {x100, 1101, 0101}}
{0x0x \ {0x0x}}
{x10x \ {010x, 1100}}
{}
{}
{10x1 \ {1001, 1011}, xx0x \ {0100, 000x, 1x0x}}
{x00x \ {1001, 000x, 0000}}
{0101 \ {0101}, 0x0x \ {0100, 0001, 010x, 0x00}}
{x1x1 \ {1101, x101}}
{001x \ {0011, 0010}}
{1111 \ {1111}}
{xx00 \ {0100, 1000, x000}}
{0x10 \ {0010, 0110}, xx1x \ {0x10, x111, x110}}
{}
{x1x0 \ {0100, x100, 0110}, x0x1 \ {1011, 10x1, x011}}
{0x1x \ {011x, 001x, 0x10}}
{1010 \ {1010}, 1111 \ {1111}}
{000x \ {0001, 0000, 0000}, 0x1x \ {001x, 0x10, 011x}}
{01xx \ {01x1, 010x, 0110}}
{0x0x \ {0x0x}, 1x1x \ {1x1x}}
{0x0x \ {0100, 010x, 000x}}
{x101 \ {0101}}
{0101 \ {0101}}
{x10x \ {x100, 0101, 1100}, 1x0x \ {1x01, 1100}, xx1x \ {111x, 1011, 0010}}
{}
{}
{1xxx \ {101x, 10x1, 1110}}
{1x00 \ {1100, 1000}}
{0000 \ {0000}}
{01xx \ {011x, 01x1}, x11x \ {0110, x110, 0111}}
{x1xx \ {11xx, 01x1, 1101}, 01xx \ {01x0, 0100, 010x}}
{xxxx \ {
   x1x0, x0x1, 1x0x, 0x1x, xx1x, xxx1, x1xx, 01xx}, xxxx \ {
   x1x0, x0x1, 1x0x, 0x1x, xx1x, xxx1, x0xx, 00xx, 0xxx}, 1x1x \ {1110, 1011, 1x10, 111x}, 1x1x \ {1110, 1011, 1x10, 101x}}
{011x \ {0111, 0110}}
{x110 \ {1110, 0110}, xx00 \ {0x00, 1x00, x100}}
{1010 \ {1010}}
{10xx \ {1001, 1011, 101x}}
{xxxx \ {x10x, 1000, 00xx}, 0x0x \ {0100, 0x01, 0000}}
{xxxx \ {
   x1x0, x0x1, 1x0x, 0x1x, xx01, xx11, xx1x, 00xx}, 0x0x \ {0100, 0001, 0x01, 010x, 000x}}
{x10x \ {010x, x101, 0101}, 0x0x \ {000x, 0100, 0x01}, x0x0 \ {10x0}}
{11xx \ {11x0}}
{0x0x \ {0100, 0001, 0x01, 000x}, x0x0 \ {x0x0}}
{}
{00xx \ {000x, 00x1, 0011}, 0x1x \ {0110, 001x, 011x}}
{}
{xx01 \ {1x01, 1101, 1101}}
{x11x \ {0111, 1111, 011x}, xx00 \ {x000, 1000, x100}, 0x10 \ {0110, 0010, 0010}}
{}
{0x0x \ {0100, 000x, 010x}, 1x0x \ {1101, 1x01, 1001}}
{}
{}
{}
{x001 \ {1001, 0001}}
{}
{xxx1 \ {0xx1, 0x11, x1x1}, x00x \ {1001, 000x, 000x}}
{xx01 \ {0101, 1001, x101}, x01x \ {0010, 1010, 001x}}
{0101, 1111}
{xx01 \ {0x01, 1101}}
{x11x \ {x111, 0110, x110}}
{}
{001x \ {0010}, 0xxx \ {011x, 0x00}}
{}
{}
{x01x \ {x010, 101x, 101x}, 100x \ {1001, 1000, 1000}}
{}
{}
{1x0x \ {1101, 110x, 110x}, x100 \ {0100}}
{111x \ {1111, 1110}}
{}
{x1xx \ {01x0, 11x1, x11x}, 100x \ {1001, 1000}, x011 \ {1011, 0011}}
{x1x0 \ {1100, 0100}}
{x0x0 \ {1000, 0010, x010, 00x0}, 0000 \ {0000}}
{x1x1 \ {1111, 0111, 01x1}, xxxx \ {0010, 00x1, 1010}}
{}
{}
{xx00 \ {1000, 0000, 0100}}
{}
{}
{11xx \ {1101, 11x1, 11x0}}
{10x1 \ {1011, 1001, 1001}}
{x1x1 \ {x1x1}}
{01xx \ {01x0, 0100, 011x}}
{1xx0 \ {1010, 1100, 11x0}, 01xx \ {0110, 010x, 0100}}
{x0x0 \ {x0x0}, xxxx \ {
   x1x0, x0x1, 1x0x, 0x1x, xxx0, xx00, xx1x, 10xx, 0xxx, 00xx}}
{00x0 \ {0010, 0000, 0000}, 10x0 \ {1010}}
{x110 \ {1110}, x010 \ {1010, 0010}}
{1010 \ {1010}}
{}
{xxxx \ {000x, 010x, x11x}}
{}
{}
{xxx0 \ {x010, x100, x0x0}}
{}
{x100 \ {0100}, x0xx \ {x000, 00x0}}
{xxx0 \ {0110, x100, x0x0}}
{0000 \ {0000}, x0x0 \ {1000, 0010, x000, 00x0}}
{}
{x0xx \ {1001, 0001, 0011}, x0xx \ {x000, 0000, x001}}
{}
{0xx0 \ {00x0, 0000, 01x0}, 1x01 \ {1001, 1101, 1101}}
{1xxx \ {101x, 10x1, 1100}, 000x \ {0001, 0000, 0000}, 1x0x \ {1x01, 100x, 1001}}
{x0x0 \ {x0x0}, 0000 \ {0000}, 0101 \ {0101}}
{1xxx \ {1xx0, 10x0, 1001}, 0x10 \ {0110, 0010}}
{x00x \ {1001, x001}}
{0x0x \ {0100, 0001, 0x00, 010x}}
{001x \ {0011, 0010, 0010}}
{xxx0 \ {x000, 1010, 0000}, x0xx \ {000x, 00x0, 10x1}}
{1010 \ {1010}, 1x1x \ {1110, 1011, 1x11, 1x10, 1x10}}
{0x00 \ {0000, 0100}}
{11x0 \ {1110, 1100, 1100}, 11x0 \ {1100, 1110, 1110}, 101x \ {1010, 1011, 1011}}
{0000 \ {0000}}
{}
{}
{}
{00xx \ {000x, 001x, 00x1}}
{}
{}
{x011 \ {1011, 0011}, x01x \ {0010, 001x, x010}}
{}
{}
{010x \ {0101, 0100, 0100}, xxx0 \ {0110, 1xx0, 1100}, x00x \ {000x, 1001}}
{01xx \ {0110, 0111, 0100}}
{x0x0 \ {1000, 0010, 10x0, 00x0}, 0x0x \ {0100, 0001, 000x, 0x01}}
{x0x0 \ {1000, 0010, x000}}
{100x \ {1001}, 1xx0 \ {1000, 11x0, 1x10}}
{0000 \ {0000}, x0x0 \ {1000, 0010, x000, 10x0, 00x0}}
{1x10 \ {1010, 1110}}
{}
{}
{x1xx \ {x10x, 11x1, 11x0}, 00x0 \ {0000}}
{x1xx \ {0100, 0101, 111x}, 0xxx \ {0001, 0110, 0010}}
{xxxx \ {x1x0, x0x1, 1x0x, 0x1x, xx0x}, x0x0 \ {1000, 0010, x000}}
{x0x1 \ {x001, 0001, 0011}}
{101x \ {1010, 1011}}
{1111 \ {1111}}
{}
{}
{}
{x1x0 \ {0110, 0100}}
{x1x1 \ {0101, 1101, 1111}}
{}
{}
{01xx \ {01x1, 011x, 0110}}
{}
{0xxx \ {0011, 0xx1, 0111}, xx11 \ {0011, x011}, x1xx \ {111x, x10x}}
{000x \ {0000, 0001, 0001}, 0x10 \ {0110, 0010, 0010}}
{0x0x \ {0100, 0001, 0x01, 000x, 010x, 010x}, 1010 \ {1010}}
{x1x0 \ {0110, x100, 01x0}}
{1x0x \ {1x01, 1001, 1x00}, x00x \ {0000, 0001, 100x}}
{0000 \ {0000}}
{}
{x0x1 \ {10x1, 00x1, 00x1}}
{}
{}
{x0x1 \ {0001, x011, 1011}, xxx1 \ {x011, 1xx1, 10x1}}
{}
{xx11 \ {1111, 1x11}}
{11x1 \ {1111, 1101}}
{1111 \ {1111}}
{0xx1 \ {00x1, 01x1, 0x01}}
{x1x0 \ {1110, 01x0, 1100}, xx0x \ {100x, 1000, 1100}}
{0101 \ {0101}}
{xx0x \ {110x, 000x, x001}, x11x \ {111x, x111, 0110}}
{01x0 \ {0100, 0110}}
{0000 \ {0000}, 1010 \ {1010}}
{10xx \ {1001, 1010, 100x}}
{x001 \ {1001, 0001}}
{0101 \ {0101}}
{0x00 \ {0100}}
{xx0x \ {0000, 1x0x, xx01}}
{0000}
{1x0x \ {1100, 110x, 1x01}, x00x \ {1001, 0001, 0001}}
{1x1x \ {1110, 101x, 1010}, xx01 \ {x001, 1101, 0x01}}
{0101 \ {0101}}
{}
{}
{}
{x110 \ {0110, 1110}}
{xx00 \ {0000, x100, x000}, xx00 \ {0000, x100}}
{}
{}
{xx10 \ {0110, x110, x110}}
{}
{xx01 \ {0001, 1001}, 0xxx \ {0101, 0110, 0x1x}}
{x01x \ {0011, 1011, x011}}
{1x1x \ {1x1x}}
{xxx1 \ {01x1, x011, 1011}, 1xx1 \ {1101, 1111, 1011}, 11xx \ {110x, 1110, 11x1}}
{0x1x \ {011x, 0x11}}
{1111 \ {1111}, 1x1x \ {1110, 1011, 1x10, 1x11, 111x}}
{xxxx \ {x101, 0010, 110x}, 111x \ {1111, 1110}}
{x0x0 \ {1000, 0010, 10x0}, x0x1 \ {1001, 0011}}
{x0x0 \ {1000, 0010, 10x0}, x1x1 \ {1101, 0111}, 1010 \ {1010}, 1111 \ {1111}}
{}
{11x0 \ {1110, 1100}}
{}
{10xx \ {1001, 1011, 100x}}
{00x1 \ {0001}, 11x1 \ {1111, 1101}}
{x1x1 \ {1101, 0111, x101, x111, x101, 01x1}}
{}
{0xx1 \ {0011, 0111}}
{}
{11xx \ {1101, 11x0, 1110}}
{x1xx \ {01x0, x10x, 110x}}
{xxxx \ {
   x1x0, x0x1, 1x0x, 0x1x, xx01, xxx0, xx10, 0xxx, 00xx}}
{1xx1 \ {1101, 1111}}
{}
{}
{x101 \ {0101, 1101}}
{0xx1 \ {0x01, 0001, 0111}, xxxx \ {0111, 1xx1, 001x}, x10x \ {1100, 110x, 0101}}
{0101 \ {0101}}
{01xx \ {0101, 011x, 0100}, x0x0 \ {00x0, x000, x010}, 0xxx \ {010x, 00x0, 00x1}}
{10x1 \ {1001, 1011}, xx10 \ {1x10, x110, 1110}}
{x1x1 \ {1101, 0111, 01x1, 11x1, x101}, 1010}
{010x \ {0101, 0100}}
{x11x \ {1111, 0111, 111x}, 0x00 \ {0100}}
{0000 \ {0000}}
{x0x0 \ {x010}}
{1x0x \ {100x, 110x}}
{0000 \ {0000}}
{xx10 \ {0x10, x110, 0010}, 01x0 \ {0100, 0110, 0110}}
{1x0x \ {1101, 100x, 1001}, 0xxx \ {0100, 0x10, 0010}}
{1010 \ {1010}, 0000 \ {0000}, x0x0 \ {1000, 0010, x000, x010, x010, 10x0}}
{1x0x \ {1100, 110x, 1000}, 1xx0 \ {1x10, 1x00, 10x0}, 1x1x \ {101x, 1111, 1x10}}
{1x10 \ {1010, 1110, 1110}}
{1010 \ {1010}}
{}
{0x0x \ {0x01, 0001, 0x00}}
{}
{}
{x11x \ {1110, 0110, x111}}
{}
{0x00 \ {0000, 0100, 0100}}
{xxx1 \ {x011, 0101, 1x01}}
{}
{x1x1 \ {01x1, 0111, 1111}}
{01xx \ {0110, 0101, 01x1}}
{x1x1 \ {x1x1}}
{1x1x \ {1010, 111x, 1x10}}
{}
{}
{}
{10x0 \ {1000, 1010, 1010}}
{}
{}
{x0x1 \ {1001, x001}, x01x \ {x010, 1011}}
{}
{0x1x \ {011x, 001x}, x0xx \ {x00x, 0011, 1001}}
{xx00 \ {1100, x100}}
{0000 \ {0000}}
{xx00 \ {0100, 1100, 1100}, x11x \ {x110, x111, 0111}}
{0xx1 \ {00x1, 0011, 0x01}}
{1111 \ {1111}}
{x0x1 \ {0011, 1001, 00x1}, 0x0x \ {0000, 0101, 000x}}
{x100 \ {0100}}
{0000}
{}
{}
{}
{xx10 \ {0110, 0x10}}
{x0xx \ {x000, 10x1, 0001}}
{1010}
{}
{x0x1 \ {00x1, 1011, 1011}}
{}
{}
{01xx \ {010x, 011x}}
{}
{}
{x1xx \ {11xx, 01xx, 010x}, xxx1 \ {00x1, 1101, 0001}}
{}
{xxxx \ {00x1, 010x, x111}, x101 \ {0101, 1101}}
{0xx0 \ {0110, 0000, 0010}, 1x01 \ {1101, 1001}, 0x0x \ {0101, 0100, 0000}}
{x0x0 \ {1000, 0010, 10x0}, 0101 \ {0101}, 0x0x \ {0100, 0001, 000x}}
{x01x \ {0011, 101x, 101x}}
{x101 \ {1101, 0101, 0101}}
{}
{xx10 \ {1x10, x110, 0x10}}
{1x01 \ {1001, 1101, 1101}, 1xx1 \ {11x1, 1x01, 1111}}
{}
{0xx0 \ {0x00, 0010, 0010}}
{x0xx \ {00x1, 10x0, 00x0}}
{x0x0 \ {x0x0}}
{x001 \ {0001, 1001}, 1x00 \ {1000, 1100, 1100}}
{10xx \ {101x, 1011, 100x}, 1xxx \ {1011, 1xx0, 1111}}
{0101 \ {0101}, 0000 \ {0000}}
{x0x0 \ {0000, x010, 1000}, xx0x \ {1x0x, 0001, 1101}, xxx0 \ {11x0, 0xx0, 1xx0}}
{001x \ {0010, 0011}}
{1010 \ {1010}}
{xx1x \ {x110, 1x10, 101x}, xx01 \ {0001, 0101, 1x01}, 0xx0 \ {0x00, 0010, 0100}}
{xxxx \ {1010, xxx1, 100x}, xxx1 \ {01x1, 0011, 00x1}}
{1x1x \ {1110, 1011, 111x}, 1111, 0101 \ {0101}, x0x0 \ {1000, 0010, x000}}
{xx1x \ {001x, 1x10, 111x}}
{x101 \ {0101}, x1xx \ {11x1, 0101, x1x0}}
{1x1x \ {1110, 1011, 101x}}
{01xx \ {01x0, 01x1, 0110}}
{}
{}
{xxxx \ {101x, 0xx1, xx0x}, xx0x \ {0001, 1101}}
{0xx0 \ {0110, 00x0}, 1xx0 \ {11x0, 1010, 1100}}
{x0x0 \ {1000, 0010, x000, 10x0}, 0000}
{0xxx \ {01xx, 00x1, 00x0}, xxx1 \ {1101, 0101, 0x01}}
{0xx1 \ {01x1, 0011, 0011}, x00x \ {100x, 1001, x000}, xxx0 \ {x0x0, 1100, 1110}}
{0x0x \ {0100, 0001, 000x, 0x01, 0x00}, x0x0 \ {x0x0}, x1x1 \ {1101, 0111, 11x1, 11x1}, 0101}
{xxxx \ {01xx, 0xx0, 1xxx}}
{}
{}
{xxx0 \ {x010, 0100}}
{11xx \ {1100, 11x1, 11x1}}
{x0x0 \ {1000, 0010, 00x0}}
{00x0 \ {0010, 0000}}
{1x0x \ {110x, 1100, 1001}}
{0000 \ {0000}}
{xxx1 \ {xx11, 00x1, 1x01}}
{}
{}
{xx10 \ {x010, x110, 0110}}
{00x1 \ {0011, 0001}, xx0x \ {x101, 0x01, 0x0x}, x11x \ {0111, 111x}}
{1010 \ {1010}}
{}
{xx0x \ {100x, 0x00, x000}}
{}
{}
{}
{}
{x011 \ {1011, 0011, 0011}, x0x0 \ {00x0, 1000, 1010}}
{}
{}
{}
{0xx1 \ {0x01, 0011, 0x11}}
{}
{x010 \ {0010, 1010}, xxx0 \ {1010, xx00, 00x0}}
{xx10 \ {0x10, x110, x010}}
{1010 \ {1010}}
{x01x \ {x010, 001x}}
{xxx0 \ {0000, 01x0, 1x00}, xxx1 \ {0x11, 0111, 1xx1}}
{1010 \ {1010}, 1111 \ {1111}}
{100x \ {1001, 1000, 1000}}
{0x1x \ {0111, 0010, 0011}, xxx1 \ {11x1, 1011, 0011}}
{0101 \ {0101}}
{1x0x \ {1101, 1x00, 1001}}
{0xx0 \ {0010, 00x0, 0x00}, 1x00 \ {1100, 1000}}
{0000 \ {0000}}
{0xxx \ {01x0, 000x, 00x1}, xx1x \ {0111, 1011, 0x11}}
{}
{}
{xx1x \ {1110, 1111}}
{xx1x \ {111x, x010, x011}, xx1x \ {0x1x, 1010, 011x}}
{1x1x \ {1110, 1011}}
t1:{0111}
t2:{1100, 1101}
t:{1101}
{x0000 \ {10000, 00000}}
{0x01x \ {00010, 0x011, 0101x}}
{}

{00xx1 \ {00101, 000x1, 00111}, 1xx10 \ {10010, 11010}}
{x0111 \ {10111}, 0101x \ {01011}}
{
   x011100x11 \ {
   x011100011, x011100111, 1011100x11}, 0101100x11 \ {
   0101100011, 0101100111, 0101100x11}, 010101xx10 \ {
   0101010010, 0101011010}}

{01x11 \ {01011, 01111}, 1x0xx \ {10011, 11011, 110x1}}
{}
{}

{1x110 \ {10110}, 10x10 \ {10110, 10010}}
{110xx \ {1101x, 110x1, 110x0}}
{
   110101x110 \ {
   1101010110, 110101x110, 110101x110}, 1101010x10 \ {
   1101010110, 1101010010, 1101010x10, 1101010x10}}

{xx01x \ {01010, x101x, 0101x}, 0xx01 \ {01001, 01101}, xx110 \ {11110, 01110, 00110}}
{0xx0x \ {0000x, 00x01, 0100x}}
{
   0xx010xx01 \ {
   0xx0101001, 0xx0101101, 000010xx01, 00x010xx01, 010010xx01}}

{x0100 \ {00100}, 0x11x \ {0011x, 0x110, 00111}, xx001 \ {11001, 01001}}
{0x1x1 \ {001x1, 01111, 0x101}, x1xxx \ {11x1x, 01011, 11001}, 00xxx \ {000x0, 00xx0, 001x1}}
{
   x1x00x0100 \ {
   x1x0000100}, 00x00x0100 \ {
   00x0000100, 00000x0100, 00x00x0100}, 0x1110x111 \ {
   0x11100111, 0x11100111, 001110x111, 011110x111}, x1x1x0x11x \ {
   x1x110x110, x1x100x111, x1x1x0011x, x1x1x0x110, x1x1x00111, 11x1x0x11x, 010110x11x}, 00x1x0x11x \ {
   00x110x110, 00x100x111, 00x1x0011x, 00x1x0x110, 00x1x00111, 000100x11x, 00x100x11x, 001110x11x}, 0x101xx001 \ {
   0x10111001, 0x10101001, 00101xx001, 0x101xx001}, x1x01xx001 \ {
   x1x0111001, x1x0101001, 11001xx001}, 00x01xx001 \ {
   00x0111001, 00x0101001, 00101xx001}}

{xxxx0 \ {x11x0, 0xx00, 111x0}}
{xx00x \ {11001, x0000}}
{
   xx000xxx00 \ {
   xx000x1100, xx0000xx00, xx00011100, x0000xxx00}}

{xxx01 \ {00001, 01001, 11x01}}
{xxxx1 \ {x1101, 10x01, 0x011}}
{
   xxx01xxx01 \ {
   xxx0100001, xxx0101001, xxx0111x01, x1101xxx01, 10x01xxx01}}

{}
{xx001 \ {x1001, 0x001}}
{}

{xx1xx \ {xx101, 1x10x, 0111x}}
{00xx1 \ {00001, 00111, 00011}}
{
   00xx1xx1x1 \ {
   00x11xx101, 00x01xx111, 00xx1xx101, 00xx11x101, 00xx101111, 00001xx1x1, 00111xx1x1, 00011xx1x1}}

{01x0x \ {01100, 01001, 01x01}, 0xxxx \ {00xx0, 0x0xx, 0xx00}}
{xx00x \ {xx001, x000x, 0000x}}
{
   xx00x01x0x \ {
   xx00101x00, xx00001x01, xx00x01100, xx00x01001, xx00x01x01, xx00101x0x, x000x01x0x, 0000x01x0x}, xx00x0xx0x \ {
   xx0010xx00, xx0000xx01, xx00x00x00, xx00x0x00x, xx00x0xx00, xx0010xx0x, x000x0xx0x, 0000x0xx0x}}

{11x1x \ {11010, 11011, 11011}, 01xxx \ {01010, 010xx, 01x1x}}
{}
{}

{1xx0x \ {1000x, 10x0x, 11101}, 1x1x1 \ {10111, 111x1, 11111}}
{0xxxx \ {00111, 0x100, 01xx1}, xx01x \ {0x011, 11010, x101x}}
{
   0xx0x1xx0x \ {
   0xx011xx00, 0xx001xx01, 0xx0x1000x, 0xx0x10x0x, 0xx0x11101, 0x1001xx0x, 01x011xx0x}, 0xxx11x1x1 \ {
   0xx111x101, 0xx011x111, 0xxx110111, 0xxx1111x1, 0xxx111111, 001111x1x1, 01xx11x1x1}, xx0111x111 \ {
   xx01110111, xx01111111, xx01111111, 0x0111x111, x10111x111}}

{110xx \ {11000, 110x1, 11010}}
{x0111 \ {10111}, 11xxx \ {11110, 11x1x, 110x0}}
{
   x011111011 \ {
   x011111011, 1011111011}, 11xxx110xx \ {
   11xx1110x0, 11xx0110x1, 11x1x1100x, 11x0x1101x, 11xxx11000, 11xxx110x1, 11xxx11010, 11110110xx, 11x1x110xx, 110x0110xx}}

{x0110 \ {10110, 00110, 00110}}
{xx00x \ {x0000, 1x000, 0000x}, 1x0x1 \ {10011, 1x001, 1x001}}
{}

{0x11x \ {00110, 01111, 0x110}}
{x01x0 \ {00100, 10100, x0100}}
{
   x01100x110 \ {
   x011000110, x01100x110}}

{0xxxx \ {00111, 00xxx, 0x1x1}, 00x10 \ {00110, 00010}}
{x10xx \ {x10x0, 11000, 010x1}, x1xx0 \ {x11x0, x10x0, 011x0}}
{
   x10xx0xxxx \ {
   x10x10xxx0, x10x00xxx1, x101x0xx0x, x100x0xx1x, x10xx00111, x10xx00xxx, x10xx0x1x1, x10x00xxxx, 110000xxxx, 010x10xxxx}, x1xx00xxx0 \ {
   x1x100xx00, x1x000xx10, x1xx000xx0, x11x00xxx0, x10x00xxx0, 011x00xxx0}, x101000x10 \ {
   x101000110, x101000010, x101000x10}, x1x1000x10 \ {
   x1x1000110, x1x1000010, x111000x10, x101000x10, 0111000x10}}

{0xxx0 \ {01010, 00110, 01100}, xxx10 \ {01110, x0010, x1110}}
{00xxx \ {00010, 0010x, 00111}, x11xx \ {1111x, x110x, 11100}}
{
   00xx00xxx0 \ {
   00x100xx00, 00x000xx10, 00xx001010, 00xx000110, 00xx001100, 000100xxx0, 001000xxx0}, x11x00xxx0 \ {
   x11100xx00, x11000xx10, x11x001010, x11x000110, x11x001100, 111100xxx0, x11000xxx0, 111000xxx0}, 00x10xxx10 \ {
   00x1001110, 00x10x0010, 00x10x1110, 00010xxx10}, x1110xxx10 \ {
   x111001110, x1110x0010, x1110x1110, 11110xxx10}}

{0x0x0 \ {000x0, 01010, 01000}}
{xx1xx \ {x1100, xx101, 0x1x1}, 0x01x \ {00011, 0x010}}
{
   xx1x00x0x0 \ {
   xx1100x000, xx1000x010, xx1x0000x0, xx1x001010, xx1x001000, x11000x0x0}, 0x0100x010 \ {
   0x01000010, 0x01001010, 0x0100x010}}

{xx110 \ {01110, x0110, x0110}, 10x11 \ {10111, 10011}, 0x1xx \ {01111, 011xx, 01100}}
{x100x \ {0100x, x1000, 11000}, x100x \ {0100x, 01000, x1000}}
{
   x100x0x10x \ {
   x10010x100, x10000x101, x100x0110x, x100x01100, 0100x0x10x, x10000x10x, 110000x10x}}

{100x1 \ {10011}, xx111 \ {00111, 01111, x1111}}
{xxx0x \ {0xx0x, xx001, x000x}}
{
   xxx0110001 \ {
   0xx0110001, xx00110001, x000110001}}

{000xx \ {00000, 000x0, 0000x}}
{1100x \ {11001, 11000}, x011x \ {0011x, x0110, 00110}, xxx00 \ {1x000, x1100, 01x00}}
{
   1100x0000x \ {
   1100100000, 1100000001, 1100x00000, 1100x00000, 1100x0000x, 110010000x, 110000000x}, x011x0001x \ {
   x011100010, x011000011, x011x00010, 0011x0001x, x01100001x, 001100001x}, xxx0000000 \ {
   xxx0000000, xxx0000000, xxx0000000, 1x00000000, x110000000, 01x0000000}}

{0xxx1 \ {00x01, 0x1x1, 01x01}, x1x01 \ {01x01, 11101}}
{xx110 \ {x1110, 11110, 1x110}, 01x00 \ {01100, 01000}}
{}

{}
{x100x \ {1100x, x1001, 01001}, 00xx1 \ {00x01, 00001}, 111x0 \ {11100, 11110}}
{}

{1111x \ {11111}, x11x1 \ {11111, 011x1, 011x1}, 0x1xx \ {0x10x, 0x1x0, 001x0}}
{0x111 \ {01111, 00111}, 0111x \ {01110}}
{
   0x11111111 \ {
   0x11111111, 0111111111, 0011111111}, 0111x1111x \ {
   0111111110, 0111011111, 0111x11111, 011101111x}, 0x111x1111 \ {
   0x11111111, 0x11101111, 0x11101111, 01111x1111, 00111x1111}, 01111x1111 \ {
   0111111111, 0111101111, 0111101111}, 0x1110x111 \ {
   011110x111, 001110x111}, 0111x0x11x \ {
   011110x110, 011100x111, 0111x0x110, 0111x00110, 011100x11x}}

{11xxx \ {11xx1, 11111, 110x1}, 00x10 \ {00110, 00010}}
{x0011 \ {00011, 10011}, 0001x \ {00010, 00011}}
{
   x001111x11 \ {
   x001111x11, x001111111, x001111011, 0001111x11, 1001111x11}, 0001x11x1x \ {
   0001111x10, 0001011x11, 0001x11x11, 0001x11111, 0001x11011, 0001011x1x, 0001111x1x}, 0001000x10 \ {
   0001000110, 0001000010, 0001000x10}}

{1xx00 \ {11x00, 11100, 1x100}, 0x10x \ {00100, 01101, 01100}}
{1010x \ {10101, 10100}}
{
   101001xx00 \ {
   1010011x00, 1010011100, 101001x100, 101001xx00}, 1010x0x10x \ {
   101010x100, 101000x101, 1010x00100, 1010x01101, 1010x01100, 101010x10x, 101000x10x}}

{0x0xx \ {010xx, 000xx, 01011}}
{0110x \ {01100, 01101}}
{
   0110x0x00x \ {
   011010x000, 011000x001, 0110x0100x, 0110x0000x, 011000x00x, 011010x00x}}

{1x00x \ {1x001, 1100x, 10000}, 111xx \ {11110, 11101, 111x0}}
{01xx0 \ {01x10, 01000, 01010}, x1x10 \ {11010, 01110, 11110}, x11x0 \ {01100, x1110, 011x0}}
{
   01x001x000 \ {
   01x0011000, 01x0010000, 010001x000}, x11001x000 \ {
   x110011000, x110010000, 011001x000, 011001x000}, 01xx0111x0 \ {
   01x1011100, 01x0011110, 01xx011110, 01xx0111x0, 01x10111x0, 01000111x0, 01010111x0}, x1x1011110 \ {
   x1x1011110, x1x1011110, 1101011110, 0111011110, 1111011110}, x11x0111x0 \ {
   x111011100, x110011110, x11x011110, x11x0111x0, 01100111x0, x1110111x0, 011x0111x0}}

{xx1x0 \ {01110, x01x0, 101x0}, xx01x \ {1001x, 11010, x1010}}
{0xxx1 \ {01001, 00x11, 00001}, x00x0 \ {000x0, x0010, x0010}}
{
   x00x0xx1x0 \ {
   x0010xx100, x0000xx110, x00x001110, x00x0x01x0, x00x0101x0, 000x0xx1x0, x0010xx1x0, x0010xx1x0}, 0xx11xx011 \ {
   0xx1110011, 00x11xx011}, x0010xx010 \ {
   x001010010, x001011010, x0010x1010, 00010xx010, x0010xx010, x0010xx010}}

{}
{x0x1x \ {1001x, 10011, 10111}}
{}

{00x11 \ {00111, 00011, 00011}, 1xx0x \ {10x0x, 10001, 1x10x}}
{1xx01 \ {1x001, 10101, 11x01}, x1001 \ {11001, 01001}}
{
   1xx011xx01 \ {
   1xx0110x01, 1xx0110001, 1xx011x101, 1x0011xx01, 101011xx01, 11x011xx01}, x10011xx01 \ {
   x100110x01, x100110001, x10011x101, 110011xx01, 010011xx01}}

{xxxxx \ {1x001, xx011, 1x10x}, 000x1 \ {00011, 00001, 00001}, xx100 \ {10100, 1x100}}
{1100x \ {11001, 11000, 11000}, 0x10x \ {01100, 01101}}
{
   1100xxxx0x \ {
   11001xxx00, 11000xxx01, 1100x1x001, 1100x1x10x, 11001xxx0x, 11000xxx0x, 11000xxx0x}, 0x10xxxx0x \ {
   0x101xxx00, 0x100xxx01, 0x10x1x001, 0x10x1x10x, 01100xxx0x, 01101xxx0x}, 1100100001 \ {
   1100100001, 1100100001, 1100100001}, 0x10100001 \ {
   0x10100001, 0x10100001, 0110100001}, 11000xx100 \ {
   1100010100, 110001x100, 11000xx100, 11000xx100}, 0x100xx100 \ {
   0x10010100, 0x1001x100, 01100xx100}}

{xxx01 \ {10101, 1x001, 0x101}}
{1xx10 \ {11110, 10x10}}
{}

{xxx0x \ {x1x00, 1x001, 01000}}
{01xx0 \ {01000, 01110, 010x0}, 000xx \ {000x1, 00010, 00010}, 0x11x \ {0x111, 00111, 00111}}
{
   01x00xxx00 \ {
   01x00x1x00, 01x0001000, 01000xxx00, 01000xxx00}, 0000xxxx0x \ {
   00001xxx00, 00000xxx01, 0000xx1x00, 0000x1x001, 0000x01000, 00001xxx0x}}

{}
{xxxx1 \ {0x111, 101x1, 01xx1}, 10xxx \ {10101, 10xx0, 100x1}}
{}

{x1001 \ {01001, 11001}, 0xx10 \ {00x10, 01110, 0x010}}
{xxxx1 \ {1xx01, 0xx01, 110x1}, 11xx1 \ {11x11, 111x1, 111x1}, x0x1x \ {1011x, 1001x, 0011x}}
{
   xxx01x1001 \ {
   xxx0101001, xxx0111001, 1xx01x1001, 0xx01x1001, 11001x1001}, 11x01x1001 \ {
   11x0101001, 11x0111001, 11101x1001, 11101x1001}, x0x100xx10 \ {
   x0x1000x10, x0x1001110, x0x100x010, 101100xx10, 100100xx10, 001100xx10}}

{x0x11 \ {10111, x0011, 10x11}}
{0xx11 \ {01011, 01111, 01111}, x0xx1 \ {00111, x0101, 00011}, 0x00x \ {0x001, 01001, 0x000}}
{
   0xx11x0x11 \ {
   0xx1110111, 0xx11x0011, 0xx1110x11, 01011x0x11, 01111x0x11, 01111x0x11}, x0x11x0x11 \ {
   x0x1110111, x0x11x0011, x0x1110x11, 00111x0x11, 00011x0x11}}

{11x1x \ {11011, 11x11}}
{x0110 \ {10110}}
{
   x011011x10 \ {
   1011011x10}}

{010xx \ {0101x, 01010, 010x1}, x1x11 \ {11x11, x1111}}
{}
{}

{0xxx1 \ {0x101, 0x011, 010x1}, 00x1x \ {00x10, 00011}}
{0x11x \ {0x110, 0x111, 01110}}
{
   0x1110xx11 \ {
   0x1110x011, 0x11101011, 0x1110xx11}, 0x11x00x1x \ {
   0x11100x10, 0x11000x11, 0x11x00x10, 0x11x00011, 0x11000x1x, 0x11100x1x, 0111000x1x}}

{x0101 \ {00101, 10101, 10101}, 1x1xx \ {11111, 1110x, 111x0}}
{}
{}

{1xxxx \ {11xxx, 1xx01, 11001}, 01x01 \ {01101, 01001, 01001}}
{xx1x0 \ {0x1x0, x01x0, 001x0}, x1000 \ {11000}}
{
   xx1x01xxx0 \ {
   xx1101xx00, xx1001xx10, xx1x011xx0, 0x1x01xxx0, x01x01xxx0, 001x01xxx0}, x10001xx00 \ {
   x100011x00, 110001xx00}}

{x0111 \ {00111, 10111}, 1101x \ {11010, 11011}}
{0xx00 \ {01100, 01000, 00100}}
{}

{}
{x0x1x \ {0001x, 10x10, x0x11}}
{}

{}
{}
{}

{11xx1 \ {11011, 110x1, 111x1}, xx00x \ {xx001, x000x}}
{0x0xx \ {00001, 0001x, 000x1}}
{
   0x0x111xx1 \ {
   0x01111x01, 0x00111x11, 0x0x111011, 0x0x1110x1, 0x0x1111x1, 0000111xx1, 0001111xx1, 000x111xx1}, 0x00xxx00x \ {
   0x001xx000, 0x000xx001, 0x00xxx001, 0x00xx000x, 00001xx00x, 00001xx00x}}

{xx010 \ {00010, 11010, x0010}}
{0x11x \ {0x111, 01111}}
{
   0x110xx010 \ {
   0x11000010, 0x11011010, 0x110x0010}}

{000xx \ {000x0, 0000x, 000x1}}
{0x11x \ {01111, 00110, 00111}, x11x1 \ {11101, 111x1}}
{
   0x11x0001x \ {
   0x11100010, 0x11000011, 0x11x00010, 0x11x00011, 011110001x, 001100001x, 001110001x}, x11x1000x1 \ {
   x111100001, x110100011, x11x100001, x11x1000x1, 11101000x1, 111x1000x1}}

{xxx10 \ {00010, 11110, 10x10}, 0x110 \ {01110, 00110}, 1x1x0 \ {111x0, 101x0}}
{011xx \ {01111, 0110x}, 1xx00 \ {11x00, 10x00, 1x100}, 1x0x1 \ {10011, 110x1}}
{
   01110xxx10 \ {
   0111000010, 0111011110, 0111010x10}, 011100x110 \ {
   0111001110, 0111000110}, 011x01x1x0 \ {
   011101x100, 011001x110, 011x0111x0, 011x0101x0, 011001x1x0}, 1xx001x100 \ {
   1xx0011100, 1xx0010100, 11x001x100, 10x001x100, 1x1001x100}}

{x11x1 \ {x1101, 11101, 011x1}, xx1x0 \ {01110, 1x1x0, xx110}}
{x111x \ {01111, 01110, 11111}, 001x0 \ {00110, 00100, 00100}}
{
   x1111x1111 \ {
   x111101111, 01111x1111, 11111x1111}, x1110xx110 \ {
   x111001110, x11101x110, x1110xx110, 01110xx110}, 001x0xx1x0 \ {
   00110xx100, 00100xx110, 001x001110, 001x01x1x0, 001x0xx110, 00110xx1x0, 00100xx1x0, 00100xx1x0}}

{1xxxx \ {1xx00, 1100x, 1x111}, 10x10 \ {10110, 10010, 10010}}
{x001x \ {00010, 0001x}, 11xxx \ {11x00, 111xx, 1110x}}
{
   x001x1xx1x \ {
   x00111xx10, x00101xx11, x001x1x111, 000101xx1x, 0001x1xx1x}, 11xxx1xxxx \ {
   11xx11xxx0, 11xx01xxx1, 11x1x1xx0x, 11x0x1xx1x, 11xxx1xx00, 11xxx1100x, 11xxx1x111, 11x001xxxx, 111xx1xxxx, 1110x1xxxx}, x001010x10 \ {
   x001010110, x001010010, x001010010, 0001010x10, 0001010x10}, 11x1010x10 \ {
   11x1010110, 11x1010010, 11x1010010, 1111010x10}}

{00x1x \ {00010, 00110, 00x10}}
{1x1x0 \ {1x100, 11110, 101x0}, 100x0 \ {10000}, x101x \ {x1010, 11010, 11010}}
{
   1x11000x10 \ {
   1x11000010, 1x11000110, 1x11000x10, 1111000x10, 1011000x10}, 1001000x10 \ {
   1001000010, 1001000110, 1001000x10}, x101x00x1x \ {
   x101100x10, x101000x11, x101x00010, x101x00110, x101x00x10, x101000x1x, 1101000x1x, 1101000x1x}}

{00x1x \ {00x11, 00011, 00x10}}
{1x0xx \ {11000, 100x0, 100xx}, 0x11x \ {0x111, 00110, 0111x}}
{
   1x01x00x1x \ {
   1x01100x10, 1x01000x11, 1x01x00x11, 1x01x00011, 1x01x00x10, 1001000x1x, 1001x00x1x}, 0x11x00x1x \ {
   0x11100x10, 0x11000x11, 0x11x00x11, 0x11x00011, 0x11x00x10, 0x11100x1x, 0011000x1x, 0111x00x1x}}

{11xx0 \ {11000, 11100, 11x00}, 1x101 \ {10101, 11101, 11101}}
{0xxx1 \ {01xx1, 0x011, 01011}, xxx11 \ {xx011, 0xx11, 01011}}
{
   0xx011x101 \ {
   0xx0110101, 0xx0111101, 0xx0111101, 01x011x101}}

{}
{xx1x0 \ {x1100, 11100, 111x0}, xx110 \ {01110, 10110, 11110}}
{}

{}
{xxxx0 \ {xx100, x0110, 11100}, 000x1 \ {00011}}
{}

{x0xx0 \ {00100, x0x10, 00110}, 1x10x \ {10101, 1x100, 1x100}}
{00x10 \ {00110}}
{
   00x10x0x10 \ {
   00x10x0x10, 00x1000110, 00110x0x10}}

{011xx \ {0111x, 0110x, 0110x}}
{xx1x1 \ {01101, 0x111, 10101}}
{
   xx1x1011x1 \ {
   xx11101101, xx10101111, xx1x101111, xx1x101101, xx1x101101, 01101011x1, 0x111011x1, 10101011x1}}

{xx11x \ {00111, 01111, 1111x}}
{}
{}

{0x0x1 \ {000x1, 0x011, 01001}, 10x0x \ {10001, 1010x, 10100}, 1x001 \ {11001}}
{x11x1 \ {x1111, 111x1, 011x1}}
{
   x11x10x0x1 \ {
   x11110x001, x11010x011, x11x1000x1, x11x10x011, x11x101001, x11110x0x1, 111x10x0x1, 011x10x0x1}, x110110x01 \ {
   x110110001, x110110101, 1110110x01, 0110110x01}, x11011x001 \ {
   x110111001, 111011x001, 011011x001}}

{x1x1x \ {1101x, 11110, 0111x}, xxxxx \ {0x101, x1x1x, 011x0}, 1xx01 \ {1x001, 10x01, 10x01}}
{x1x01 \ {11101, 01001, 01001}}
{
   x1x01xxx01 \ {
   x1x010x101, 11101xxx01, 01001xxx01, 01001xxx01}, x1x011xx01 \ {
   x1x011x001, x1x0110x01, x1x0110x01, 111011xx01, 010011xx01, 010011xx01}}

{11xx0 \ {11110, 110x0}}
{x0x1x \ {10x10, 00x10, 00x1x}}
{
   x0x1011x10 \ {
   x0x1011110, x0x1011010, 10x1011x10, 00x1011x10, 00x1011x10}}

{x1xxx \ {110xx, x1111, 01x11}}
{0xx11 \ {0x011, 01x11, 01x11}, 00x1x \ {00x10, 00x11, 0001x}}
{
   0xx11x1x11 \ {
   0xx1111011, 0xx11x1111, 0xx1101x11, 0x011x1x11, 01x11x1x11, 01x11x1x11}, 00x1xx1x1x \ {
   00x11x1x10, 00x10x1x11, 00x1x1101x, 00x1xx1111, 00x1x01x11, 00x10x1x1x, 00x11x1x1x, 0001xx1x1x}}

{01x01 \ {01001, 01101}, xxxx0 \ {xxx10, x00x0, x0010}}
{x1xx1 \ {11101, 11x11, x1001}, xx1xx \ {x01x1, xx1x1, x111x}, xxx1x \ {0101x, 11010, x0110}}
{
   x1x0101x01 \ {
   x1x0101001, x1x0101101, 1110101x01, x100101x01}, xx10101x01 \ {
   xx10101001, xx10101101, x010101x01, xx10101x01}, xx1x0xxxx0 \ {
   xx110xxx00, xx100xxx10, xx1x0xxx10, xx1x0x00x0, xx1x0x0010, x1110xxxx0}, xxx10xxx10 \ {
   xxx10xxx10, xxx10x0010, xxx10x0010, 01010xxx10, 11010xxx10, x0110xxx10}}

{01x1x \ {01011, 0111x, 0111x}, 01x01 \ {01001, 01101}}
{11x1x \ {11011, 11111}, 1x1x1 \ {11111, 111x1, 11101}}
{
   11x1x01x1x \ {
   11x1101x10, 11x1001x11, 11x1x01011, 11x1x0111x, 11x1x0111x, 1101101x1x, 1111101x1x}, 1x11101x11 \ {
   1x11101011, 1x11101111, 1x11101111, 1111101x11, 1111101x11}, 1x10101x01 \ {
   1x10101001, 1x10101101, 1110101x01, 1110101x01}}

{0xxx0 \ {01110, 0x110}}
{xxx0x \ {1110x, 0x000, x0x00}, 0xx0x \ {01x00, 01x0x}}
{
   xxx000xx00 \ {
   111000xx00, 0x0000xx00, x0x000xx00}, 0xx000xx00 \ {
   01x000xx00, 01x000xx00}}

{}
{1101x \ {11010, 11011}}
{}

{x1x11 \ {11x11, x1011, 01x11}}
{}
{}

{1xx00 \ {1x100, 1x000}}
{x000x \ {00000, x0001}, 01xxx \ {01x0x, 01000, 01xx0}}
{
   x00001xx00 \ {
   x00001x100, x00001x000, 000001xx00}, 01x001xx00 \ {
   01x001x100, 01x001x000, 01x001xx00, 010001xx00, 01x001xx00}}

{0x11x \ {01111, 00110, 00111}, 100xx \ {100x0, 100x1, 10001}}
{}
{}

{010xx \ {01001, 01011, 01000}, 01xx0 \ {01110, 01100}, 111x0 \ {11100}}
{}
{}

{xxx11 \ {10011, x0011, x0x11}, 1x00x \ {11000, 10001, 10001}, 0xxx0 \ {0x110, 01x00, 0xx00}}
{}
{}

{xxx1x \ {xx111, 01011, 0001x}, 00x0x \ {0010x, 0000x, 00001}}
{}
{}

{00x0x \ {00101, 00100}, x0100 \ {10100, 00100}}
{0x00x \ {01001}}
{
   0x00x00x0x \ {
   0x00100x00, 0x00000x01, 0x00x00101, 0x00x00100, 0100100x0x}, 0x000x0100 \ {
   0x00010100, 0x00000100}}

{00x1x \ {00110, 0001x}, 001xx \ {00110, 001x0, 0011x}}
{xx001 \ {01001, x0001, 11001}}
{
   xx00100101 \ {
   0100100101, x000100101, 1100100101}}

{x00xx \ {x00x1, 10000, 1001x}, 11x11 \ {11011, 11111}, x11xx \ {01101, 01111, x1101}}
{}
{}

{xx0x1 \ {xx011, 00011, x0011}, xxxx0 \ {10110, 010x0, 010x0}, x10x0 \ {x1010, 110x0, 01010}}
{0x10x \ {00101, 01100, 0010x}}
{
   0x101xx001 \ {
   00101xx001, 00101xx001}, 0x100xxx00 \ {
   0x10001000, 0x10001000, 01100xxx00, 00100xxx00}, 0x100x1000 \ {
   0x10011000, 01100x1000, 00100x1000}}

{}
{0x1x1 \ {0x101, 01111, 01111}, x1x10 \ {x1110, 01110, 01110}, xx000 \ {11000, 00000}}
{}

{x10xx \ {x1000, 01011, 11010}, 1xx1x \ {1xx11, 10x1x, 10x11}}
{xxx00 \ {01100, 01x00, 01x00}}
{
   xxx00x1000 \ {
   xxx00x1000, 01100x1000, 01x00x1000, 01x00x1000}}

{}
{x11x1 \ {01111, 11101, 111x1}}
{}

{x1x1x \ {11x1x, x111x, 01011}, 1100x \ {11001, 11000}}
{0x001 \ {01001, 00001}}
{
   0x00111001 \ {
   0x00111001, 0100111001, 0000111001}}

{1xx00 \ {11000, 10000}, x1x01 \ {x1001, 01x01, 01x01}}
{x0x1x \ {x0011, 10x10, 00011}, x00x1 \ {x0001, 00011, 100x1}}
{
   x0001x1x01 \ {
   x0001x1001, x000101x01, x000101x01, x0001x1x01, 10001x1x01}}

{xxxx0 \ {01000, x1010, 11000}}
{10x1x \ {10010, 1011x, 10x10}, xx0x0 \ {0x0x0, 0x000, xx010}, x0xxx \ {10101, 001xx, 00x00}}
{
   10x10xxx10 \ {
   10x10x1010, 10010xxx10, 10110xxx10, 10x10xxx10}, xx0x0xxxx0 \ {
   xx010xxx00, xx000xxx10, xx0x001000, xx0x0x1010, xx0x011000, 0x0x0xxxx0, 0x000xxxx0, xx010xxxx0}, x0xx0xxxx0 \ {
   x0x10xxx00, x0x00xxx10, x0xx001000, x0xx0x1010, x0xx011000, 001x0xxxx0, 00x00xxxx0}}

{x1100 \ {11100}}
{x101x \ {x1010, 01011, x1011}, 00xx1 \ {00001, 00101}}
{}

{0x1x1 \ {001x1, 01111, 0x101}}
{x0x0x \ {10001, 00100, x0100}, xx001 \ {x1001, 00001, 00001}}
{
   x0x010x101 \ {
   x0x0100101, x0x010x101, 100010x101}, xx0010x101 \ {
   xx00100101, xx0010x101, x10010x101, 000010x101, 000010x101}}

{1100x \ {11001, 11000}, x1x0x \ {x1001, 11101, 11001}}
{x001x \ {10010, x0010}, xx001 \ {x0001, 01001, 11001}, 1110x \ {11101, 11100, 11100}}
{
   xx00111001 \ {
   xx00111001, x000111001, 0100111001, 1100111001}, 1110x1100x \ {
   1110111000, 1110011001, 1110x11001, 1110x11000, 111011100x, 111001100x, 111001100x}, xx001x1x01 \ {
   xx001x1001, xx00111101, xx00111001, x0001x1x01, 01001x1x01, 11001x1x01}, 1110xx1x0x \ {
   11101x1x00, 11100x1x01, 1110xx1001, 1110x11101, 1110x11001, 11101x1x0x, 11100x1x0x, 11100x1x0x}}

{xxx00 \ {x1100, 00000, 10x00}, 01xxx \ {01101, 010x0, 01x0x}}
{01xxx \ {011x0, 01x0x}}
{
   01x00xxx00 \ {
   01x00x1100, 01x0000000, 01x0010x00, 01100xxx00, 01x00xxx00}, 01xxx01xxx \ {
   01xx101xx0, 01xx001xx1, 01x1x01x0x, 01x0x01x1x, 01xxx01101, 01xxx010x0, 01xxx01x0x, 011x001xxx, 01x0x01xxx}}

{}
{xx110 \ {11110, 01110, 00110}, 1xx00 \ {11x00, 10x00, 1x000}}
{}

{10xxx \ {1011x, 10x01, 101x1}, xx111 \ {01111, 0x111, x1111}}
{x0xx1 \ {x01x1, 10111, 00111}, xx1x1 \ {10111, 10101, x11x1}}
{
   x0xx110xx1 \ {
   x0x1110x01, x0x0110x11, x0xx110111, x0xx110x01, x0xx1101x1, x01x110xx1, 1011110xx1, 0011110xx1}, xx1x110xx1 \ {
   xx11110x01, xx10110x11, xx1x110111, xx1x110x01, xx1x1101x1, 1011110xx1, 1010110xx1, x11x110xx1}, x0x11xx111 \ {
   x0x1101111, x0x110x111, x0x11x1111, x0111xx111, 10111xx111, 00111xx111}, xx111xx111 \ {
   xx11101111, xx1110x111, xx111x1111, 10111xx111, x1111xx111}}

{xx1xx \ {1011x, 00100, 00100}, x1x01 \ {01101}}
{01x10 \ {01110}, xx011 \ {x0011, 01011}}
{
   01x10xx110 \ {
   01x1010110, 01110xx110}, xx011xx111 \ {
   xx01110111, x0011xx111, 01011xx111}}

{00xx0 \ {000x0, 00010, 00010}, 01xx1 \ {011x1, 01101, 01x11}}
{1x01x \ {1101x, 1x010}, 0x1x0 \ {00100, 001x0, 01100}}
{
   1x01000x10 \ {
   1x01000010, 1x01000010, 1x01000010, 1101000x10, 1x01000x10}, 0x1x000xx0 \ {
   0x11000x00, 0x10000x10, 0x1x0000x0, 0x1x000010, 0x1x000010, 0010000xx0, 001x000xx0, 0110000xx0}, 1x01101x11 \ {
   1x01101111, 1x01101x11, 1101101x11}}

{1x01x \ {11010, 1x010, 11011}}
{11xx1 \ {11111, 11101, 110x1}, 10x1x \ {1001x, 10010, 10x10}, x1x01 \ {01x01, x1101, x1001}}
{
   11x111x011 \ {
   11x1111011, 111111x011, 110111x011}, 10x1x1x01x \ {
   10x111x010, 10x101x011, 10x1x11010, 10x1x1x010, 10x1x11011, 1001x1x01x, 100101x01x, 10x101x01x}}

{x0x11 \ {10011, 00x11, 10111}, xx1xx \ {x0101, x111x, 11100}, x0x0x \ {00001, x000x, 00x0x}}
{1x111 \ {10111}, x1xxx \ {x1101, x1000, 01001}}
{
   1x111x0x11 \ {
   1x11110011, 1x11100x11, 1x11110111, 10111x0x11}, x1x11x0x11 \ {
   x1x1110011, x1x1100x11, x1x1110111}, 1x111xx111 \ {
   1x111x1111, 10111xx111}, x1xxxxx1xx \ {
   x1xx1xx1x0, x1xx0xx1x1, x1x1xxx10x, x1x0xxx11x, x1xxxx0101, x1xxxx111x, x1xxx11100, x1101xx1xx, x1000xx1xx, 01001xx1xx}, x1x0xx0x0x \ {
   x1x01x0x00, x1x00x0x01, x1x0x00001, x1x0xx000x, x1x0x00x0x, x1101x0x0x, x1000x0x0x, 01001x0x0x}}

{x0xxx \ {x00xx, x0x11, 10010}}
{xxx0x \ {0x10x, 11x01, 0x000}, xxx10 \ {x1x10, 1x010, xx110}}
{
   xxx0xx0x0x \ {
   xxx01x0x00, xxx00x0x01, xxx0xx000x, 0x10xx0x0x, 11x01x0x0x, 0x000x0x0x}, xxx10x0x10 \ {
   xxx10x0010, xxx1010010, x1x10x0x10, 1x010x0x10, xx110x0x10}}

{x1x10 \ {x1110, x1010}, xx100 \ {10100, 11100}}
{}
{}

{x0111 \ {00111, 10111}, x1x00 \ {11x00, 11000, x1000}, xxxx1 \ {11101, 100x1, 1x001}}
{x00x1 \ {00011, 000x1, 10001}, 1x01x \ {10011, 1x011, 11010}}
{
   x0011x0111 \ {
   x001100111, x001110111, 00011x0111, 00011x0111}, 1x011x0111 \ {
   1x01100111, 1x01110111, 10011x0111, 1x011x0111}, x00x1xxxx1 \ {
   x0011xxx01, x0001xxx11, x00x111101, x00x1100x1, x00x11x001, 00011xxxx1, 000x1xxxx1, 10001xxxx1}, 1x011xxx11 \ {
   1x01110011, 10011xxx11, 1x011xxx11}}

{x01xx \ {10100, 00110, 1011x}, x1111 \ {11111, 01111, 01111}}
{000x0 \ {00010, 00000, 00000}, x111x \ {11110, 01111, x1110}, 1xx10 \ {11x10, 10110, 10010}}
{
   000x0x01x0 \ {
   00010x0100, 00000x0110, 000x010100, 000x000110, 000x010110, 00010x01x0, 00000x01x0, 00000x01x0}, x111xx011x \ {
   x1111x0110, x1110x0111, x111x00110, x111x1011x, 11110x011x, 01111x011x, x1110x011x}, 1xx10x0110 \ {
   1xx1000110, 1xx1010110, 11x10x0110, 10110x0110, 10010x0110}, x1111x1111 \ {
   x111111111, x111101111, x111101111, 01111x1111}}

{0x0xx \ {0x01x, 000xx, 000x1}, 10x11 \ {10011, 10111}}
{010xx \ {01001, 010x0, 010x1}}
{
   010xx0x0xx \ {
   010x10x0x0, 010x00x0x1, 0101x0x00x, 0100x0x01x, 010xx0x01x, 010xx000xx, 010xx000x1, 010010x0xx, 010x00x0xx, 010x10x0xx}, 0101110x11 \ {
   0101110011, 0101110111, 0101110x11}}

{xx0xx \ {1x0xx, 10011, x10x0}, 10x1x \ {10011, 1001x, 10110}, 101x1 \ {10101}}
{}
{}

{001xx \ {00100, 001x1, 00101}, 1xxx1 \ {10xx1, 1x001, 11111}}
{0xx10 \ {01110, 01x10, 0x110}}
{
   0xx1000110 \ {
   0111000110, 01x1000110, 0x11000110}}

{}
{1110x \ {11100}}
{}

{1001x \ {10010}, 0100x \ {01001, 01000, 01000}}
{}
{}

{1x1x0 \ {10100, 10110, 11110}, 0010x \ {00100, 00101}}
{x110x \ {01100, x1101, 01101}, x1x01 \ {x1101, 01001, 01x01}}
{
   x11001x100 \ {
   x110010100, 011001x100}, x110x0010x \ {
   x110100100, x110000101, x110x00100, x110x00101, 011000010x, x11010010x, 011010010x}, x1x0100101 \ {
   x1x0100101, x110100101, 0100100101, 01x0100101}}

{11x1x \ {11x10, 11x11, 11111}}
{1xxx0 \ {1x0x0, 1x100, 100x0}}
{
   1xx1011x10 \ {
   1xx1011x10, 1x01011x10, 1001011x10}}

{01xx0 \ {01000, 01x10, 01x00}}
{x011x \ {10111, x0111, x0110}}
{
   x011001x10 \ {
   x011001x10, x011001x10}}

{0x0x1 \ {01001, 010x1, 0x001}}
{}
{}

{11x1x \ {11011, 1101x, 1101x}, 0001x \ {00011, 00010}, x0xx0 \ {x00x0, 10100, 00100}}
{10x1x \ {10111, 10110}, 10xx1 \ {10x01, 100x1, 101x1}}
{
   10x1x11x1x \ {
   10x1111x10, 10x1011x11, 10x1x11011, 10x1x1101x, 10x1x1101x, 1011111x1x, 1011011x1x}, 10x1111x11 \ {
   10x1111011, 10x1111011, 10x1111011, 1001111x11, 1011111x11}, 10x1x0001x \ {
   10x1100010, 10x1000011, 10x1x00011, 10x1x00010, 101110001x, 101100001x}, 10x1100011 \ {
   10x1100011, 1001100011, 1011100011}, 10x10x0x10 \ {
   10x10x0010, 10110x0x10}}

{1x01x \ {10011, 11011, 11011}, x1101 \ {01101, 11101}}
{x0xx0 \ {x0110, x0x00, 00100}}
{
   x0x101x010 \ {
   x01101x010}}

{xxxx1 \ {x1xx1, xx1x1, x1101}, 010x0 \ {01000}, x00x0 \ {10000, 000x0, 100x0}}
{xx011 \ {x1011, x0011}}
{
   xx011xxx11 \ {
   xx011x1x11, xx011xx111, x1011xxx11, x0011xxx11}}

{xxx11 \ {xx011, 1x111, 00011}, 11x0x \ {11100, 11x01, 1100x}, xx0x0 \ {010x0, xx010, x10x0}}
{x1x01 \ {x1101, 01x01, 01001}, xx010 \ {00010, x1010, 1x010}}
{
   x1x0111x01 \ {
   x1x0111x01, x1x0111001, x110111x01, 01x0111x01, 0100111x01}, xx010xx010 \ {
   xx01001010, xx010xx010, xx010x1010, 00010xx010, x1010xx010, 1x010xx010}}

{x0x00 \ {00000, 10x00}, 1110x \ {11100, 11101, 11101}, x01xx \ {001x0, 1011x, 00111}}
{1x10x \ {11100, 11101, 10100}, 11xx0 \ {11000, 11x00}, x11x0 \ {111x0, 01100, x1100}}
{
   1x100x0x00 \ {
   1x10000000, 1x10010x00, 11100x0x00, 10100x0x00}, 11x00x0x00 \ {
   11x0000000, 11x0010x00, 11000x0x00, 11x00x0x00}, x1100x0x00 \ {
   x110000000, x110010x00, 11100x0x00, 01100x0x00, x1100x0x00}, 1x10x1110x \ {
   1x10111100, 1x10011101, 1x10x11100, 1x10x11101, 1x10x11101, 111001110x, 111011110x, 101001110x}, 11x0011100 \ {
   11x0011100, 1100011100, 11x0011100}, x110011100 \ {
   x110011100, 1110011100, 0110011100, x110011100}, 1x10xx010x \ {
   1x101x0100, 1x100x0101, 1x10x00100, 11100x010x, 11101x010x, 10100x010x}, 11xx0x01x0 \ {
   11x10x0100, 11x00x0110, 11xx0001x0, 11xx010110, 11000x01x0, 11x00x01x0}, x11x0x01x0 \ {
   x1110x0100, x1100x0110, x11x0001x0, x11x010110, 111x0x01x0, 01100x01x0, x1100x01x0}}

{}
{1xxxx \ {110x0, 11xx1, 111x1}, x11xx \ {11101, 1111x, 11100}}
{}

{}
{1011x \ {10111}, x0xx1 \ {x0011, x0101, 00xx1}}
{}

{1001x \ {10011, 10010, 10010}}
{0x0x1 \ {010x1, 01001, 000x1}}
{
   0x01110011 \ {
   0x01110011, 0101110011, 0001110011}}

{01xxx \ {0110x, 01101, 010x1}, x10xx \ {11010, 010x1, 01001}}
{xx0xx \ {x00x1, 010x0, 11001}}
{
   xx0xx01xxx \ {
   xx0x101xx0, xx0x001xx1, xx01x01x0x, xx00x01x1x, xx0xx0110x, xx0xx01101, xx0xx010x1, x00x101xxx, 010x001xxx, 1100101xxx}, xx0xxx10xx \ {
   xx0x1x10x0, xx0x0x10x1, xx01xx100x, xx00xx101x, xx0xx11010, xx0xx010x1, xx0xx01001, x00x1x10xx, 010x0x10xx, 11001x10xx}}

{x0x0x \ {00x01, x010x, x0101}, xx0xx \ {xx0x1, 010xx, 11001}}
{0x1x1 \ {011x1, 01101, 001x1}, 1x01x \ {1x010, 10010, 10010}}
{
   0x101x0x01 \ {
   0x10100x01, 0x101x0101, 0x101x0101, 01101x0x01, 01101x0x01, 00101x0x01}, 0x1x1xx0x1 \ {
   0x111xx001, 0x101xx011, 0x1x1xx0x1, 0x1x1010x1, 0x1x111001, 011x1xx0x1, 01101xx0x1, 001x1xx0x1}, 1x01xxx01x \ {
   1x011xx010, 1x010xx011, 1x01xxx011, 1x01x0101x, 1x010xx01x, 10010xx01x, 10010xx01x}}

{111x1 \ {11111, 11101}}
{000xx \ {00000, 00010, 00010}}
{
   000x1111x1 \ {
   0001111101, 0000111111, 000x111111, 000x111101}}

{xx011 \ {0x011, x1011}, x0x0x \ {00x01, 10101, 1000x}}
{xxx11 \ {x1011, 1x111, x1111}, xxx0x \ {0x001, 11x00, x0x0x}}
{
   xxx11xx011 \ {
   xxx110x011, xxx11x1011, x1011xx011, 1x111xx011, x1111xx011}, xxx0xx0x0x \ {
   xxx01x0x00, xxx00x0x01, xxx0x00x01, xxx0x10101, xxx0x1000x, 0x001x0x0x, 11x00x0x0x, x0x0xx0x0x}}

{}
{0x01x \ {00010, 0101x, 0001x}}
{}

{x1xxx \ {01100, 11x11, x111x}, 0xx01 \ {01x01, 0x101}, 1xx1x \ {10011, 10x11, 1x011}}
{x00xx \ {0000x, 10011, 000x0}, 11x1x \ {11011, 1111x, 11x10}}
{
   x00xxx1xxx \ {
   x00x1x1xx0, x00x0x1xx1, x001xx1x0x, x000xx1x1x, x00xx01100, x00xx11x11, x00xxx111x, 0000xx1xxx, 10011x1xxx, 000x0x1xxx}, 11x1xx1x1x \ {
   11x11x1x10, 11x10x1x11, 11x1x11x11, 11x1xx111x, 11011x1x1x, 1111xx1x1x, 11x10x1x1x}, x00010xx01 \ {
   x000101x01, x00010x101, 000010xx01}, x001x1xx1x \ {
   x00111xx10, x00101xx11, x001x10011, x001x10x11, x001x1x011, 100111xx1x, 000101xx1x}, 11x1x1xx1x \ {
   11x111xx10, 11x101xx11, 11x1x10011, 11x1x10x11, 11x1x1x011, 110111xx1x, 1111x1xx1x, 11x101xx1x}}

{xx11x \ {0x110, 00111, 01110}, 11x11 \ {11011, 11111, 11111}}
{1x0x1 \ {11011, 10011, 1x011}, xx01x \ {0x01x, 10010, xx010}}
{
   1x011xx111 \ {
   1x01100111, 11011xx111, 10011xx111, 1x011xx111}, xx01xxx11x \ {
   xx011xx110, xx010xx111, xx01x0x110, xx01x00111, xx01x01110, 0x01xxx11x, 10010xx11x, xx010xx11x}, 1x01111x11 \ {
   1x01111011, 1x01111111, 1x01111111, 1101111x11, 1001111x11, 1x01111x11}, xx01111x11 \ {
   xx01111011, xx01111111, xx01111111, 0x01111x11}}

{xx10x \ {x0101, 00101, xx101}, x01x1 \ {10101, 10111, 00111}}
{xxx11 \ {1x011, 0x111, x1011}}
{
   xxx11x0111 \ {
   xxx1110111, xxx1100111, 1x011x0111, 0x111x0111, x1011x0111}}

{1001x \ {10011, 10010, 10010}, xx010 \ {1x010, 0x010}}
{00x00 \ {00100}}
{}

{xxxx1 \ {00001, xx111, x1111}, 0x01x \ {0x011, 01011, 00010}}
{1xx1x \ {11x11, 1x011, 10111}}
{
   1xx11xxx11 \ {
   1xx11xx111, 1xx11x1111, 11x11xxx11, 1x011xxx11, 10111xxx11}, 1xx1x0x01x \ {
   1xx110x010, 1xx100x011, 1xx1x0x011, 1xx1x01011, 1xx1x00010, 11x110x01x, 1x0110x01x, 101110x01x}}

{}
{1x0x1 \ {110x1, 100x1, 10001}}
{}

{0x001 \ {00001, 01001}}
{xx0xx \ {11010, x10x1, x10xx}, 0xxxx \ {01x1x, 0x101, 010x0}}
{
   xx0010x001 \ {
   xx00100001, xx00101001, x10010x001, x10010x001}, 0xx010x001 \ {
   0xx0100001, 0xx0101001, 0x1010x001}}

{x1xxx \ {11011, x1001, x111x}, xx001 \ {x0001, x1001, 11001}}
{0111x \ {01111, 01110, 01110}, xx11x \ {x111x, 1111x, 11110}}
{
   0111xx1x1x \ {
   01111x1x10, 01110x1x11, 0111x11011, 0111xx111x, 01111x1x1x, 01110x1x1x, 01110x1x1x}, xx11xx1x1x \ {
   xx111x1x10, xx110x1x11, xx11x11011, xx11xx111x, x111xx1x1x, 1111xx1x1x, 11110x1x1x}}

{11x0x \ {11100, 1100x, 1110x}, x1000 \ {01000}, x1x01 \ {11001, x1101}}
{xx111 \ {11111, 01111}}
{}

{x11xx \ {111x0, 1111x}}
{x0x00 \ {x0000, 00x00, 00000}, 101x1 \ {10111}, 0x11x \ {01110, 00111}}
{
   x0x00x1100 \ {
   x0x0011100, x0000x1100, 00x00x1100, 00000x1100}, 101x1x11x1 \ {
   10111x1101, 10101x1111, 101x111111, 10111x11x1}, 0x11xx111x \ {
   0x111x1110, 0x110x1111, 0x11x11110, 0x11x1111x, 01110x111x, 00111x111x}}

{xx1x0 \ {10100, 00100, 10110}, x10x0 \ {01010, 010x0, 01000}}
{xx00x \ {10000, 00001, xx001}}
{
   xx000xx100 \ {
   xx00010100, xx00000100, 10000xx100}, xx000x1000 \ {
   xx00001000, xx00001000, 10000x1000}}

{000x0 \ {00000}}
{01x0x \ {01x00, 01000, 01100}, x1xx0 \ {11x00, 01x00, 11000}}
{
   01x0000000 \ {
   01x0000000, 01x0000000, 0100000000, 0110000000}, x1xx0000x0 \ {
   x1x1000000, x1x0000010, x1xx000000, 11x00000x0, 01x00000x0, 11000000x0}}

{xx0xx \ {10011, 11001, x001x}, 1xx10 \ {11010, 10110, 1x110}}
{011x0 \ {01110}, x1xxx \ {010x1, 11010, x11x1}}
{
   011x0xx0x0 \ {
   01110xx000, 01100xx010, 011x0x0010, 01110xx0x0}, x1xxxxx0xx \ {
   x1xx1xx0x0, x1xx0xx0x1, x1x1xxx00x, x1x0xxx01x, x1xxx10011, x1xxx11001, x1xxxx001x, 010x1xx0xx, 11010xx0xx, x11x1xx0xx}, 011101xx10 \ {
   0111011010, 0111010110, 011101x110, 011101xx10}, x1x101xx10 \ {
   x1x1011010, x1x1010110, x1x101x110, 110101xx10}}

{0xxxx \ {0110x, 01111, 00xx1}, 000x0 \ {00000, 00010, 00010}}
{}
{}

{}
{}
{}

{x0001 \ {00001}}
{x11x1 \ {x1101, 01101, 01111}}
{
   x1101x0001 \ {
   x110100001, x1101x0001, 01101x0001}}

{x001x \ {1001x, x0010, 00011}, 001xx \ {00101, 00100}}
{0x000 \ {01000, 00000}}
{
   0x00000100 \ {
   0x00000100, 0100000100, 0000000100}}

{1x010 \ {11010, 10010}, 1x0xx \ {1x000, 1x0x0, 10000}, 000xx \ {00011, 00010}}
{11xxx \ {11111, 11x11, 11010}, 0x1x1 \ {0x111, 001x1, 00111}}
{
   11x101x010 \ {
   11x1011010, 11x1010010, 110101x010}, 11xxx1x0xx \ {
   11xx11x0x0, 11xx01x0x1, 11x1x1x00x, 11x0x1x01x, 11xxx1x000, 11xxx1x0x0, 11xxx10000, 111111x0xx, 11x111x0xx, 110101x0xx}, 0x1x11x0x1 \ {
   0x1111x001, 0x1011x011, 0x1111x0x1, 001x11x0x1, 001111x0x1}, 11xxx000xx \ {
   11xx1000x0, 11xx0000x1, 11x1x0000x, 11x0x0001x, 11xxx00011, 11xxx00010, 11111000xx, 11x11000xx, 11010000xx}, 0x1x1000x1 \ {
   0x11100001, 0x10100011, 0x1x100011, 0x111000x1, 001x1000x1, 00111000x1}}

{x11xx \ {111xx, 01111, x110x}, xx1x1 \ {x11x1, x1111, 0x111}}
{x10xx \ {1101x, x10x0, 010xx}, 1010x \ {10100}}
{
   x10xxx11xx \ {
   x10x1x11x0, x10x0x11x1, x101xx110x, x100xx111x, x10xx111xx, x10xx01111, x10xxx110x, 1101xx11xx, x10x0x11xx, 010xxx11xx}, 1010xx110x \ {
   10101x1100, 10100x1101, 1010x1110x, 1010xx110x, 10100x110x}, x10x1xx1x1 \ {
   x1011xx101, x1001xx111, x10x1x11x1, x10x1x1111, x10x10x111, 11011xx1x1, 010x1xx1x1}, 10101xx101 \ {
   10101x1101}}

{x0101 \ {10101}}
{}
{}

{0x1xx \ {01100, 00100, 0x1x0}, 00x11 \ {00111, 00011, 00011}}
{xx010 \ {x0010}, 1xx00 \ {10x00, 1x000, 1x000}}
{
   xx0100x110 \ {
   xx0100x110, x00100x110}, 1xx000x100 \ {
   1xx0001100, 1xx0000100, 1xx000x100, 10x000x100, 1x0000x100, 1x0000x100}}

{11xxx \ {11000, 11x10, 1111x}}
{x0xx0 \ {10110, 10xx0, x0110}}
{
   x0xx011xx0 \ {
   x0x1011x00, x0x0011x10, x0xx011000, x0xx011x10, x0xx011110, 1011011xx0, 10xx011xx0, x011011xx0}}

{001x0 \ {00100, 00110, 00110}, x01x0 \ {10110, 10100, x0100}}
{}
{}

{}
{xxx01 \ {x0x01, 0x101, 11101}}
{}

{0xx0x \ {00001, 0000x, 0110x}, 1xx1x \ {11010, 10x10, 10011}}
{xx0x1 \ {11011, x0011, x1011}, xx1xx \ {101xx, 1111x, x1110}}
{
   xx0010xx01 \ {
   xx00100001, xx00100001, xx00101101}, xx10x0xx0x \ {
   xx1010xx00, xx1000xx01, xx10x00001, xx10x0000x, xx10x0110x, 1010x0xx0x}, xx0111xx11 \ {
   xx01110011, 110111xx11, x00111xx11, x10111xx11}, xx11x1xx1x \ {
   xx1111xx10, xx1101xx11, xx11x11010, xx11x10x10, xx11x10011, 1011x1xx1x, 1111x1xx1x, x11101xx1x}}

{xxx01 \ {1xx01, 1x101, x1001}, x0xxx \ {1010x, x00x0, 00x11}}
{00x11 \ {00011, 00111}}
{
   00x11x0x11 \ {
   00x1100x11, 00011x0x11, 00111x0x11}}

{x111x \ {1111x, 0111x}, 10xx0 \ {10010, 10000}}
{11x0x \ {11001, 11x00, 11x01}}
{
   11x0010x00 \ {
   11x0010000, 11x0010x00}}

{xx0x0 \ {1x010, xx010, 0x0x0}, xx0xx \ {0001x, 0000x, 110x1}, 1x1x1 \ {10101, 111x1, 1x111}}
{001xx \ {0011x, 001x0, 0010x}, 00x1x \ {0011x, 0001x, 00010}}
{
   001x0xx0x0 \ {
   00110xx000, 00100xx010, 001x01x010, 001x0xx010, 001x00x0x0, 00110xx0x0, 001x0xx0x0, 00100xx0x0}, 00x10xx010 \ {
   00x101x010, 00x10xx010, 00x100x010, 00110xx010, 00010xx010, 00010xx010}, 001xxxx0xx \ {
   001x1xx0x0, 001x0xx0x1, 0011xxx00x, 0010xxx01x, 001xx0001x, 001xx0000x, 001xx110x1, 0011xxx0xx, 001x0xx0xx, 0010xxx0xx}, 00x1xxx01x \ {
   00x11xx010, 00x10xx011, 00x1x0001x, 00x1x11011, 0011xxx01x, 0001xxx01x, 00010xx01x}, 001x11x1x1 \ {
   001111x101, 001011x111, 001x110101, 001x1111x1, 001x11x111, 001111x1x1, 001011x1x1}, 00x111x111 \ {
   00x1111111, 00x111x111, 001111x111, 000111x111}}

{x01xx \ {00111, x01x1, 001x0}, 1x0xx \ {10000, 110xx, 1x001}}
{1xx1x \ {10111, 1xx10, 11111}}
{
   1xx1xx011x \ {
   1xx11x0110, 1xx10x0111, 1xx1x00111, 1xx1xx0111, 1xx1x00110, 10111x011x, 1xx10x011x, 11111x011x}, 1xx1x1x01x \ {
   1xx111x010, 1xx101x011, 1xx1x1101x, 101111x01x, 1xx101x01x, 111111x01x}}

{1x0xx \ {1x011, 10001, 1000x}}
{}
{}

{10x1x \ {10011, 1011x, 10x11}}
{}
{}

{xx0xx \ {0x00x, 11000, x0011}, 00x1x \ {00x11, 00110, 00111}}
{010xx \ {010x1, 0100x, 01010}}
{
   010xxxx0xx \ {
   010x1xx0x0, 010x0xx0x1, 0101xxx00x, 0100xxx01x, 010xx0x00x, 010xx11000, 010xxx0011, 010x1xx0xx, 0100xxx0xx, 01010xx0xx}, 0101x00x1x \ {
   0101100x10, 0101000x11, 0101x00x11, 0101x00110, 0101x00111, 0101100x1x, 0101000x1x}}

{10xx1 \ {10001, 10x11, 10x01}, 0xx00 \ {01100, 01x00, 01000}}
{0xx01 \ {0x001, 0x101, 00x01}, 1xxx1 \ {10011, 111x1, 11x01}}
{
   0xx0110x01 \ {
   0xx0110001, 0xx0110x01, 0x00110x01, 0x10110x01, 00x0110x01}, 1xxx110xx1 \ {
   1xx1110x01, 1xx0110x11, 1xxx110001, 1xxx110x11, 1xxx110x01, 1001110xx1, 111x110xx1, 11x0110xx1}}

{00xx1 \ {00x11, 001x1, 00101}}
{xxxx1 \ {x1xx1, 10xx1, 11101}, 1xxxx \ {10x0x, 11xx0, 1101x}}
{
   xxxx100xx1 \ {
   xxx1100x01, xxx0100x11, xxxx100x11, xxxx1001x1, xxxx100101, x1xx100xx1, 10xx100xx1, 1110100xx1}, 1xxx100xx1 \ {
   1xx1100x01, 1xx0100x11, 1xxx100x11, 1xxx1001x1, 1xxx100101, 10x0100xx1, 1101100xx1}}

{00x00 \ {00000, 00100, 00100}}
{1x100 \ {11100, 10100}, 0x0x1 \ {00011, 010x1, 00001}, 0xxx1 \ {00001, 00011, 01x01}}
{
   1x10000x00 \ {
   1x10000000, 1x10000100, 1x10000100, 1110000x00, 1010000x00}}

{xx010 \ {10010}}
{x000x \ {10001, 00001, 0000x}}
{}

{11x0x \ {11100, 11x01, 11001}, xx000 \ {x0000, x1000, 10000}}
{xxx0x \ {0xx00, x010x, 0x001}, 001x1 \ {00111, 00101, 00101}}
{
   xxx0x11x0x \ {
   xxx0111x00, xxx0011x01, xxx0x11100, xxx0x11x01, xxx0x11001, 0xx0011x0x, x010x11x0x, 0x00111x0x}, 0010111x01 \ {
   0010111x01, 0010111001, 0010111x01, 0010111x01}, xxx00xx000 \ {
   xxx00x0000, xxx00x1000, xxx0010000, 0xx00xx000, x0100xx000}}

{xxxx1 \ {0x0x1, xx011, 1x011}, 010xx \ {01000, 01010, 010x0}}
{0x1x1 \ {01111, 0x111, 00111}}
{
   0x1x1xxxx1 \ {
   0x111xxx01, 0x101xxx11, 0x1x10x0x1, 0x1x1xx011, 0x1x11x011, 01111xxxx1, 0x111xxxx1, 00111xxxx1}, 0x1x1010x1 \ {
   0x11101001, 0x10101011, 01111010x1, 0x111010x1, 00111010x1}}

{1x010 \ {11010, 10010, 10010}, xx0xx \ {x0011, 10011, 110x1}}
{0011x \ {00110, 00111}}
{
   001101x010 \ {
   0011011010, 0011010010, 0011010010, 001101x010}, 0011xxx01x \ {
   00111xx010, 00110xx011, 0011xx0011, 0011x10011, 0011x11011, 00110xx01x, 00111xx01x}}

{xx0xx \ {0x011, 0000x, 11000}, 001xx \ {0011x, 00101, 00100}, 11xx1 \ {11011, 11x01}}
{01x01 \ {01101}, 1xxx0 \ {10x10, 1x1x0, 1x010}}
{
   01x01xx001 \ {
   01x0100001, 01101xx001}, 1xxx0xx0x0 \ {
   1xx10xx000, 1xx00xx010, 1xxx000000, 1xxx011000, 10x10xx0x0, 1x1x0xx0x0, 1x010xx0x0}, 01x0100101 \ {
   01x0100101, 0110100101}, 1xxx0001x0 \ {
   1xx1000100, 1xx0000110, 1xxx000110, 1xxx000100, 10x10001x0, 1x1x0001x0, 1x010001x0}, 01x0111x01 \ {
   01x0111x01, 0110111x01}}

{1x1xx \ {1x1x1, 1x111, 1011x}}
{0xx1x \ {0011x, 0x01x, 00x11}}
{
   0xx1x1x11x \ {
   0xx111x110, 0xx101x111, 0xx1x1x111, 0xx1x1x111, 0xx1x1011x, 0011x1x11x, 0x01x1x11x, 00x111x11x}}

{x1xx0 \ {11xx0, x1010, 11110}}
{}
{}

{}
{x111x \ {01111, x1110, 11110}}
{}

{x0xx1 \ {00xx1, 00x01, 00x11}, x01x0 \ {101x0, 001x0}}
{x1010 \ {11010}, x0x00 \ {10000, 10x00, 10100}}
{
   x1010x0110 \ {
   x101010110, x101000110, 11010x0110}, x0x00x0100 \ {
   x0x0010100, x0x0000100, 10000x0100, 10x00x0100, 10100x0100}}

{0x00x \ {0100x, 0x001, 00001}, xx0xx \ {01000, 0001x, xx00x}}
{}
{}

{01x1x \ {01110, 0111x, 0101x}}
{x011x \ {x0111, 10110, 0011x}}
{
   x011x01x1x \ {
   x011101x10, x011001x11, x011x01110, x011x0111x, x011x0101x, x011101x1x, 1011001x1x, 0011x01x1x}}

{11xxx \ {11101, 11011, 11x11}}
{0x0xx \ {000x1, 0x00x}, xx1xx \ {11100, 00100, 1010x}, 0x00x \ {0000x, 00000, 00000}}
{
   0x0xx11xxx \ {
   0x0x111xx0, 0x0x011xx1, 0x01x11x0x, 0x00x11x1x, 0x0xx11101, 0x0xx11011, 0x0xx11x11, 000x111xxx, 0x00x11xxx}, xx1xx11xxx \ {
   xx1x111xx0, xx1x011xx1, xx11x11x0x, xx10x11x1x, xx1xx11101, xx1xx11011, xx1xx11x11, 1110011xxx, 0010011xxx, 1010x11xxx}, 0x00x11x0x \ {
   0x00111x00, 0x00011x01, 0x00x11101, 0000x11x0x, 0000011x0x, 0000011x0x}}

{1xx01 \ {10001, 10x01, 1x001}}
{00xxx \ {001x0, 00111, 00x00}}
{
   00x011xx01 \ {
   00x0110001, 00x0110x01, 00x011x001}}

{x0101 \ {10101, 00101}}
{1x010 \ {11010, 10010, 10010}, xx1xx \ {xx110, 1110x, x01xx}, 1xx11 \ {1x111, 1x011, 1x011}}
{
   xx101x0101 \ {
   xx10110101, xx10100101, 11101x0101, x0101x0101}}

{x0110 \ {10110}}
{1xx1x \ {11x11, 1011x, 1111x}, 1xx1x \ {1xx11, 11x10, 1111x}}
{
   1xx10x0110 \ {
   1xx1010110, 10110x0110, 11110x0110}, 1xx10x0110 \ {
   1xx1010110, 11x10x0110, 11110x0110}}

{}
{}
{}

{01x0x \ {01100, 01001, 01000}, 00x0x \ {00001, 00101}}
{xx101 \ {1x101, 00101}}
{
   xx10101x01 \ {
   xx10101001, 1x10101x01, 0010101x01}, xx10100x01 \ {
   xx10100001, xx10100101, 1x10100x01, 0010100x01}}

{111x1 \ {11101, 11111}}
{01x1x \ {0111x, 0101x, 01010}, x1x01 \ {01101}}
{
   01x1111111 \ {
   01x1111111, 0111111111, 0101111111}, x1x0111101 \ {
   x1x0111101, 0110111101}}

{xx110 \ {00110, x1110, 01110}, x10xx \ {01000, 01001, 110x0}}
{1x01x \ {10011, 1001x, 1x011}, xx1x0 \ {1x100, 11100, 001x0}}
{
   1x010xx110 \ {
   1x01000110, 1x010x1110, 1x01001110, 10010xx110}, xx110xx110 \ {
   xx11000110, xx110x1110, xx11001110, 00110xx110}, 1x01xx101x \ {
   1x011x1010, 1x010x1011, 1x01x11010, 10011x101x, 1001xx101x, 1x011x101x}, xx1x0x10x0 \ {
   xx110x1000, xx100x1010, xx1x001000, xx1x0110x0, 1x100x10x0, 11100x10x0, 001x0x10x0}}

{x1x11 \ {x1011, 11011, 01x11}, 1x01x \ {11010, 11011, 10011}}
{xx1x0 \ {11100, 01100, 0x100}}
{
   xx1101x010 \ {
   xx11011010}}

{0000x \ {00000, 00001}}
{1x110 \ {10110}, 000x1 \ {00001, 00011}, x1xx1 \ {11111, 01001, 01x01}}
{
   0000100001 \ {
   0000100001, 0000100001}, x1x0100001 \ {
   x1x0100001, 0100100001, 01x0100001}}

{1xx10 \ {10110, 11010, 10x10}, x1x01 \ {11001, x1101, 01101}}
{x11x1 \ {111x1, 11111, x1101}, 1x11x \ {1x111, 10110}}
{
   1x1101xx10 \ {
   1x11010110, 1x11011010, 1x11010x10, 101101xx10}, x1101x1x01 \ {
   x110111001, x1101x1101, x110101101, 11101x1x01, x1101x1x01}}

{0x000 \ {00000, 01000, 01000}}
{1x010 \ {11010, 10010}, xx111 \ {x1111, 0x111}}
{}

{0x1x1 \ {0x111, 01111, 00101}}
{xx10x \ {01100, 11100, x0100}}
{
   xx1010x101 \ {
   xx10100101}}

{0xxx0 \ {01x10, 0xx00, 000x0}}
{x1xx1 \ {01011, 11x01, 011x1}, 0x101 \ {00101, 01101}, 0xxxx \ {0xx1x, 0x0xx}}
{
   0xxx00xxx0 \ {
   0xx100xx00, 0xx000xx10, 0xxx001x10, 0xxx00xx00, 0xxx0000x0, 0xx100xxx0, 0x0x00xxx0}}

{x011x \ {10111, 10110, x0110}, 1x1xx \ {1x101, 101x1, 11100}}
{0000x \ {00001, 00000}, x0x1x \ {00x11, 1001x, x011x}}
{
   x0x1xx011x \ {
   x0x11x0110, x0x10x0111, x0x1x10111, x0x1x10110, x0x1xx0110, 00x11x011x, 1001xx011x, x011xx011x}, 0000x1x10x \ {
   000011x100, 000001x101, 0000x1x101, 0000x10101, 0000x11100, 000011x10x, 000001x10x}, x0x1x1x11x \ {
   x0x111x110, x0x101x111, x0x1x10111, 00x111x11x, 1001x1x11x, x011x1x11x}}

{1xx00 \ {10x00, 11x00, 10100}}
{x0x10 \ {10010, 10110, 00x10}, 1xx0x \ {1x000, 11000, 1x100}, xx101 \ {11101, 1x101}}
{
   1xx001xx00 \ {
   1xx0010x00, 1xx0011x00, 1xx0010100, 1x0001xx00, 110001xx00, 1x1001xx00}}

{x00xx \ {10011, x0010, 1001x}, x10x1 \ {01001, x1001, 110x1}, 01xx1 \ {01111, 010x1, 01101}}
{x0xxx \ {x0010, x01xx, 00100}, xxxx0 \ {00000, xxx00, 01x10}, 0x110 \ {01110, 00110}}
{
   x0xxxx00xx \ {
   x0xx1x00x0, x0xx0x00x1, x0x1xx000x, x0x0xx001x, x0xxx10011, x0xxxx0010, x0xxx1001x, x0010x00xx, x01xxx00xx, 00100x00xx}, xxxx0x00x0 \ {
   xxx10x0000, xxx00x0010, xxxx0x0010, xxxx010010, 00000x00x0, xxx00x00x0, 01x10x00x0}, 0x110x0010 \ {
   0x110x0010, 0x11010010, 01110x0010, 00110x0010}, x0xx1x10x1 \ {
   x0x11x1001, x0x01x1011, x0xx101001, x0xx1x1001, x0xx1110x1, x01x1x10x1}, x0xx101xx1 \ {
   x0x1101x01, x0x0101x11, x0xx101111, x0xx1010x1, x0xx101101, x01x101xx1}}

{x110x \ {1110x, 01101, 01101}}
{xx10x \ {1x100, xx101, x1101}}
{
   xx10xx110x \ {
   xx101x1100, xx100x1101, xx10x1110x, xx10x01101, xx10x01101, 1x100x110x, xx101x110x, x1101x110x}}

{xx010 \ {x0010, x1010, 00010}}
{1xxx1 \ {11101, 11xx1, 101x1}, 1xx01 \ {10x01, 11x01, 11101}}
{}

{1x0x1 \ {1x011, 1x001, 1x001}, 1x1xx \ {1110x, 1x111, 1x101}, 001xx \ {00111, 001x0}}
{x001x \ {10010, 0001x}, 1x110 \ {10110}}
{
   x00111x011 \ {
   x00111x011, 000111x011}, x001x1x11x \ {
   x00111x110, x00101x111, x001x1x111, 100101x11x, 0001x1x11x}, 1x1101x110 \ {
   101101x110}, x001x0011x \ {
   x001100110, x001000111, x001x00111, x001x00110, 100100011x, 0001x0011x}, 1x11000110 \ {
   1x11000110, 1011000110}}

{1001x \ {10010, 10011}, x0x0x \ {0000x, 00x0x}, x0000 \ {10000, 00000}}
{0x100 \ {01100}}
{
   0x100x0x00 \ {
   0x10000000, 0x10000x00, 01100x0x00}, 0x100x0000 \ {
   0x10010000, 0x10000000, 01100x0000}}

{xx0x1 \ {1x001, xx001, 01001}}
{0x111 \ {01111, 00111, 00111}}
{
   0x111xx011 \ {
   01111xx011, 00111xx011, 00111xx011}}

{}
{100xx \ {1001x, 1000x, 100x0}}
{}

{x0x1x \ {0001x, 00x10, 10011}, 1x0xx \ {110xx, 110x0, 1000x}}
{011xx \ {01110, 0111x, 01101}, xx1x1 \ {xx111, 00101, 01101}}
{
   0111xx0x1x \ {
   01111x0x10, 01110x0x11, 0111x0001x, 0111x00x10, 0111x10011, 01110x0x1x, 0111xx0x1x}, xx111x0x11 \ {
   xx11100011, xx11110011, xx111x0x11}, 011xx1x0xx \ {
   011x11x0x0, 011x01x0x1, 0111x1x00x, 0110x1x01x, 011xx110xx, 011xx110x0, 011xx1000x, 011101x0xx, 0111x1x0xx, 011011x0xx}, xx1x11x0x1 \ {
   xx1111x001, xx1011x011, xx1x1110x1, xx1x110001, xx1111x0x1, 001011x0x1, 011011x0x1}}

{x1x1x \ {x1x10, 11x10, x1010}, 0x11x \ {00111, 01110}}
{}
{}

{01x1x \ {01x11, 01110, 01x10}, xxxx0 \ {0x0x0, 01xx0, x00x0}}
{x000x \ {10000, 00000}, 1x100 \ {10100}}
{
   x0000xxx00 \ {
   x00000x000, x000001x00, x0000x0000, 10000xxx00, 00000xxx00}, 1x100xxx00 \ {
   1x1000x000, 1x10001x00, 1x100x0000, 10100xxx00}}

{xxx0x \ {0x000, 00001, 00x00}, 0xx11 \ {00x11, 00011, 0x011}}
{x1x11 \ {01x11, x1111}, 0x011 \ {00011}}
{
   x1x110xx11 \ {
   x1x1100x11, x1x1100011, x1x110x011, 01x110xx11, x11110xx11}, 0x0110xx11 \ {
   0x01100x11, 0x01100011, 0x0110x011, 000110xx11}}

{x0x00 \ {x0000, 00000, 00100}, x10xx \ {x10x0, 010x1, 01010}}
{xx101 \ {0x101, 11101, 01101}}
{
   xx101x1001 \ {
   xx10101001, 0x101x1001, 11101x1001, 01101x1001}}

{xxx00 \ {xx000, 10000, x0x00}, x0x01 \ {10001, x0001}, 0x1xx \ {01110, 001x1, 01111}}
{1xx11 \ {10011, 11111, 11011}, 00x11 \ {00011}}
{
   1xx110x111 \ {
   1xx1100111, 1xx1101111, 100110x111, 111110x111, 110110x111}, 00x110x111 \ {
   00x1100111, 00x1101111, 000110x111}}

{x1100 \ {11100, 01100}}
{0x0xx \ {00011, 01000}}
{
   0x000x1100 \ {
   0x00011100, 0x00001100, 01000x1100}}

{x0x10 \ {00x10, x0110, x0010}, x1x10 \ {11110, 01010, 01x10}}
{001x1 \ {00111}, 001xx \ {0010x, 00100, 0011x}, x1x0x \ {11000, 11100, 01101}}
{
   00110x0x10 \ {
   0011000x10, 00110x0110, 00110x0010, 00110x0x10}, 00110x1x10 \ {
   0011011110, 0011001010, 0011001x10, 00110x1x10}}

{x1xx0 \ {01xx0, 11100, x1110}, x100x \ {01001, 1100x, x1000}}
{xx010 \ {1x010, x0010}, xx1xx \ {x01x0, 011x0, x11xx}}
{
   xx010x1x10 \ {
   xx01001x10, xx010x1110, 1x010x1x10, x0010x1x10}, xx1x0x1xx0 \ {
   xx110x1x00, xx100x1x10, xx1x001xx0, xx1x011100, xx1x0x1110, x01x0x1xx0, 011x0x1xx0, x11x0x1xx0}, xx10xx100x \ {
   xx101x1000, xx100x1001, xx10x01001, xx10x1100x, xx10xx1000, x0100x100x, 01100x100x, x110xx100x}}

{0xxx0 \ {0x110, 00010, 01xx0}}
{x110x \ {11101, 11100, x1100}, x1x01 \ {11x01, 11001, x1001}}
{
   x11000xx00 \ {
   x110001x00, 111000xx00, x11000xx00}}

{00x00 \ {00100, 00000, 00000}, 00xx1 \ {00x01, 00111, 00101}}
{x111x \ {x1110, 11110, 01110}, x1001 \ {11001, 01001, 01001}, 1x100 \ {10100, 11100, 11100}}
{
   1x10000x00 \ {
   1x10000100, 1x10000000, 1x10000000, 1010000x00, 1110000x00, 1110000x00}, x111100x11 \ {
   x111100111}, x100100x01 \ {
   x100100x01, x100100101, 1100100x01, 0100100x01, 0100100x01}}

{}
{1xx1x \ {11011, 11x1x, 10010}, x00xx \ {10001, 10010, 00011}, 0x0x0 \ {000x0, 010x0}}
{}

{0x1x0 \ {0x110, 001x0, 01100}, x1000 \ {11000, 01000}, x1x0x \ {11101, 01x00, x110x}}
{xx0x0 \ {x1000, 1x000, 11010}, 1xx10 \ {11110, 1x110, 10x10}, x1x01 \ {11001, 01001, 01x01}}
{
   xx0x00x1x0 \ {
   xx0100x100, xx0000x110, xx0x00x110, xx0x0001x0, xx0x001100, x10000x1x0, 1x0000x1x0, 110100x1x0}, 1xx100x110 \ {
   1xx100x110, 1xx1000110, 111100x110, 1x1100x110, 10x100x110}, xx000x1000 \ {
   xx00011000, xx00001000, x1000x1000, 1x000x1000}, xx000x1x00 \ {
   xx00001x00, xx000x1100, x1000x1x00, 1x000x1x00}, x1x01x1x01 \ {
   x1x0111101, x1x01x1101, 11001x1x01, 01001x1x01, 01x01x1x01}}

{x1010 \ {11010}, xx111 \ {00111, 1x111, 10111}}
{x00xx \ {00000, 000x0, 0001x}, xx010 \ {00010, 0x010, x0010}}
{
   x0010x1010 \ {
   x001011010, 00010x1010, 00010x1010}, xx010x1010 \ {
   xx01011010, 00010x1010, 0x010x1010, x0010x1010}, x0011xx111 \ {
   x001100111, x00111x111, x001110111, 00011xx111}}

{1x1x0 \ {101x0, 10110, 1x100}}
{xx0x0 \ {1x000, x00x0, 01000}}
{
   xx0x01x1x0 \ {
   xx0101x100, xx0001x110, xx0x0101x0, xx0x010110, xx0x01x100, 1x0001x1x0, x00x01x1x0, 010001x1x0}}

{}
{xx111 \ {10111, x1111, 0x111}, xx001 \ {00001, 01001, x1001}}
{}

{11x1x \ {11x10, 11011, 11110}, 11xxx \ {110x1, 1110x, 11x1x}}
{xx10x \ {1x100, 0010x, 1x101}, x1xx0 \ {11xx0, 11x10, x10x0}}
{
   x1x1011x10 \ {
   x1x1011x10, x1x1011110, 11x1011x10, 11x1011x10, x101011x10}, xx10x11x0x \ {
   xx10111x00, xx10011x01, xx10x11001, xx10x1110x, 1x10011x0x, 0010x11x0x, 1x10111x0x}, x1xx011xx0 \ {
   x1x1011x00, x1x0011x10, x1xx011100, x1xx011x10, 11xx011xx0, 11x1011xx0, x10x011xx0}}

{101xx \ {101x1, 10100, 101x0}, 0x101 \ {00101, 01101}}
{x01xx \ {101x1, 1010x, 00110}, 110x1 \ {11001}}
{
   x01xx101xx \ {
   x01x1101x0, x01x0101x1, x011x1010x, x010x1011x, x01xx101x1, x01xx10100, x01xx101x0, 101x1101xx, 1010x101xx, 00110101xx}, 110x1101x1 \ {
   1101110101, 1100110111, 110x1101x1, 11001101x1}, x01010x101 \ {
   x010100101, x010101101, 101010x101, 101010x101}, 110010x101 \ {
   1100100101, 1100101101, 110010x101}}

{x1xxx \ {0111x, 11x01, 01x10}, 0100x \ {01001, 01000}}
{x10xx \ {010x1, x1011, 01001}, 11xxx \ {11010, 1101x, 110x0}}
{
   x10xxx1xxx \ {
   x10x1x1xx0, x10x0x1xx1, x101xx1x0x, x100xx1x1x, x10xx0111x, x10xx11x01, x10xx01x10, 010x1x1xxx, x1011x1xxx, 01001x1xxx}, 11xxxx1xxx \ {
   11xx1x1xx0, 11xx0x1xx1, 11x1xx1x0x, 11x0xx1x1x, 11xxx0111x, 11xxx11x01, 11xxx01x10, 11010x1xxx, 1101xx1xxx, 110x0x1xxx}, x100x0100x \ {
   x100101000, x100001001, x100x01001, x100x01000, 010010100x, 010010100x}, 11x0x0100x \ {
   11x0101000, 11x0001001, 11x0x01001, 11x0x01000, 110000100x}}

{x010x \ {10100, 00100, 1010x}, x1010 \ {11010, 01010, 01010}, xxx11 \ {11011, 0x011, 01x11}}
{1x11x \ {1x111, 10110}, x1101 \ {01101, 11101}, 0x1xx \ {001x0, 0x100, 00100}}
{
   x1101x0101 \ {
   x110110101, 01101x0101, 11101x0101}, 0x10xx010x \ {
   0x101x0100, 0x100x0101, 0x10x10100, 0x10x00100, 0x10x1010x, 00100x010x, 0x100x010x, 00100x010x}, 1x110x1010 \ {
   1x11011010, 1x11001010, 1x11001010, 10110x1010}, 0x110x1010 \ {
   0x11011010, 0x11001010, 0x11001010, 00110x1010}, 1x111xxx11 \ {
   1x11111011, 1x1110x011, 1x11101x11, 1x111xxx11}, 0x111xxx11 \ {
   0x11111011, 0x1110x011, 0x11101x11}}

{xx1x1 \ {01111, 111x1, 11101}}
{0001x \ {00011, 00010}, 1x1x0 \ {10100, 11110, 10110}, x0101 \ {00101}}
{
   00011xx111 \ {
   0001101111, 0001111111, 00011xx111}, x0101xx101 \ {
   x010111101, x010111101, 00101xx101}}

{}
{xxx0x \ {11101, x0x01, 00x01}, 1x011 \ {11011, 10011}}
{}

{0xx01 \ {01101, 00x01}}
{x001x \ {10010, x0010, 10011}, 1110x \ {11100, 11101}}
{
   111010xx01 \ {
   1110101101, 1110100x01, 111010xx01}}

{xx0x0 \ {x1000, 1x0x0, x10x0}, xxxx0 \ {11010, 0xx00, 01000}}
{1xxx0 \ {1x100, 11100, 11110}, 0x00x \ {01001, 01000}, 10x10 \ {10110, 10010, 10010}}
{
   1xxx0xx0x0 \ {
   1xx10xx000, 1xx00xx010, 1xxx0x1000, 1xxx01x0x0, 1xxx0x10x0, 1x100xx0x0, 11100xx0x0, 11110xx0x0}, 0x000xx000 \ {
   0x000x1000, 0x0001x000, 0x000x1000, 01000xx000}, 10x10xx010 \ {
   10x101x010, 10x10x1010, 10110xx010, 10010xx010, 10010xx010}, 1xxx0xxxx0 \ {
   1xx10xxx00, 1xx00xxx10, 1xxx011010, 1xxx00xx00, 1xxx001000, 1x100xxxx0, 11100xxxx0, 11110xxxx0}, 0x000xxx00 \ {
   0x0000xx00, 0x00001000, 01000xxx00}, 10x10xxx10 \ {
   10x1011010, 10110xxx10, 10010xxx10, 10010xxx10}}

{x101x \ {11011, x1010, 0101x}, 1xxx1 \ {10001, 10011, 11x01}}
{1xx0x \ {10000, 1xx01, 10001}}
{
   1xx011xx01 \ {
   1xx0110001, 1xx0111x01, 1xx011xx01, 100011xx01}}

{xxxx1 \ {0x111, 111x1, x0001}, 0x110 \ {01110, 00110}, xx001 \ {10001, x0001, 11001}}
{}
{}

{xx101 \ {x1101}, 1x0xx \ {10001, 1000x, 11000}}
{111xx \ {11101, 1110x, 11100}}
{
   11101xx101 \ {
   11101x1101, 11101xx101, 11101xx101}, 111xx1x0xx \ {
   111x11x0x0, 111x01x0x1, 1111x1x00x, 1110x1x01x, 111xx10001, 111xx1000x, 111xx11000, 111011x0xx, 1110x1x0xx, 111001x0xx}}

{x0x00 \ {10x00, x0100, 00000}, 1x0x1 \ {1x001, 11011, 100x1}, x0xxx \ {x00xx, 10x1x, 00xx0}}
{}
{}

{xxx00 \ {x1100, 0x100, xx100}, x10xx \ {010xx, 110x1, 110xx}}
{0xxxx \ {00x0x, 01x01}, 10xx1 \ {10111, 10x11, 10x01}, 01x0x \ {01100, 0100x, 01101}}
{
   0xx00xxx00 \ {
   0xx00x1100, 0xx000x100, 0xx00xx100, 00x00xxx00}, 01x00xxx00 \ {
   01x00x1100, 01x000x100, 01x00xx100, 01100xxx00, 01000xxx00}, 0xxxxx10xx \ {
   0xxx1x10x0, 0xxx0x10x1, 0xx1xx100x, 0xx0xx101x, 0xxxx010xx, 0xxxx110x1, 0xxxx110xx, 00x0xx10xx, 01x01x10xx}, 10xx1x10x1 \ {
   10x11x1001, 10x01x1011, 10xx1010x1, 10xx1110x1, 10xx1110x1, 10111x10x1, 10x11x10x1, 10x01x10x1}, 01x0xx100x \ {
   01x01x1000, 01x00x1001, 01x0x0100x, 01x0x11001, 01x0x1100x, 01100x100x, 0100xx100x, 01101x100x}}

{1x0x0 \ {100x0, 11010, 10010}}
{xx11x \ {x1111, x111x, xx111}, 100xx \ {1000x, 10001, 10010}}
{
   xx1101x010 \ {
   xx11010010, xx11011010, xx11010010, x11101x010}, 100x01x0x0 \ {
   100101x000, 100001x010, 100x0100x0, 100x011010, 100x010010, 100001x0x0, 100101x0x0}}

{x10x0 \ {x1000, 11010, 11000}, 10xx0 \ {100x0, 10x10, 10110}, 101x0 \ {10100, 10110, 10110}}
{x0x00 \ {00x00, x0000, 10100}}
{
   x0x00x1000 \ {
   x0x00x1000, x0x0011000, 00x00x1000, x0000x1000, 10100x1000}, x0x0010x00 \ {
   x0x0010000, 00x0010x00, x000010x00, 1010010x00}, x0x0010100 \ {
   x0x0010100, 00x0010100, x000010100, 1010010100}}

{0101x \ {01010, 01011, 01011}, xxxx1 \ {01001, 00011, x1011}}
{0x00x \ {00001, 00000, 00000}}
{
   0x001xxx01 \ {
   0x00101001, 00001xxx01}}

{x1011 \ {11011, 01011}, x001x \ {00010, 10011, 0001x}}
{0x001 \ {00001}}
{}

{x0xx1 \ {10x11, 10111, x00x1}, 11x0x \ {11x00, 1110x, 11101}, xx100 \ {01100, x0100, x0100}}
{}
{}

{0x1x0 \ {00100, 0x100, 0x100}}
{x0x10 \ {10x10, 00x10, 00x10}, 0000x \ {00001, 00000}, 1xx0x \ {10x00, 1110x, 1100x}}
{
   x0x100x110 \ {
   10x100x110, 00x100x110, 00x100x110}, 000000x100 \ {
   0000000100, 000000x100, 000000x100, 000000x100}, 1xx000x100 \ {
   1xx0000100, 1xx000x100, 1xx000x100, 10x000x100, 111000x100, 110000x100}}

{x1xxx \ {01xx1, 11x01, x101x}, x01xx \ {x0100, 101xx, 0011x}}
{0x001 \ {01001, 00001}, 011xx \ {011x1, 01100}}
{
   0x001x1x01 \ {
   0x00101x01, 0x00111x01, 01001x1x01, 00001x1x01}, 011xxx1xxx \ {
   011x1x1xx0, 011x0x1xx1, 0111xx1x0x, 0110xx1x1x, 011xx01xx1, 011xx11x01, 011xxx101x, 011x1x1xxx, 01100x1xxx}, 0x001x0101 \ {
   0x00110101, 01001x0101, 00001x0101}, 011xxx01xx \ {
   011x1x01x0, 011x0x01x1, 0111xx010x, 0110xx011x, 011xxx0100, 011xx101xx, 011xx0011x, 011x1x01xx, 01100x01xx}}

{1xxxx \ {1011x, 110x0, 1010x}, xx101 \ {00101, x0101, 11101}}
{1111x \ {11111, 11110}, xx000 \ {x0000, 11000, 01000}}
{
   1111x1xx1x \ {
   111111xx10, 111101xx11, 1111x1011x, 1111x11010, 111111xx1x, 111101xx1x}, xx0001xx00 \ {
   xx00011000, xx00010100, x00001xx00, 110001xx00, 010001xx00}}

{x1x00 \ {x1100, 11100, 01100}, xx0x0 \ {1x000, xx000, x0010}}
{xx01x \ {00011, 00010, x0010}}
{
   xx010xx010 \ {
   xx010x0010, 00010xx010, x0010xx010}}

{11xxx \ {1100x, 11x0x, 11x01}}
{}
{}

{xx111 \ {10111, 11111, 01111}, 1xxx0 \ {10x00, 100x0, 11000}}
{x10x0 \ {x1010, 11010, 01000}, 10xx1 \ {100x1, 10001}}
{
   10x11xx111 \ {
   10x1110111, 10x1111111, 10x1101111, 10011xx111}, x10x01xxx0 \ {
   x10101xx00, x10001xx10, x10x010x00, x10x0100x0, x10x011000, x10101xxx0, 110101xxx0, 010001xxx0}}

{x11x0 \ {01110, 11110, 11100}, x1xx1 \ {01001, x1x11, x1001}}
{10x1x \ {1011x, 10x10, 10110}, x11xx \ {x110x, 111xx, 011xx}}
{
   10x10x1110 \ {
   10x1001110, 10x1011110, 10110x1110, 10x10x1110, 10110x1110}, x11x0x11x0 \ {
   x1110x1100, x1100x1110, x11x001110, x11x011110, x11x011100, x1100x11x0, 111x0x11x0, 011x0x11x0}, 10x11x1x11 \ {
   10x11x1x11, 10111x1x11}, x11x1x1xx1 \ {
   x1111x1x01, x1101x1x11, x11x101001, x11x1x1x11, x11x1x1001, x1101x1xx1, 111x1x1xx1, 011x1x1xx1}}

{xx110 \ {00110, x0110, 1x110}, 1x01x \ {1x010, 10011}}
{00x0x \ {0000x, 00001, 00x01}}
{}

{xx1x1 \ {x1111, 10111, x0101}, 100x0 \ {10000, 10010}}
{x1x1x \ {01x10, x1010, x111x}, 1x00x \ {1000x, 1x001, 10001}, 0x00x \ {0x001, 0100x, 00001}}
{
   x1x11xx111 \ {
   x1x11x1111, x1x1110111, x1111xx111}, 1x001xx101 \ {
   1x001x0101, 10001xx101, 1x001xx101, 10001xx101}, 0x001xx101 \ {
   0x001x0101, 0x001xx101, 01001xx101, 00001xx101}, x1x1010010 \ {
   x1x1010010, 01x1010010, x101010010, x111010010}, 1x00010000 \ {
   1x00010000, 1000010000}, 0x00010000 \ {
   0x00010000, 0100010000}}

{x10x1 \ {01001, x1011, 11011}, 01x11 \ {01011, 01111}}
{xx100 \ {x1100, 11100}, xx00x \ {0100x, 00000, 1x000}}
{
   xx001x1001 \ {
   xx00101001, 01001x1001}}

{x0x11 \ {x0111, 10111, 00x11}}
{xx1xx \ {011x0, 001x0, 1111x}, xxxx1 \ {0x111, 110x1, x10x1}}
{
   xx111x0x11 \ {
   xx111x0111, xx11110111, xx11100x11, 11111x0x11}, xxx11x0x11 \ {
   xxx11x0111, xxx1110111, xxx1100x11, 0x111x0x11, 11011x0x11, x1011x0x11}}

{xxxx0 \ {01100, xx010, 1x010}}
{}
{}

{}
{1x1x0 \ {11110, 111x0, 111x0}, 01xxx \ {01x1x, 01xx1, 011x0}}
{}

{110x0 \ {11000}, x0100 \ {00100}}
{}
{}

{x1x0x \ {01101, 11101, x1101}}
{xxxxx \ {1xx11, 011x1, 01xx0}, 01x01 \ {01001}, x011x \ {10111, x0110, 00111}}
{
   xxx0xx1x0x \ {
   xxx01x1x00, xxx00x1x01, xxx0x01101, xxx0x11101, xxx0xx1101, 01101x1x0x, 01x00x1x0x}, 01x01x1x01 \ {
   01x0101101, 01x0111101, 01x01x1101, 01001x1x01}}

{xx0xx \ {x1010, xx00x, 1x011}}
{01x0x \ {01000, 01001, 01x00}}
{
   01x0xxx00x \ {
   01x01xx000, 01x00xx001, 01x0xxx00x, 01000xx00x, 01001xx00x, 01x00xx00x}}

{1x0xx \ {1101x, 1x010, 11011}}
{010xx \ {0101x, 01000, 010x0}, 101x1 \ {10111, 10101}}
{
   010xx1x0xx \ {
   010x11x0x0, 010x01x0x1, 0101x1x00x, 0100x1x01x, 010xx1101x, 010xx1x010, 010xx11011, 0101x1x0xx, 010001x0xx, 010x01x0xx}, 101x11x0x1 \ {
   101111x001, 101011x011, 101x111011, 101x111011, 101111x0x1, 101011x0x1}}

{10x01 \ {10101, 10001}, xx011 \ {01011, 10011}, xx0x1 \ {1x0x1, xx001, x1001}}
{0xx00 \ {01100, 01x00, 0x000}, 0x10x \ {00101, 0010x, 01100}}
{
   0x10110x01 \ {
   0x10110101, 0x10110001, 0010110x01, 0010110x01}, 0x101xx001 \ {
   0x1011x001, 0x101xx001, 0x101x1001, 00101xx001, 00101xx001}}

{0xx11 \ {00011, 0x011, 0x011}, 11x1x \ {11010, 1111x, 11110}, x0x1x \ {10111, x0011, x001x}}
{0xx11 \ {01x11, 00011, 00111}, 1x00x \ {1x000, 1x001, 10001}}
{
   0xx110xx11 \ {
   0xx1100011, 0xx110x011, 0xx110x011, 01x110xx11, 000110xx11, 001110xx11}, 0xx1111x11 \ {
   0xx1111111, 01x1111x11, 0001111x11, 0011111x11}, 0xx11x0x11 \ {
   0xx1110111, 0xx11x0011, 0xx11x0011, 01x11x0x11, 00011x0x11, 00111x0x11}}

{x001x \ {0001x, x0010, 10010}, 1xxxx \ {1x11x, 11111, 110xx}}
{x1x11 \ {x1111, 11011, 11x11}, xxxx1 \ {001x1, x0001, x1x01}}
{
   x1x11x0011 \ {
   x1x1100011, x1111x0011, 11011x0011, 11x11x0011}, xxx11x0011 \ {
   xxx1100011, 00111x0011}, x1x111xx11 \ {
   x1x111x111, x1x1111111, x1x1111011, x11111xx11, 110111xx11, 11x111xx11}, xxxx11xxx1 \ {
   xxx111xx01, xxx011xx11, xxxx11x111, xxxx111111, xxxx1110x1, 001x11xxx1, x00011xxx1, x1x011xxx1}}

{xx1xx \ {111xx, 10111, 0111x}, xxxx1 \ {01001, 10x01, 00x01}}
{}
{}

{0x01x \ {00011, 0001x, 0101x}, x011x \ {0011x, 10111}, x11x0 \ {011x0, 11110, 11100}}
{110x0 \ {11010, 11000}, 10xx1 \ {101x1, 10011}}
{
   110100x010 \ {
   1101000010, 1101001010, 110100x010}, 10x110x011 \ {
   10x1100011, 10x1100011, 10x1101011, 101110x011, 100110x011}, 11010x0110 \ {
   1101000110, 11010x0110}, 10x11x0111 \ {
   10x1100111, 10x1110111, 10111x0111, 10011x0111}, 110x0x11x0 \ {
   11010x1100, 11000x1110, 110x0011x0, 110x011110, 110x011100, 11010x11x0, 11000x11x0}}

{11x10 \ {11110, 11010}, x1x1x \ {11111, 01x1x, 01111}}
{000xx \ {00010, 0001x, 000x0}}
{
   0001011x10 \ {
   0001011110, 0001011010, 0001011x10, 0001011x10, 0001011x10}, 0001xx1x1x \ {
   00011x1x10, 00010x1x11, 0001x11111, 0001x01x1x, 0001x01111, 00010x1x1x, 0001xx1x1x, 00010x1x1x}}

{}
{x1x1x \ {01011, 1101x, 01111}, xx10x \ {11100, 1110x, x0101}}
{}

{x1010 \ {11010}, x110x \ {11100, x1100, 11101}}
{x001x \ {10011, 0001x, 00010}, x10x1 \ {11001, 110x1, 11011}}
{
   x0010x1010 \ {
   x001011010, 00010x1010, 00010x1010}, x1001x1101 \ {
   x100111101, 11001x1101, 11001x1101}}

{xxx0x \ {1100x, 0x10x, 0xx01}}
{111x0 \ {11100, 11110}}
{
   11100xxx00 \ {
   1110011000, 111000x100, 11100xxx00}}

{011xx \ {0111x, 0110x, 01110}, xxx10 \ {1x110, x1010, 01110}, 0x0x0 \ {00010, 01010}}
{x1100 \ {01100}, x1xxx \ {01100, 11x1x, x1xx1}}
{
   x110001100 \ {
   x110001100, 0110001100}, x1xxx011xx \ {
   x1xx1011x0, x1xx0011x1, x1x1x0110x, x1x0x0111x, x1xxx0111x, x1xxx0110x, x1xxx01110, 01100011xx, 11x1x011xx, x1xx1011xx}, x1x10xxx10 \ {
   x1x101x110, x1x10x1010, x1x1001110, 11x10xxx10}, x11000x000 \ {
   011000x000}, x1xx00x0x0 \ {
   x1x100x000, x1x000x010, x1xx000010, x1xx001010, 011000x0x0, 11x100x0x0}}

{01xxx \ {0110x, 01x0x, 01111}}
{0x1x0 \ {01100, 0x100, 001x0}, 0x0x0 \ {00000, 000x0}, 1xx11 \ {10x11, 1x111, 10011}}
{
   0x1x001xx0 \ {
   0x11001x00, 0x10001x10, 0x1x001100, 0x1x001x00, 0110001xx0, 0x10001xx0, 001x001xx0}, 0x0x001xx0 \ {
   0x01001x00, 0x00001x10, 0x0x001100, 0x0x001x00, 0000001xx0, 000x001xx0}, 1xx1101x11 \ {
   1xx1101111, 10x1101x11, 1x11101x11, 1001101x11}}

{x101x \ {01011, 1101x, 0101x}, x0xx1 \ {00101, 000x1, 10x01}}
{1xx0x \ {10100, 1x100, 1000x}}
{
   1xx01x0x01 \ {
   1xx0100101, 1xx0100001, 1xx0110x01, 10001x0x01}}

{x111x \ {0111x, 11110, 01111}, x0xx1 \ {x00x1, x0x01, 10001}, x0100 \ {00100, 10100}}
{x01xx \ {x011x, x0110, 10100}, 0001x \ {00010, 00011}}
{
   x011xx111x \ {
   x0111x1110, x0110x1111, x011x0111x, x011x11110, x011x01111, x011xx111x, x0110x111x}, 0001xx111x \ {
   00011x1110, 00010x1111, 0001x0111x, 0001x11110, 0001x01111, 00010x111x, 00011x111x}, x01x1x0xx1 \ {
   x0111x0x01, x0101x0x11, x01x1x00x1, x01x1x0x01, x01x110001, x0111x0xx1}, 00011x0x11 \ {
   00011x0011, 00011x0x11}, x0100x0100 \ {
   x010000100, x010010100, 10100x0100}}

{x0xx0 \ {100x0, 00x10, 00x10}}
{xxxx1 \ {x0xx1, x1001, 011x1}, x1100 \ {11100, 01100}, x0000 \ {00000}}
{
   x1100x0x00 \ {
   x110010000, 11100x0x00, 01100x0x00}, x0000x0x00 \ {
   x000010000, 00000x0x00}}

{1xx0x \ {10101, 11101, 1x10x}, x11xx \ {11111, 0110x, 111x0}, 0x10x \ {0x101, 00100, 00100}}
{000xx \ {0000x, 00001, 00011}, x00x1 \ {00011, 000x1, x0001}}
{
   0000x1xx0x \ {
   000011xx00, 000001xx01, 0000x10101, 0000x11101, 0000x1x10x, 0000x1xx0x, 000011xx0x}, x00011xx01 \ {
   x000110101, x000111101, x00011x101, 000011xx01, x00011xx01}, 000xxx11xx \ {
   000x1x11x0, 000x0x11x1, 0001xx110x, 0000xx111x, 000xx11111, 000xx0110x, 000xx111x0, 0000xx11xx, 00001x11xx, 00011x11xx}, x00x1x11x1 \ {
   x0011x1101, x0001x1111, x00x111111, x00x101101, 00011x11x1, 000x1x11x1, x0001x11x1}, 0000x0x10x \ {
   000010x100, 000000x101, 0000x0x101, 0000x00100, 0000x00100, 0000x0x10x, 000010x10x}, x00010x101 \ {
   x00010x101, 000010x101, x00010x101}}

{1x1xx \ {1010x, 1x110, 10100}, x11x1 \ {01101, x1101, 011x1}}
{00xx1 \ {00101, 00001, 00x11}}
{
   00xx11x1x1 \ {
   00x111x101, 00x011x111, 00xx110101, 001011x1x1, 000011x1x1, 00x111x1x1}, 00xx1x11x1 \ {
   00x11x1101, 00x01x1111, 00xx101101, 00xx1x1101, 00xx1011x1, 00101x11x1, 00001x11x1, 00x11x11x1}}

{0xx0x \ {00101, 0x101, 0xx00}}
{xxx1x \ {x1111, 00011}}
{}

{xx0x0 \ {10000, 1x010, 1x0x0}}
{x0x00 \ {10x00, x0000, 10000}}
{
   x0x00xx000 \ {
   x0x0010000, x0x001x000, 10x00xx000, x0000xx000, 10000xx000}}

{01x0x \ {0110x, 01000, 01101}}
{x011x \ {00110, 10111, 1011x}, xx1x1 \ {001x1, xx111, x01x1}}
{
   xx10101x01 \ {
   xx10101101, xx10101101, 0010101x01, x010101x01}}

{}
{x0xx1 \ {10101, 00011, 00xx1}, 0xx1x \ {0001x, 0xx10, 0x110}}
{}

{01xx1 \ {01001, 01111, 01011}}
{x00x1 \ {x0011, 00001, 000x1}, 0x1x1 \ {0x101, 01101}}
{
   x00x101xx1 \ {
   x001101x01, x000101x11, x00x101001, x00x101111, x00x101011, x001101xx1, 0000101xx1, 000x101xx1}, 0x1x101xx1 \ {
   0x11101x01, 0x10101x11, 0x1x101001, 0x1x101111, 0x1x101011, 0x10101xx1, 0110101xx1}}

{x0xx1 \ {10001, 10101, 101x1}, 000xx \ {00001, 00000}}
{x1x1x \ {11111, 01x1x, 01x1x}, x00xx \ {1001x, x0010, x0010}, 1xx01 \ {1x001, 10101}}
{
   x1x11x0x11 \ {
   x1x1110111, 11111x0x11, 01x11x0x11, 01x11x0x11}, x00x1x0xx1 \ {
   x0011x0x01, x0001x0x11, x00x110001, x00x110101, x00x1101x1, 10011x0xx1}, 1xx01x0x01 \ {
   1xx0110001, 1xx0110101, 1xx0110101, 1x001x0x01, 10101x0x01}, x1x1x0001x \ {
   x1x1100010, x1x1000011, 111110001x, 01x1x0001x, 01x1x0001x}, x00xx000xx \ {
   x00x1000x0, x00x0000x1, x001x0000x, x000x0001x, x00xx00001, x00xx00000, 1001x000xx, x0010000xx, x0010000xx}, 1xx0100001 \ {
   1xx0100001, 1x00100001, 1010100001}}

{1xxx1 \ {1x1x1, 11011}, x1xx0 \ {01x10, 11100, 111x0}}
{0x101 \ {00101}}
{
   0x1011xx01 \ {
   0x1011x101, 001011xx01}}

{1010x \ {10101, 10100, 10100}, x0x01 \ {10101, 00x01}}
{xxxxx \ {001x0, 11100, 1xx10}, xx0x1 \ {1x001, 01011, 00011}}
{
   xxx0x1010x \ {
   xxx0110100, xxx0010101, xxx0x10101, xxx0x10100, xxx0x10100, 001001010x, 111001010x}, xx00110101 \ {
   xx00110101, 1x00110101}, xxx01x0x01 \ {
   xxx0110101, xxx0100x01}, xx001x0x01 \ {
   xx00110101, xx00100x01, 1x001x0x01}}

{1xx00 \ {10100, 1x000, 11100}, 11xxx \ {11x11, 111x0, 11100}}
{xx011 \ {00011, 01011, x0011}, xx1x1 \ {x11x1, 10111, 11101}}
{
   xx01111x11 \ {
   xx01111x11, 0001111x11, 0101111x11, x001111x11}, xx1x111xx1 \ {
   xx11111x01, xx10111x11, xx1x111x11, x11x111xx1, 1011111xx1, 1110111xx1}}

{}
{0x100 \ {01100}, 10xx0 \ {101x0, 10x10}, 00xx1 \ {00111, 00x11, 00001}}
{}

{x00xx \ {100x0, x0000, x001x}, 11x00 \ {11000}}
{x10x0 \ {01010, 010x0, x1010}}
{
   x10x0x00x0 \ {
   x1010x0000, x1000x0010, x10x0100x0, x10x0x0000, x10x0x0010, 01010x00x0, 010x0x00x0, x1010x00x0}, x100011x00 \ {
   x100011000, 0100011x00}}

{x11x0 \ {11110, 011x0}}
{}
{}

{0xx11 \ {0x111, 00011, 00x11}, x1000 \ {01000, 11000}}
{001x1 \ {00111, 00101}, xx111 \ {0x111, x1111}}
{
   001110xx11 \ {
   001110x111, 0011100011, 0011100x11, 001110xx11}, xx1110xx11 \ {
   xx1110x111, xx11100011, xx11100x11, 0x1110xx11, x11110xx11}}

{0x1xx \ {0x110, 01101}, x1x1x \ {11x1x, 01x11, 11011}}
{x01x0 \ {10110, 00100, 101x0}, xx1x0 \ {1x1x0, 111x0, 1x110}}
{
   x01x00x1x0 \ {
   x01100x100, x01000x110, x01x00x110, 101100x1x0, 001000x1x0, 101x00x1x0}, xx1x00x1x0 \ {
   xx1100x100, xx1000x110, xx1x00x110, 1x1x00x1x0, 111x00x1x0, 1x1100x1x0}, x0110x1x10 \ {
   x011011x10, 10110x1x10, 10110x1x10}, xx110x1x10 \ {
   xx11011x10, 1x110x1x10, 11110x1x10, 1x110x1x10}}

{xxx10 \ {11x10, 00110, xx010}, 10x00 \ {10000}}
{xx111 \ {x0111, 01111, 00111}}
{}

{x11x0 \ {011x0, 11100, x1110}, x01xx \ {001x0, 10100, x0100}, 000xx \ {000x1, 0000x, 00000}}
{x100x \ {0100x, 01001}, 11x1x \ {11111, 11011, 11010}}
{
   x1000x1100 \ {
   x100001100, x100011100, 01000x1100}, 11x10x1110 \ {
   11x1001110, 11x10x1110, 11010x1110}, x100xx010x \ {
   x1001x0100, x1000x0101, x100x00100, x100x10100, x100xx0100, 0100xx010x, 01001x010x}, 11x1xx011x \ {
   11x11x0110, 11x10x0111, 11x1x00110, 11111x011x, 11011x011x, 11010x011x}, x100x0000x \ {
   x100100000, x100000001, x100x00001, x100x0000x, x100x00000, 0100x0000x, 010010000x}, 11x1x0001x \ {
   11x1100010, 11x1000011, 11x1x00011, 111110001x, 110110001x, 110100001x}}

{x0xx0 \ {000x0, 00x10, x0x10}, 1xx01 \ {1x001, 11x01, 1x101}}
{}
{}

{xx01x \ {00010, 1001x, xx011}}
{}
{}

{xx000 \ {x1000, 1x000, 00000}, x1xxx \ {0100x, 11x11, 11101}, 0x1xx \ {001x0, 0x110, 0x1x0}}
{xxx01 \ {10101, 00x01}}
{
   xxx01x1x01 \ {
   xxx0101001, xxx0111101, 10101x1x01, 00x01x1x01}, xxx010x101 \ {
   101010x101, 00x010x101}}

{x1xx1 \ {x1x11, x1101, 01x01}, 0x0xx \ {010x0, 0x01x, 00000}}
{0xxx0 \ {0x0x0, 011x0, 0xx00}}
{
   0xxx00x0x0 \ {
   0xx100x000, 0xx000x010, 0xxx0010x0, 0xxx00x010, 0xxx000000, 0x0x00x0x0, 011x00x0x0, 0xx000x0x0}}

{11x01 \ {11101, 11001}}
{0x0x0 \ {00000, 0x000, 000x0}}
{}

{1x10x \ {1x101, 1110x, 1110x}}
{0x1x0 \ {00100, 0x100, 0x110}}
{
   0x1001x100 \ {
   0x10011100, 0x10011100, 001001x100, 0x1001x100}}

{00x0x \ {00100, 00x00}}
{1100x \ {11001, 11000, 11000}}
{
   1100x00x0x \ {
   1100100x00, 1100000x01, 1100x00100, 1100x00x00, 1100100x0x, 1100000x0x, 1100000x0x}}

{000x0 \ {00000, 00010, 00010}}
{xx10x \ {xx101, 10101, 1x101}}
{
   xx10000000 \ {
   xx10000000}}

{0x0x0 \ {000x0, 0x000, 00010}}
{x1x10 \ {11x10, 11110, 11110}, 01xxx \ {0101x, 010x0, 01101}}
{
   x1x100x010 \ {
   x1x1000010, x1x1000010, 11x100x010, 111100x010, 111100x010}, 01xx00x0x0 \ {
   01x100x000, 01x000x010, 01xx0000x0, 01xx00x000, 01xx000010, 010100x0x0, 010x00x0x0}}

{00xx0 \ {00010, 000x0, 00100}, xx000 \ {00000}}
{00xx0 \ {001x0, 00x10, 00x10}, 0xx1x \ {01x11, 0111x, 01011}}
{
   00xx000xx0 \ {
   00x1000x00, 00x0000x10, 00xx000010, 00xx0000x0, 00xx000100, 001x000xx0, 00x1000xx0, 00x1000xx0}, 0xx1000x10 \ {
   0xx1000010, 0xx1000010, 0111000x10}, 00x00xx000 \ {
   00x0000000, 00100xx000}}

{1111x \ {11111, 11110, 11110}, 0x1x1 \ {011x1, 001x1, 01111}, 110x1 \ {11001, 11011}}
{001xx \ {001x1, 00111, 001x0}}
{
   0011x1111x \ {
   0011111110, 0011011111, 0011x11111, 0011x11110, 0011x11110, 001111111x, 001111111x, 001101111x}, 001x10x1x1 \ {
   001110x101, 001010x111, 001x1011x1, 001x1001x1, 001x101111, 001x10x1x1, 001110x1x1}, 001x1110x1 \ {
   0011111001, 0010111011, 001x111001, 001x111011, 001x1110x1, 00111110x1}}

{x1001 \ {11001, 01001}, 010x1 \ {01001}}
{xx1xx \ {01110, 01101, xx1x1}}
{
   xx101x1001 \ {
   xx10111001, xx10101001, 01101x1001, xx101x1001}, xx1x1010x1 \ {
   xx11101001, xx10101011, xx1x101001, 01101010x1, xx1x1010x1}}

{1x11x \ {11111, 11110, 1111x}, 11x11 \ {11011, 11111}}
{01xx1 \ {01011, 010x1}, 1xx0x \ {1xx00, 10100, 1x10x}}
{
   01x111x111 \ {
   01x1111111, 01x1111111, 010111x111, 010111x111}, 01x1111x11 \ {
   01x1111011, 01x1111111, 0101111x11, 0101111x11}}

{}
{x00xx \ {x0000, 1001x, 1001x}}
{}

{xx111 \ {10111, 00111}, xxx0x \ {0x00x, x0x00, 11x0x}, 11x11 \ {11011}}
{00x0x \ {00100, 00x01, 00000}, x10x0 \ {x1010, 11000, 11010}, 010x0 \ {01000, 01010}}
{
   00x0xxxx0x \ {
   00x01xxx00, 00x00xxx01, 00x0x0x00x, 00x0xx0x00, 00x0x11x0x, 00100xxx0x, 00x01xxx0x, 00000xxx0x}, x1000xxx00 \ {
   x10000x000, x1000x0x00, x100011x00, 11000xxx00}, 01000xxx00 \ {
   010000x000, 01000x0x00, 0100011x00, 01000xxx00}}

{xx01x \ {0001x, 1x010, xx010}}
{1xxx1 \ {10x01, 11001, 110x1}, 1xx1x \ {10011, 10010, 1x011}}
{
   1xx11xx011 \ {
   1xx1100011, 11011xx011}, 1xx1xxx01x \ {
   1xx11xx010, 1xx10xx011, 1xx1x0001x, 1xx1x1x010, 1xx1xxx010, 10011xx01x, 10010xx01x, 1x011xx01x}}

{10x10 \ {10110, 10010}, 00x1x \ {00010, 00011, 00110}, 10x11 \ {10011, 10111, 10111}}
{}
{}

{x1x10 \ {11110, 01x10, x1110}, xx0xx \ {010x0, 0001x, x001x}}
{x111x \ {01111, x1111, 1111x}, x1x10 \ {01010, 11010}, x0101 \ {00101}}
{
   x1110x1x10 \ {
   x111011110, x111001x10, x1110x1110, 11110x1x10}, x1x10x1x10 \ {
   x1x1011110, x1x1001x10, x1x10x1110, 01010x1x10, 11010x1x10}, x111xxx01x \ {
   x1111xx010, x1110xx011, x111x01010, x111x0001x, x111xx001x, 01111xx01x, x1111xx01x, 1111xxx01x}, x1x10xx010 \ {
   x1x1001010, x1x1000010, x1x10x0010, 01010xx010, 11010xx010}, x0101xx001 \ {
   00101xx001}}

{1xx11 \ {1x111, 10011}, 000x0 \ {00000}}
{xx1xx \ {0x10x, xx11x, 0111x}, 1x0x0 \ {11010, 110x0, 100x0}}
{
   xx1111xx11 \ {
   xx1111x111, xx11110011, xx1111xx11, 011111xx11}, xx1x0000x0 \ {
   xx11000000, xx10000010, xx1x000000, 0x100000x0, xx110000x0, 01110000x0}, 1x0x0000x0 \ {
   1x01000000, 1x00000010, 1x0x000000, 11010000x0, 110x0000x0, 100x0000x0}}

{10xx1 \ {10001, 100x1, 10111}, x11xx \ {x11x1, 01100, 11100}}
{1xx11 \ {1x011, 10x11, 11x11}, x11x1 \ {11111, 111x1, x1111}, xxx01 \ {xx001, 0x001, 0x001}}
{
   1xx1110x11 \ {
   1xx1110011, 1xx1110111, 1x01110x11, 10x1110x11, 11x1110x11}, x11x110xx1 \ {
   x111110x01, x110110x11, x11x110001, x11x1100x1, x11x110111, 1111110xx1, 111x110xx1, x111110xx1}, xxx0110x01 \ {
   xxx0110001, xxx0110001, xx00110x01, 0x00110x01, 0x00110x01}, 1xx11x1111 \ {
   1xx11x1111, 1x011x1111, 10x11x1111, 11x11x1111}, x11x1x11x1 \ {
   x1111x1101, x1101x1111, x11x1x11x1, 11111x11x1, 111x1x11x1, x1111x11x1}, xxx01x1101 \ {
   xxx01x1101, xx001x1101, 0x001x1101, 0x001x1101}}

{0xxx1 \ {000x1, 0xx01, 01x11}, 0x00x \ {01000, 0100x}, x111x \ {01111, x1110, 0111x}}
{}
{}

{x1x01 \ {11x01, 01001, 01x01}, 0x0x0 \ {000x0, 0x010, 01000}}
{00xxx \ {00100, 0010x, 000x0}, 011xx \ {0110x, 01110, 01100}, x10xx \ {01010, 11011, 110xx}}
{
   00x01x1x01 \ {
   00x0111x01, 00x0101001, 00x0101x01, 00101x1x01}, 01101x1x01 \ {
   0110111x01, 0110101001, 0110101x01, 01101x1x01}, x1001x1x01 \ {
   x100111x01, x100101001, x100101x01, 11001x1x01}, 00xx00x0x0 \ {
   00x100x000, 00x000x010, 00xx0000x0, 00xx00x010, 00xx001000, 001000x0x0, 001000x0x0, 000x00x0x0}, 011x00x0x0 \ {
   011100x000, 011000x010, 011x0000x0, 011x00x010, 011x001000, 011000x0x0, 011100x0x0, 011000x0x0}, x10x00x0x0 \ {
   x10100x000, x10000x010, x10x0000x0, x10x00x010, x10x001000, 010100x0x0, 110x00x0x0}}

{010xx \ {01010, 01000, 01011}}
{xx011 \ {x0011, 01011, 10011}, 0xx11 \ {0x111, 01011, 00111}, 11xxx \ {11x1x, 1101x, 11101}}
{
   xx01101011 \ {
   xx01101011, x001101011, 0101101011, 1001101011}, 0xx1101011 \ {
   0xx1101011, 0x11101011, 0101101011, 0011101011}, 11xxx010xx \ {
   11xx1010x0, 11xx0010x1, 11x1x0100x, 11x0x0101x, 11xxx01010, 11xxx01000, 11xxx01011, 11x1x010xx, 1101x010xx, 11101010xx}}

{010x0 \ {01000, 01010}, x10xx \ {01011, 010xx, 1100x}, xx11x \ {xx110, 1x11x, 0x110}}
{1x10x \ {11101, 1010x}}
{
   1x10001000 \ {
   1x10001000, 1010001000}, 1x10xx100x \ {
   1x101x1000, 1x100x1001, 1x10x0100x, 1x10x1100x, 11101x100x, 1010xx100x}}

{11xx1 \ {110x1, 111x1, 11101}, 0xxxx \ {01x0x, 001xx, 0101x}}
{10xx1 \ {10x11, 101x1, 10111}}
{
   10xx111xx1 \ {
   10x1111x01, 10x0111x11, 10xx1110x1, 10xx1111x1, 10xx111101, 10x1111xx1, 101x111xx1, 1011111xx1}, 10xx10xxx1 \ {
   10x110xx01, 10x010xx11, 10xx101x01, 10xx1001x1, 10xx101011, 10x110xxx1, 101x10xxx1, 101110xxx1}}

{1xxxx \ {10x11, 1x011, 1011x}, 1x1x0 \ {11110, 11100}}
{0x1xx \ {0x100, 01100, 0111x}}
{
   0x1xx1xxxx \ {
   0x1x11xxx0, 0x1x01xxx1, 0x11x1xx0x, 0x10x1xx1x, 0x1xx10x11, 0x1xx1x011, 0x1xx1011x, 0x1001xxxx, 011001xxxx, 0111x1xxxx}, 0x1x01x1x0 \ {
   0x1101x100, 0x1001x110, 0x1x011110, 0x1x011100, 0x1001x1x0, 011001x1x0, 011101x1x0}}

{1x11x \ {1x111, 1x110, 1x110}}
{}
{}

{xx0x1 \ {1x011, 01001, xx001}, 01x10 \ {01010}}
{1111x \ {11111, 11110}}
{
   11111xx011 \ {
   111111x011, 11111xx011}, 1111001x10 \ {
   1111001010, 1111001x10}}

{x110x \ {1110x, 0110x}, x1xxx \ {x10x0, 01x1x, 11011}, 0x010 \ {01010, 00010}}
{x10x1 \ {11001, x1011, x1011}}
{
   x1001x1101 \ {
   x100111101, x100101101, 11001x1101}, x10x1x1xx1 \ {
   x1011x1x01, x1001x1x11, x10x101x11, x10x111011, 11001x1xx1, x1011x1xx1, x1011x1xx1}}

{x01xx \ {x0100, x0101, 00101}}
{11x1x \ {1111x, 11x10}}
{
   11x1xx011x \ {
   11x11x0110, 11x10x0111, 1111xx011x, 11x10x011x}}

{x1xx1 \ {011x1, x1x11, 01101}}
{0x110 \ {00110, 01110}, xx100 \ {01100, 10100}, 10xx1 \ {10001, 10011, 10111}}
{
   10xx1x1xx1 \ {
   10x11x1x01, 10x01x1x11, 10xx1011x1, 10xx1x1x11, 10xx101101, 10001x1xx1, 10011x1xx1, 10111x1xx1}}

{}
{001xx \ {00110, 0010x, 00101}}
{}

{1x00x \ {1x000, 11001, 10001}, 1x111 \ {11111, 10111}}
{xxxx1 \ {0x111, 11x01, x1x01}, 101x1 \ {10111, 10101}, x00xx \ {000x0, x0001, 0001x}}
{
   xxx011x001 \ {
   xxx0111001, xxx0110001, 11x011x001, x1x011x001}, 101011x001 \ {
   1010111001, 1010110001, 101011x001}, x000x1x00x \ {
   x00011x000, x00001x001, x000x1x000, x000x11001, x000x10001, 000001x00x, x00011x00x}, xxx111x111 \ {
   xxx1111111, xxx1110111, 0x1111x111}, 101111x111 \ {
   1011111111, 1011110111, 101111x111}, x00111x111 \ {
   x001111111, x001110111, 000111x111}}

{}
{1x11x \ {1111x, 1x111, 1011x}, xx10x \ {0x10x, 11101, 11100}}
{}

{x0xx1 \ {x0x01, 100x1, 00x01}, x11xx \ {x1101, 0111x, 11100}}
{01x10 \ {01110, 01010}, 1xxxx \ {10100, 10x10, 10000}}
{
   1xxx1x0xx1 \ {
   1xx11x0x01, 1xx01x0x11, 1xxx1x0x01, 1xxx1100x1, 1xxx100x01}, 01x10x1110 \ {
   01x1001110, 01110x1110, 01010x1110}, 1xxxxx11xx \ {
   1xxx1x11x0, 1xxx0x11x1, 1xx1xx110x, 1xx0xx111x, 1xxxxx1101, 1xxxx0111x, 1xxxx11100, 10100x11xx, 10x10x11xx, 10000x11xx}}

{00xx0 \ {00100, 001x0, 000x0}}
{x10xx \ {110xx, 11011, x1011}, 000x0 \ {00000, 00010, 00010}}
{
   x10x000xx0 \ {
   x101000x00, x100000x10, x10x000100, x10x0001x0, x10x0000x0, 110x000xx0}, 000x000xx0 \ {
   0001000x00, 0000000x10, 000x000100, 000x0001x0, 000x0000x0, 0000000xx0, 0001000xx0, 0001000xx0}}

{0xxx1 \ {0xx11, 0x0x1, 0x1x1}}
{x101x \ {x1010, 1101x, 0101x}, x1xx1 \ {x11x1, 11001, 11x01}}
{
   x10110xx11 \ {
   x10110xx11, x10110x011, x10110x111, 110110xx11, 010110xx11}, x1xx10xxx1 \ {
   x1x110xx01, x1x010xx11, x1xx10xx11, x1xx10x0x1, x1xx10x1x1, x11x10xxx1, 110010xxx1, 11x010xxx1}}

{x0100 \ {00100, 10100, 10100}}
{}
{}

{0x10x \ {0x100, 00100, 00100}, xx010 \ {11010, 00010, x1010}, x0x10 \ {x0010, 00110, x0110}}
{xxx01 \ {01x01, 10101, 11101}, 0xx10 \ {0x110, 00010, 01110}}
{
   xxx010x101 \ {
   01x010x101, 101010x101, 111010x101}, 0xx10xx010 \ {
   0xx1011010, 0xx1000010, 0xx10x1010, 0x110xx010, 00010xx010, 01110xx010}, 0xx10x0x10 \ {
   0xx10x0010, 0xx1000110, 0xx10x0110, 0x110x0x10, 00010x0x10, 01110x0x10}}

{x0100 \ {00100, 10100}, x1001 \ {01001}}
{}
{}

{x10x0 \ {x1010, 11010, 01010}}
{00xx1 \ {00101, 001x1}}
{}

{00x1x \ {00x11, 00010, 00111}, x1xx1 \ {x1001, x1111, 01xx1}, 101xx \ {101x1, 101x0, 10100}}
{}
{}

{xxxxx \ {10110, xxx0x, x11x1}, x0x01 \ {10101, 10001, 00001}}
{0x0xx \ {01011, 00011, 010xx}, 01x0x \ {01001, 0100x, 01101}, xx0x1 \ {11011, 0x0x1, 1x011}}
{
   0x0xxxxxxx \ {
   0x0x1xxxx0, 0x0x0xxxx1, 0x01xxxx0x, 0x00xxxx1x, 0x0xx10110, 0x0xxxxx0x, 0x0xxx11x1, 01011xxxxx, 00011xxxxx, 010xxxxxxx}, 01x0xxxx0x \ {
   01x01xxx00, 01x00xxx01, 01x0xxxx0x, 01x0xx1101, 01001xxx0x, 0100xxxx0x, 01101xxx0x}, xx0x1xxxx1 \ {
   xx011xxx01, xx001xxx11, xx0x1xxx01, xx0x1x11x1, 11011xxxx1, 0x0x1xxxx1, 1x011xxxx1}, 0x001x0x01 \ {
   0x00110101, 0x00110001, 0x00100001, 01001x0x01}, 01x01x0x01 \ {
   01x0110101, 01x0110001, 01x0100001, 01001x0x01, 01001x0x01, 01101x0x01}, xx001x0x01 \ {
   xx00110101, xx00110001, xx00100001, 0x001x0x01}}

{xxxx0 \ {x0010, 0xxx0, 000x0}, xx1xx \ {00101, 0111x, 10101}}
{x0101 \ {00101, 10101}}
{
   x0101xx101 \ {
   x010100101, x010110101, 00101xx101, 10101xx101}}

{10xx1 \ {100x1, 10001, 10001}}
{}
{}

{0x111 \ {01111, 00111}, 00x1x \ {00111, 00x11, 00110}, xx1x1 \ {01111, xx111, 0x111}}
{1011x \ {10111, 10110}, xx1x1 \ {011x1, 11101, 10111}, x0x1x \ {10x1x, x0111, x011x}}
{
   101110x111 \ {
   1011101111, 1011100111, 101110x111}, xx1110x111 \ {
   xx11101111, xx11100111, 011110x111, 101110x111}, x0x110x111 \ {
   x0x1101111, x0x1100111, 10x110x111, x01110x111, x01110x111}, 1011x00x1x \ {
   1011100x10, 1011000x11, 1011x00111, 1011x00x11, 1011x00110, 1011100x1x, 1011000x1x}, xx11100x11 \ {
   xx11100111, xx11100x11, 0111100x11, 1011100x11}, x0x1x00x1x \ {
   x0x1100x10, x0x1000x11, x0x1x00111, x0x1x00x11, x0x1x00110, 10x1x00x1x, x011100x1x, x011x00x1x}, 10111xx111 \ {
   1011101111, 10111xx111, 101110x111, 10111xx111}, xx1x1xx1x1 \ {
   xx111xx101, xx101xx111, xx1x101111, xx1x1xx111, xx1x10x111, 011x1xx1x1, 11101xx1x1, 10111xx1x1}, x0x11xx111 \ {
   x0x1101111, x0x11xx111, x0x110x111, 10x11xx111, x0111xx111, x0111xx111}}

{0110x \ {01101, 01100}}
{xx0x1 \ {00011, 100x1, 110x1}, 01xx1 \ {011x1, 01001, 010x1}}
{
   xx00101101 \ {
   xx00101101, 1000101101, 1100101101}, 01x0101101 \ {
   01x0101101, 0110101101, 0100101101, 0100101101}}

{111x0 \ {11100, 11110}, xx101 \ {0x101, 00101, 11101}}
{xxx01 \ {10101, 10x01, 0x101}}
{
   xxx01xx101 \ {
   xxx010x101, xxx0100101, xxx0111101, 10101xx101, 10x01xx101, 0x101xx101}}

{}
{0xx0x \ {0xx01, 00001}}
{}

{1xx1x \ {11110, 1xx11, 1111x}, 00x10 \ {00010}, 0x1x0 \ {011x0, 00100, 00100}}
{x0011 \ {00011, 10011}, xxx0x \ {00x01, 0110x, 0100x}}
{
   x00111xx11 \ {
   x00111xx11, x001111111, 000111xx11, 100111xx11}, xxx000x100 \ {
   xxx0001100, xxx0000100, xxx0000100, 011000x100, 010000x100}}

{01x11 \ {01111}}
{0x0xx \ {00001, 000x1, 010x1}}
{
   0x01101x11 \ {
   0x01101111, 0001101x11, 0101101x11}}

{10x00 \ {10000, 10100, 10100}, 00x00 \ {00100, 00000}, x10xx \ {0101x, 11001, 010x0}}
{01x1x \ {01x11, 0111x, 01111}, 100x0 \ {10000, 10010}}
{
   1000010x00 \ {
   1000010000, 1000010100, 1000010100, 1000010x00}, 1000000x00 \ {
   1000000100, 1000000000, 1000000x00}, 01x1xx101x \ {
   01x11x1010, 01x10x1011, 01x1x0101x, 01x1x01010, 01x11x101x, 0111xx101x, 01111x101x}, 100x0x10x0 \ {
   10010x1000, 10000x1010, 100x001010, 100x0010x0, 10000x10x0, 10010x10x0}}

{01x00 \ {01100, 01000}, x1x0x \ {11101, 11x00, 01000}}
{01xx0 \ {010x0, 01110, 01x00}}
{
   01x0001x00 \ {
   01x0001100, 01x0001000, 0100001x00, 01x0001x00}, 01x00x1x00 \ {
   01x0011x00, 01x0001000, 01000x1x00, 01x00x1x00}}

{x11xx \ {011x1, x111x, x110x}, 01x11 \ {01111, 01011, 01011}}
{000x1 \ {00011, 00001, 00001}}
{
   000x1x11x1 \ {
   00011x1101, 00001x1111, 000x1011x1, 000x1x1111, 000x1x1101, 00011x11x1, 00001x11x1, 00001x11x1}, 0001101x11 \ {
   0001101111, 0001101011, 0001101011, 0001101x11}}

{1xx01 \ {11x01, 10x01, 10101}, 1x1x0 \ {1x100, 11100, 1x110}}
{}
{}

{xxx11 \ {10111, xx111}, 1x101 \ {11101, 10101, 10101}}
{x1x0x \ {x1x01, x110x, 11x00}}
{
   x1x011x101 \ {
   x1x0111101, x1x0110101, x1x0110101, x1x011x101, x11011x101}}

{010xx \ {010x1, 0101x, 01000}}
{0xx1x \ {01111, 01x10, 01x11}}
{
   0xx1x0101x \ {
   0xx1101010, 0xx1001011, 0xx1x01011, 0xx1x0101x, 011110101x, 01x100101x, 01x110101x}}

{}
{1xx1x \ {10x11, 1x010, 10011}, x1xx0 \ {01100, x1x00, 11xx0}}
{}

{00x1x \ {00x10, 00111, 00011}}
{x010x \ {00101, 0010x, 10101}}
{}

{1x1x0 \ {1x100, 101x0, 111x0}, 1xx11 \ {11x11, 1x011, 10111}}
{0xx00 \ {0x000, 01000, 01000}, 1x101 \ {11101}}
{
   0xx001x100 \ {
   0xx001x100, 0xx0010100, 0xx0011100, 0x0001x100, 010001x100, 010001x100}}

{1x11x \ {1x111, 10111, 1011x}, 0xxxx \ {00x0x, 0xx00, 00x10}}
{x1x11 \ {01x11, 11011, 11011}, xx0xx \ {010xx, xx001, x101x}}
{
   x1x111x111 \ {
   x1x111x111, x1x1110111, x1x1110111, 01x111x111, 110111x111, 110111x111}, xx01x1x11x \ {
   xx0111x110, xx0101x111, xx01x1x111, xx01x10111, xx01x1011x, 0101x1x11x, x101x1x11x}, x1x110xx11 \ {
   01x110xx11, 110110xx11, 110110xx11}, xx0xx0xxxx \ {
   xx0x10xxx0, xx0x00xxx1, xx01x0xx0x, xx00x0xx1x, xx0xx00x0x, xx0xx0xx00, xx0xx00x10, 010xx0xxxx, xx0010xxxx, x101x0xxxx}}

{xx110 \ {0x110, 1x110}, 10x10 \ {10010, 10110, 10110}}
{}
{}

{1xx11 \ {11011, 11111, 10x11}, x0111 \ {10111, 00111, 00111}}
{0xxxx \ {0x01x, 01101, 00x00}, 0x0x1 \ {010x1, 00011, 01011}, x1xxx \ {01110, 110x1, 11110}}
{
   0xx111xx11 \ {
   0xx1111011, 0xx1111111, 0xx1110x11, 0x0111xx11}, 0x0111xx11 \ {
   0x01111011, 0x01111111, 0x01110x11, 010111xx11, 000111xx11, 010111xx11}, x1x111xx11 \ {
   x1x1111011, x1x1111111, x1x1110x11, 110111xx11}, 0xx11x0111 \ {
   0xx1110111, 0xx1100111, 0xx1100111, 0x011x0111}, 0x011x0111 \ {
   0x01110111, 0x01100111, 0x01100111, 01011x0111, 00011x0111, 01011x0111}, x1x11x0111 \ {
   x1x1110111, x1x1100111, x1x1100111, 11011x0111}}

{1x1x1 \ {111x1, 11101, 11111}, 1100x \ {11001}, 0001x \ {00011, 00010, 00010}}
{10xx0 \ {10010, 100x0, 10x10}, xx01x \ {00010, xx011, xx011}}
{
   xx0111x111 \ {
   xx01111111, xx01111111, xx0111x111, xx0111x111}, 10x0011000 \ {
   1000011000}, 10x1000010 \ {
   10x1000010, 10x1000010, 1001000010, 1001000010, 10x1000010}, xx01x0001x \ {
   xx01100010, xx01000011, xx01x00011, xx01x00010, xx01x00010, 000100001x, xx0110001x, xx0110001x}}

{x01x1 \ {x0111, 10101, x0101}}
{0xx00 \ {01100, 01000, 01x00}, x100x \ {01001, x1001, 01000}, 0xxx0 \ {001x0, 0x0x0, 00110}}
{
   x1001x0101 \ {
   x100110101, x1001x0101, 01001x0101, x1001x0101}}

{xx001 \ {00001, 1x001}, x0x1x \ {00011, 10x1x, 10x10}, xx100 \ {1x100, 11100, 0x100}}
{x1001 \ {01001}, x00xx \ {10011, 00010, 0000x}}
{
   x1001xx001 \ {
   x100100001, x10011x001, 01001xx001}, x0001xx001 \ {
   x000100001, x00011x001, 00001xx001}, x001xx0x1x \ {
   x0011x0x10, x0010x0x11, x001x00011, x001x10x1x, x001x10x10, 10011x0x1x, 00010x0x1x}, x0000xx100 \ {
   x00001x100, x000011100, x00000x100, 00000xx100}}

{01xx1 \ {01011, 01111, 01x11}}
{1xx0x \ {11x0x, 1xx01}, x101x \ {x1011, 1101x, 1101x}}
{
   1xx0101x01 \ {
   11x0101x01, 1xx0101x01}, x101101x11 \ {
   x101101011, x101101111, x101101x11, x101101x11, 1101101x11, 1101101x11}}

{xxx0x \ {00101, 1x100, xx001}}
{}
{}

{00xx0 \ {00100, 00110, 00010}, xxx1x \ {1xx1x, 11010, 00110}}
{1x01x \ {1x011, 1x010, 10010}, xx0x0 \ {01000, x0010, 1x000}}
{
   1x01000x10 \ {
   1x01000110, 1x01000010, 1x01000x10, 1001000x10}, xx0x000xx0 \ {
   xx01000x00, xx00000x10, xx0x000100, xx0x000110, xx0x000010, 0100000xx0, x001000xx0, 1x00000xx0}, 1x01xxxx1x \ {
   1x011xxx10, 1x010xxx11, 1x01x1xx1x, 1x01x11010, 1x01x00110, 1x011xxx1x, 1x010xxx1x, 10010xxx1x}, xx010xxx10 \ {
   xx0101xx10, xx01011010, xx01000110, x0010xxx10}}

{xxx10 \ {0x110, 1x010, x1010}, 0x01x \ {00010, 01011, 0001x}}
{00xxx \ {000x0, 0001x, 001xx}}
{
   00x10xxx10 \ {
   00x100x110, 00x101x010, 00x10x1010, 00010xxx10, 00010xxx10, 00110xxx10}, 00x1x0x01x \ {
   00x110x010, 00x100x011, 00x1x00010, 00x1x01011, 00x1x0001x, 000100x01x, 0001x0x01x, 0011x0x01x}}

{10x10 \ {10010, 10110, 10110}}
{1xx1x \ {1xx10, 10x11, 1x01x}, 1xx0x \ {11000, 1x00x, 11001}, x1011 \ {01011}}
{
   1xx1010x10 \ {
   1xx1010010, 1xx1010110, 1xx1010110, 1xx1010x10, 1x01010x10}}

{0111x \ {01110, 01111}, xx1x0 \ {00100, 1x100, 1x110}}
{}
{}

{0x011 \ {01011}}
{xx100 \ {00100, 0x100, x0100}}
{}

{1xx01 \ {11x01, 10101, 10101}, xx00x \ {01001, x1000, 0100x}, xxx1x \ {x0011, 1011x, 10111}}
{1xx0x \ {1x101, 10000, 1x001}}
{
   1xx011xx01 \ {
   1xx0111x01, 1xx0110101, 1xx0110101, 1x1011xx01, 1x0011xx01}, 1xx0xxx00x \ {
   1xx01xx000, 1xx00xx001, 1xx0x01001, 1xx0xx1000, 1xx0x0100x, 1x101xx00x, 10000xx00x, 1x001xx00x}}

{0xxx1 \ {01111, 00x11, 010x1}}
{}
{}

{x0100 \ {10100, 00100}}
{x11x1 \ {111x1, x1101}, x1x00 \ {x1000, 11000, 01x00}}
{
   x1x00x0100 \ {
   x1x0010100, x1x0000100, x1000x0100, 11000x0100, 01x00x0100}}

{x1100 \ {11100, 01100, 01100}, x0x0x \ {10x00, x0100, 10x01}, 1xxx0 \ {110x0, 111x0, 1x110}}
{01xx1 \ {01011, 01101}, 0xx01 \ {01x01, 00x01, 00x01}}
{
   01x01x0x01 \ {
   01x0110x01, 01101x0x01}, 0xx01x0x01 \ {
   0xx0110x01, 01x01x0x01, 00x01x0x01, 00x01x0x01}}

{x001x \ {x0010, 00010, 1001x}, x0001 \ {10001, 00001}}
{011xx \ {011x0, 01111}, 11xxx \ {11x01, 110xx, 11xx1}}
{
   0111xx001x \ {
   01111x0010, 01110x0011, 0111xx0010, 0111x00010, 0111x1001x, 01110x001x, 01111x001x}, 11x1xx001x \ {
   11x11x0010, 11x10x0011, 11x1xx0010, 11x1x00010, 11x1x1001x, 1101xx001x, 11x11x001x}, 01101x0001 \ {
   0110110001, 0110100001}, 11x01x0001 \ {
   11x0110001, 11x0100001, 11x01x0001, 11001x0001, 11x01x0001}}

{11x01 \ {11101, 11001, 11001}}
{x1xxx \ {01xx0, 11x10, 01010}}
{
   x1x0111x01 \ {
   x1x0111101, x1x0111001, x1x0111001}}

{x1x10 \ {11110, x1110, 01x10}}
{0x11x \ {0x111, 00111, 0111x}}
{
   0x110x1x10 \ {
   0x11011110, 0x110x1110, 0x11001x10, 01110x1x10}}

{10x1x \ {10011, 10111, 1001x}}
{x10x0 \ {01010, 01000, 110x0}, xx1x1 \ {01101, x0101, 11111}}
{
   x101010x10 \ {
   x101010010, 0101010x10, 1101010x10}, xx11110x11 \ {
   xx11110011, xx11110111, xx11110011, 1111110x11}}

{0110x \ {01100, 01101, 01101}, 11x01 \ {11001, 11101}}
{xx01x \ {x101x, 10010, 01010}, 1x01x \ {11010, 1x010, 10011}, x1xxx \ {110x0, 11011, x11xx}}
{
   x1x0x0110x \ {
   x1x0101100, x1x0001101, x1x0x01100, x1x0x01101, x1x0x01101, 110000110x, x110x0110x}, x1x0111x01 \ {
   x1x0111001, x1x0111101, x110111x01}}

{x00xx \ {10001, x001x, 00011}, x1000 \ {11000, 01000, 01000}, 0x1x0 \ {01110, 0x110, 0x110}}
{0xx1x \ {0x110, 0x010, 0001x}, 0101x \ {01010, 01011}}
{
   0xx1xx001x \ {
   0xx11x0010, 0xx10x0011, 0xx1xx001x, 0xx1x00011, 0x110x001x, 0x010x001x, 0001xx001x}, 0101xx001x \ {
   01011x0010, 01010x0011, 0101xx001x, 0101x00011, 01010x001x, 01011x001x}, 0xx100x110 \ {
   0xx1001110, 0xx100x110, 0xx100x110, 0x1100x110, 0x0100x110, 000100x110}, 010100x110 \ {
   0101001110, 010100x110, 010100x110, 010100x110}}

{}
{}
{}

{x1x11 \ {01x11, 11011, 11111}}
{}
{}

{}
{10xxx \ {10x00, 101x0, 1010x}, xx100 \ {00100, 10100, 01100}}
{}

{00xx1 \ {00x11, 00111, 00111}, 11x00 \ {11100}}
{11xxx \ {110x0, 11110, 11x11}, x0x1x \ {x0111, 00011}}
{
   11xx100xx1 \ {
   11x1100x01, 11x0100x11, 11xx100x11, 11xx100111, 11xx100111, 11x1100xx1}, x0x1100x11 \ {
   x0x1100x11, x0x1100111, x0x1100111, x011100x11, 0001100x11}, 11x0011x00 \ {
   11x0011100, 1100011x00}}

{1xx0x \ {11001, 11000, 10x00}, x00x0 \ {00000, x0010, 10000}}
{1x1x1 \ {11111, 1x101, 10111}}
{
   1x1011xx01 \ {
   1x10111001, 1x1011xx01}}

{xxx0x \ {x0x01, 01101, 1000x}, xxx11 \ {x1111, x0x11, xx111}, 11xx0 \ {11x00, 111x0, 11x10}}
{xxx0x \ {1x101, 10001, 0x001}, 0x01x \ {01010, 01011}, 1110x \ {11101, 11100}}
{
   xxx0xxxx0x \ {
   xxx01xxx00, xxx00xxx01, xxx0xx0x01, xxx0x01101, xxx0x1000x, 1x101xxx0x, 10001xxx0x, 0x001xxx0x}, 1110xxxx0x \ {
   11101xxx00, 11100xxx01, 1110xx0x01, 1110x01101, 1110x1000x, 11101xxx0x, 11100xxx0x}, 0x011xxx11 \ {
   0x011x1111, 0x011x0x11, 0x011xx111, 01011xxx11}, xxx0011x00 \ {
   xxx0011x00, xxx0011100}, 0x01011x10 \ {
   0x01011110, 0x01011x10, 0101011x10}, 1110011x00 \ {
   1110011x00, 1110011100, 1110011x00}}

{xx001 \ {x1001, 00001, 01001}, 11xx1 \ {11x01, 11x11}}
{0000x \ {00001, 00000}}
{
   00001xx001 \ {
   00001x1001, 0000100001, 0000101001, 00001xx001}, 0000111x01 \ {
   0000111x01, 0000111x01}}

{x000x \ {x0000, 00001, 00000}, xx110 \ {01110, 0x110, x1110}}
{x10x0 \ {11010, 01010, 11000}}
{
   x1000x0000 \ {
   x1000x0000, x100000000, 11000x0000}, x1010xx110 \ {
   x101001110, x10100x110, x1010x1110, 11010xx110, 01010xx110}}

{xx110 \ {1x110, 00110}}
{xx0xx \ {11000, xx01x, 00010}}
{
   xx010xx110 \ {
   xx0101x110, xx01000110, xx010xx110, 00010xx110}}

{x0x10 \ {x0110, 00110, 00x10}, x0xxx \ {00x1x, 00101, 100x1}}
{x0xxx \ {00110, 10101, x00xx}, x1110 \ {01110}}
{
   x0x10x0x10 \ {
   x0x10x0110, x0x1000110, x0x1000x10, 00110x0x10, x0010x0x10}, x0xxxx0xxx \ {
   x0xx1x0xx0, x0xx0x0xx1, x0x1xx0x0x, x0x0xx0x1x, x0xxx00x1x, x0xxx00101, x0xxx100x1, 00110x0xxx, 10101x0xxx, x00xxx0xxx}, x1110x0x10 \ {
   x111000x10, 01110x0x10}}

{x1110 \ {11110, 01110}}
{x11x0 \ {011x0, 11110, 11100}}
{
   x1110x1110 \ {
   x111011110, x111001110, 01110x1110, 11110x1110}}

{100x1 \ {10001}, 0xxxx \ {01x01, 00x10, 0xxx1}}
{0x0x0 \ {00010, 0x010, 0x000}, 1xx0x \ {10001, 10101, 10000}}
{
   1xx0110001 \ {
   1xx0110001, 1000110001, 1010110001}, 0x0x00xxx0 \ {
   0x0100xx00, 0x0000xx10, 0x0x000x10, 000100xxx0, 0x0100xxx0, 0x0000xxx0}, 1xx0x0xx0x \ {
   1xx010xx00, 1xx000xx01, 1xx0x01x01, 1xx0x0xx01, 100010xx0x, 101010xx0x, 100000xx0x}}

{00x00 \ {00000, 00100}, 00x00 \ {00000, 00100}, 1xxx0 \ {10x10, 10000, 11x10}}
{01x1x \ {01010, 01x11, 01x11}}
{
   01x101xx10 \ {
   01x1010x10, 01x1011x10, 010101xx10}}

{00x0x \ {0000x, 00000, 00101}, x1101 \ {11101, 01101}}
{0x110 \ {01110, 00110, 00110}, 1x100 \ {11100, 10100}}
{
   1x10000x00 \ {
   1x10000000, 1x10000000, 1110000x00, 1010000x00}}

{1x0xx \ {1x001, 1100x, 11011}, x0x10 \ {10x10, 00110, x0110}}
{1101x \ {11010, 11011, 11011}, 00xxx \ {0000x, 00101, 00100}, x11x0 \ {01100, x1100, 111x0}}
{
   1101x1x01x \ {
   110111x010, 110101x011, 1101x11011, 110101x01x, 110111x01x, 110111x01x}, 00xxx1x0xx \ {
   00xx11x0x0, 00xx01x0x1, 00x1x1x00x, 00x0x1x01x, 00xxx1x001, 00xxx1100x, 00xxx11011, 0000x1x0xx, 001011x0xx, 001001x0xx}, x11x01x0x0 \ {
   x11101x000, x11001x010, x11x011000, 011001x0x0, x11001x0x0, 111x01x0x0}, 11010x0x10 \ {
   1101010x10, 1101000110, 11010x0110, 11010x0x10}, 00x10x0x10 \ {
   00x1010x10, 00x1000110, 00x10x0110}, x1110x0x10 \ {
   x111010x10, x111000110, x1110x0110, 11110x0x10}}

{xx111 \ {x1111, x0111, 01111}, 1xxxx \ {10111, 100x0, 11x00}}
{xx001 \ {00001, x1001, 01001}, 0x10x \ {00100, 0x100, 00101}}
{
   xx0011xx01 \ {
   000011xx01, x10011xx01, 010011xx01}, 0x10x1xx0x \ {
   0x1011xx00, 0x1001xx01, 0x10x10000, 0x10x11x00, 001001xx0x, 0x1001xx0x, 001011xx0x}}

{0xx11 \ {01011, 01111, 01x11}}
{x111x \ {x1111, 11111, 11110}}
{
   x11110xx11 \ {
   x111101011, x111101111, x111101x11, x11110xx11, 111110xx11}}

{x11x0 \ {011x0, 01110, x1110}, 01xx1 \ {01x01, 01011}}
{0xxxx \ {00001, 011x1, 0x011}, 1x0x0 \ {10010, 1x000, 110x0}}
{
   0xxx0x11x0 \ {
   0xx10x1100, 0xx00x1110, 0xxx0011x0, 0xxx001110, 0xxx0x1110}, 1x0x0x11x0 \ {
   1x010x1100, 1x000x1110, 1x0x0011x0, 1x0x001110, 1x0x0x1110, 10010x11x0, 1x000x11x0, 110x0x11x0}, 0xxx101xx1 \ {
   0xx1101x01, 0xx0101x11, 0xxx101x01, 0xxx101011, 0000101xx1, 011x101xx1, 0x01101xx1}}

{1x0xx \ {1x010, 11001, 10010}, 0x1x0 \ {0x110, 01110}}
{}
{}

{10x1x \ {10x11, 10010, 10010}}
{110x0 \ {11010, 11000}}
{
   1101010x10 \ {
   1101010010, 1101010010, 1101010x10}}

{01x1x \ {01x11, 01x10, 0101x}, 10xx1 \ {10001, 101x1}}
{xxx00 \ {10x00, 00000, 01000}, 110xx \ {1100x, 11001}}
{
   1101x01x1x \ {
   1101101x10, 1101001x11, 1101x01x11, 1101x01x10, 1101x0101x}, 110x110xx1 \ {
   1101110x01, 1100110x11, 110x110001, 110x1101x1, 1100110xx1, 1100110xx1}}

{}
{xx01x \ {11011, 1x010, 1x010}, 01x0x \ {01x00, 01000, 01x01}}
{}

{01x0x \ {01000, 01x01, 0100x}}
{01x10 \ {01010, 01110, 01110}, 1x1x1 \ {111x1, 1x101}}
{
   1x10101x01 \ {
   1x10101x01, 1x10101001, 1110101x01, 1x10101x01}}

{000xx \ {0000x, 00001, 000x0}}
{xx111 \ {0x111, 01111, 10111}, x1x1x \ {01011, 01x11, 11011}}
{
   xx11100011 \ {
   0x11100011, 0111100011, 1011100011}, x1x1x0001x \ {
   x1x1100010, x1x1000011, x1x1x00010, 010110001x, 01x110001x, 110110001x}}

{xx11x \ {00111, x1111, x0111}, x10xx \ {x10x0, 01001, 0101x}}
{x111x \ {11110, x1111, 01111}}
{
   x111xxx11x \ {
   x1111xx110, x1110xx111, x111x00111, x111xx1111, x111xx0111, 11110xx11x, x1111xx11x, 01111xx11x}, x111xx101x \ {
   x1111x1010, x1110x1011, x111xx1010, x111x0101x, 11110x101x, x1111x101x, 01111x101x}}

{}
{x1110 \ {01110, 11110, 11110}, x000x \ {10001, 1000x, 0000x}}
{}

{x0xx0 \ {100x0, x0x10, x0110}, 0x0xx \ {0101x, 00010, 0x011}}
{x00x1 \ {000x1, x0001, x0001}, 0x1xx \ {0x1x1, 0x11x, 0x1x0}, 10xxx \ {101x1, 10000, 10x01}}
{
   0x1x0x0xx0 \ {
   0x110x0x00, 0x100x0x10, 0x1x0100x0, 0x1x0x0x10, 0x1x0x0110, 0x110x0xx0, 0x1x0x0xx0}, 10xx0x0xx0 \ {
   10x10x0x00, 10x00x0x10, 10xx0100x0, 10xx0x0x10, 10xx0x0110, 10000x0xx0}, x00x10x0x1 \ {
   x00110x001, x00010x011, x00x101011, x00x10x011, 000x10x0x1, x00010x0x1, x00010x0x1}, 0x1xx0x0xx \ {
   0x1x10x0x0, 0x1x00x0x1, 0x11x0x00x, 0x10x0x01x, 0x1xx0101x, 0x1xx00010, 0x1xx0x011, 0x1x10x0xx, 0x11x0x0xx, 0x1x00x0xx}, 10xxx0x0xx \ {
   10xx10x0x0, 10xx00x0x1, 10x1x0x00x, 10x0x0x01x, 10xxx0101x, 10xxx00010, 10xxx0x011, 101x10x0xx, 100000x0xx, 10x010x0xx}}

{x000x \ {10001, 00000, 1000x}}
{}
{}

{0xxx0 \ {00x00, 00xx0, 0x0x0}}
{x1x0x \ {11x0x, 11101, x100x}, xxxxx \ {1xxx0, 0x101, 11000}, xxx10 \ {01010, 1xx10, 11x10}}
{
   x1x000xx00 \ {
   x1x0000x00, x1x0000x00, x1x000x000, 11x000xx00, x10000xx00}, xxxx00xxx0 \ {
   xxx100xx00, xxx000xx10, xxxx000x00, xxxx000xx0, xxxx00x0x0, 1xxx00xxx0, 110000xxx0}, xxx100xx10 \ {
   xxx1000x10, xxx100x010, 010100xx10, 1xx100xx10, 11x100xx10}}

{x0xx0 \ {00110, 101x0, x0010}, 1xx10 \ {11010, 10x10, 10010}}
{0x10x \ {01100, 0110x, 00100}, 0x11x \ {00111, 00110, 0x111}}
{
   0x100x0x00 \ {
   0x10010100, 01100x0x00, 01100x0x00, 00100x0x00}, 0x110x0x10 \ {
   0x11000110, 0x11010110, 0x110x0010, 00110x0x10}, 0x1101xx10 \ {
   0x11011010, 0x11010x10, 0x11010010, 001101xx10}}

{x1x10 \ {11x10, 11110, x1010}, x10xx \ {010xx, x100x, 01001}}
{}
{}

{0x1xx \ {001xx, 01100}, x110x \ {x1100, 1110x, 0110x}}
{10x00 \ {10100}}
{
   10x000x100 \ {
   10x0000100, 10x0001100, 101000x100}, 10x00x1100 \ {
   10x00x1100, 10x0011100, 10x0001100, 10100x1100}}

{x00xx \ {100x0, 00001, 10000}}
{xx00x \ {11001, 00000, xx000}}
{
   xx00xx000x \ {
   xx001x0000, xx000x0001, xx00x10000, xx00x00001, xx00x10000, 11001x000x, 00000x000x, xx000x000x}}

{x00xx \ {x00x0, x001x}, 0010x \ {00101, 00100}, 011xx \ {011x0, 01100, 01100}}
{01xxx \ {0111x, 0110x, 011x0}, x001x \ {10011, 00010}, xxx0x \ {00100, 01x01, 11x0x}}
{
   01xxxx00xx \ {
   01xx1x00x0, 01xx0x00x1, 01x1xx000x, 01x0xx001x, 01xxxx00x0, 01xxxx001x, 0111xx00xx, 0110xx00xx, 011x0x00xx}, x001xx001x \ {
   x0011x0010, x0010x0011, x001xx0010, x001xx001x, 10011x001x, 00010x001x}, xxx0xx000x \ {
   xxx01x0000, xxx00x0001, xxx0xx0000, 00100x000x, 01x01x000x, 11x0xx000x}, 01x0x0010x \ {
   01x0100100, 01x0000101, 01x0x00101, 01x0x00100, 0110x0010x, 011000010x}, xxx0x0010x \ {
   xxx0100100, xxx0000101, xxx0x00101, xxx0x00100, 001000010x, 01x010010x, 11x0x0010x}, 01xxx011xx \ {
   01xx1011x0, 01xx0011x1, 01x1x0110x, 01x0x0111x, 01xxx011x0, 01xxx01100, 01xxx01100, 0111x011xx, 0110x011xx, 011x0011xx}, x001x0111x \ {
   x001101110, x001001111, x001x01110, 100110111x, 000100111x}, xxx0x0110x \ {
   xxx0101100, xxx0001101, xxx0x01100, xxx0x01100, xxx0x01100, 001000110x, 01x010110x, 11x0x0110x}}

{10xx1 \ {10111, 10001, 101x1}, 0111x \ {01110, 01111, 01111}, 010xx \ {010x1, 01000, 01011}}
{1xx1x \ {11x10, 1x110}}
{
   1xx1110x11 \ {
   1xx1110111, 1xx1110111}, 1xx1x0111x \ {
   1xx1101110, 1xx1001111, 1xx1x01110, 1xx1x01111, 1xx1x01111, 11x100111x, 1x1100111x}, 1xx1x0101x \ {
   1xx1101010, 1xx1001011, 1xx1x01011, 1xx1x01011, 11x100101x, 1x1100101x}}

{x1xxx \ {x111x, 11000, 0111x}}
{0xx1x \ {0x111, 00111, 00010}}
{
   0xx1xx1x1x \ {
   0xx11x1x10, 0xx10x1x11, 0xx1xx111x, 0xx1x0111x, 0x111x1x1x, 00111x1x1x, 00010x1x1x}}

{00xxx \ {001x0, 0010x, 00x11}}
{}
{}

{1x11x \ {1x111, 1x110, 1111x}}
{0x0xx \ {0x00x, 0x0x1, 0100x}, x1000 \ {01000, 11000}}
{
   0x01x1x11x \ {
   0x0111x110, 0x0101x111, 0x01x1x111, 0x01x1x110, 0x01x1111x, 0x0111x11x}}

{111xx \ {11101, 11110, 11111}, xxx10 \ {01x10, 11010, 01110}}
{x1x10 \ {01x10, x1110, 01110}}
{
   x1x1011110 \ {
   x1x1011110, 01x1011110, x111011110, 0111011110}, x1x10xxx10 \ {
   x1x1001x10, x1x1011010, x1x1001110, 01x10xxx10, x1110xxx10, 01110xxx10}}

{x0xx1 \ {x01x1, 10011}, x00x1 \ {10001, x0001}}
{100xx \ {1000x, 10010, 10011}}
{
   100x1x0xx1 \ {
   10011x0x01, 10001x0x11, 100x1x01x1, 100x110011, 10001x0xx1, 10011x0xx1}, 100x1x00x1 \ {
   10011x0001, 10001x0011, 100x110001, 100x1x0001, 10001x00x1, 10011x00x1}}

{}
{}
{}

{11xxx \ {11101, 11x11, 11x10}}
{xxx1x \ {0011x, 11x10, x0x1x}}
{
   xxx1x11x1x \ {
   xxx1111x10, xxx1011x11, xxx1x11x11, xxx1x11x10, 0011x11x1x, 11x1011x1x, x0x1x11x1x}}

{xxx1x \ {xxx11, 01x1x, 11x10}}
{xxxx0 \ {10x10, 01x10, x11x0}, xx011 \ {x0011, 01011, x1011}}
{
   xxx10xxx10 \ {
   xxx1001x10, xxx1011x10, 10x10xxx10, 01x10xxx10, x1110xxx10}, xx011xxx11 \ {
   xx011xxx11, xx01101x11, x0011xxx11, 01011xxx11, x1011xxx11}}

{x101x \ {01011, 1101x, 0101x}, 0x11x \ {0x111, 0011x, 01111}}
{011x1 \ {01101, 01111}}
{
   01111x1011 \ {
   0111101011, 0111111011, 0111101011, 01111x1011}, 011110x111 \ {
   011110x111, 0111100111, 0111101111, 011110x111}}

{}
{1xxxx \ {110x0, 11011, 1001x}, x0001 \ {00001, 10001, 10001}}
{}

{11xxx \ {1111x, 11x1x, 110xx}, 1x11x \ {10111, 1111x}, 1xx10 \ {11x10, 1x010}}
{}
{}

{010xx \ {01000, 010x1}}
{0x01x \ {0x010, 0101x}}
{
   0x01x0101x \ {
   0x01101010, 0x01001011, 0x01x01011, 0x0100101x, 0101x0101x}}

{x1x0x \ {x100x, 01x0x, 01101}}
{0xxx0 \ {0x010, 001x0, 00000}, 101x0 \ {10110}}
{
   0xx00x1x00 \ {
   0xx00x1000, 0xx0001x00, 00100x1x00, 00000x1x00}, 10100x1x00 \ {
   10100x1000, 1010001x00}}

{0x1x0 \ {001x0, 0x110, 01100}}
{0x0x1 \ {01011, 000x1, 010x1}}
{}

{xx010 \ {0x010, 11010, 01010}, x1101 \ {11101, 01101}}
{x1x1x \ {x1010, 0111x, 01x1x}}
{
   x1x10xx010 \ {
   x1x100x010, x1x1011010, x1x1001010, x1010xx010, 01110xx010, 01x10xx010}}

{x10xx \ {11001, 0101x, 010xx}, x100x \ {0100x, 11000, 11000}}
{1x01x \ {1x011, 11011, 10011}, 111x1 \ {11111}}
{
   1x01xx101x \ {
   1x011x1010, 1x010x1011, 1x01x0101x, 1x01x0101x, 1x011x101x, 11011x101x, 10011x101x}, 111x1x10x1 \ {
   11111x1001, 11101x1011, 111x111001, 111x101011, 111x1010x1, 11111x10x1}, 11101x1001 \ {
   1110101001}}

{xx100 \ {x1100, x0100, x0100}}
{x11x1 \ {111x1, 011x1}, 1111x \ {11110, 11111}, 01x1x \ {0101x, 01111}}
{}

{00xx0 \ {00x10, 00x00, 00110}, xxx11 \ {x0011, x1011, xx011}}
{0xx00 \ {00x00, 0x000, 0x100}, 1x10x \ {10101, 11101, 11101}}
{
   0xx0000x00 \ {
   0xx0000x00, 00x0000x00, 0x00000x00, 0x10000x00}, 1x10000x00 \ {
   1x10000x00}}

{1xx10 \ {10x10, 10110, 10110}, 1xx00 \ {11100, 1x000, 1x100}}
{xx01x \ {00010, 11011, x001x}}
{
   xx0101xx10 \ {
   xx01010x10, xx01010110, xx01010110, 000101xx10, x00101xx10}}

{}
{1x00x \ {1x001, 11000, 11001}}
{}

{x0x0x \ {10101, 1000x, x0001}}
{1xxx1 \ {11111, 11001, 101x1}}
{
   1xx01x0x01 \ {
   1xx0110101, 1xx0110001, 1xx01x0001, 11001x0x01, 10101x0x01}}

{11x0x \ {11x00, 1100x, 11100}}
{xx110 \ {11110, 01110, 01110}}
{}

{x010x \ {10101, 0010x, x0101}, x1x0x \ {x1001, 01100, x1x01}}
{1010x \ {10100}, 000x1 \ {00011, 00001}}
{
   1010xx010x \ {
   10101x0100, 10100x0101, 1010x10101, 1010x0010x, 1010xx0101, 10100x010x}, 00001x0101 \ {
   0000110101, 0000100101, 00001x0101, 00001x0101}, 1010xx1x0x \ {
   10101x1x00, 10100x1x01, 1010xx1001, 1010x01100, 1010xx1x01, 10100x1x0x}, 00001x1x01 \ {
   00001x1001, 00001x1x01, 00001x1x01}}

{xx011 \ {0x011, 00011, 1x011}}
{0011x \ {00111}, 00xxx \ {00110, 00x0x, 00011}, x0x0x \ {00101, 10000, 10101}}
{
   00111xx011 \ {
   001110x011, 0011100011, 001111x011, 00111xx011}, 00x11xx011 \ {
   00x110x011, 00x1100011, 00x111x011, 00011xx011}}

{1x11x \ {1x111, 11110}, xx01x \ {1x010, 0001x, 11010}, x0x10 \ {00x10, 10110}}
{xx1x1 \ {x0111, 0x1x1, 10111}, xx0x1 \ {11011, 1x001, 01011}}
{
   xx1111x111 \ {
   xx1111x111, x01111x111, 0x1111x111, 101111x111}, xx0111x111 \ {
   xx0111x111, 110111x111, 010111x111}, xx111xx011 \ {
   xx11100011, x0111xx011, 0x111xx011, 10111xx011}, xx011xx011 \ {
   xx01100011, 11011xx011, 01011xx011}}

{xx0x0 \ {100x0, 11010, 0x010}}
{1x00x \ {1x000, 1000x, 11000}, 110x1 \ {11001}, 01xx1 \ {01001, 011x1, 01101}}
{
   1x000xx000 \ {
   1x00010000, 1x000xx000, 10000xx000, 11000xx000}}

{1x1x1 \ {101x1, 11101, 11101}}
{x0x11 \ {10011, 00x11, 10111}, 10xxx \ {10xx0, 10110, 10010}}
{
   x0x111x111 \ {
   x0x1110111, 100111x111, 00x111x111, 101111x111}, 10xx11x1x1 \ {
   10x111x101, 10x011x111, 10xx1101x1, 10xx111101, 10xx111101}}

{0xx00 \ {0x000, 00100, 01x00}, 0x00x \ {0x001, 01000, 01000}}
{10xxx \ {10001, 10x01, 10x00}}
{
   10x000xx00 \ {
   10x000x000, 10x0000100, 10x0001x00, 10x000xx00}, 10x0x0x00x \ {
   10x010x000, 10x000x001, 10x0x0x001, 10x0x01000, 10x0x01000, 100010x00x, 10x010x00x, 10x000x00x}}

{011xx \ {0111x, 011x1, 011x0}, 11xx0 \ {11010, 110x0, 11x10}}
{111xx \ {11100, 111x1}, 01xx0 \ {01x10, 011x0}, 0x1x0 \ {0x100, 00100, 01110}}
{
   111xx011xx \ {
   111x1011x0, 111x0011x1, 1111x0110x, 1110x0111x, 111xx0111x, 111xx011x1, 111xx011x0, 11100011xx, 111x1011xx}, 01xx0011x0 \ {
   01x1001100, 01x0001110, 01xx001110, 01xx0011x0, 01x10011x0, 011x0011x0}, 0x1x0011x0 \ {
   0x11001100, 0x10001110, 0x1x001110, 0x1x0011x0, 0x100011x0, 00100011x0, 01110011x0}, 111x011xx0 \ {
   1111011x00, 1110011x10, 111x011010, 111x0110x0, 111x011x10, 1110011xx0}, 01xx011xx0 \ {
   01x1011x00, 01x0011x10, 01xx011010, 01xx0110x0, 01xx011x10, 01x1011xx0, 011x011xx0}, 0x1x011xx0 \ {
   0x11011x00, 0x10011x10, 0x1x011010, 0x1x0110x0, 0x1x011x10, 0x10011xx0, 0010011xx0, 0111011xx0}}

{xx100 \ {x1100, 1x100, 11100}}
{x0x0x \ {00001, 00x01, 00x0x}}
{
   x0x00xx100 \ {
   x0x00x1100, x0x001x100, x0x0011100, 00x00xx100}}

{}
{x11xx \ {x111x, x110x, 1111x}}
{}

{xx0xx \ {xx01x, 10010, xx00x}, xx0xx \ {1x0x1, 01001, x00x0}}
{01xxx \ {01111, 010x1, 011x0}}
{
   01xxxxx0xx \ {
   01xx1xx0x0, 01xx0xx0x1, 01x1xxx00x, 01x0xxx01x, 01xxxxx01x, 01xxx10010, 01xxxxx00x, 01111xx0xx, 010x1xx0xx, 011x0xx0xx}, 01xxxxx0xx \ {
   01xx1xx0x0, 01xx0xx0x1, 01x1xxx00x, 01x0xxx01x, 01xxx1x0x1, 01xxx01001, 01xxxx00x0, 01111xx0xx, 010x1xx0xx, 011x0xx0xx}}

{1xxxx \ {1x00x, 1001x, 1000x}, 01xx1 \ {01001, 01011, 01x11}, 0xx0x \ {00x01, 0x00x, 01100}}
{0xx00 \ {01x00, 01100, 00000}, x0xx0 \ {10100, 00x10, x0010}, x1100 \ {01100, 11100, 11100}}
{
   0xx001xx00 \ {
   0xx001x000, 0xx0010000, 01x001xx00, 011001xx00, 000001xx00}, x0xx01xxx0 \ {
   x0x101xx00, x0x001xx10, x0xx01x000, x0xx010010, x0xx010000, 101001xxx0, 00x101xxx0, x00101xxx0}, x11001xx00 \ {
   x11001x000, x110010000, 011001xx00, 111001xx00, 111001xx00}, 0xx000xx00 \ {
   0xx000x000, 0xx0001100, 01x000xx00, 011000xx00, 000000xx00}, x0x000xx00 \ {
   x0x000x000, x0x0001100, 101000xx00}, x11000xx00 \ {
   x11000x000, x110001100, 011000xx00, 111000xx00, 111000xx00}}

{xx01x \ {1101x, 0x01x, x0010}, 1001x \ {10010, 10011}}
{10xxx \ {10010, 100x0, 10011}}
{
   10x1xxx01x \ {
   10x11xx010, 10x10xx011, 10x1x1101x, 10x1x0x01x, 10x1xx0010, 10010xx01x, 10010xx01x, 10011xx01x}, 10x1x1001x \ {
   10x1110010, 10x1010011, 10x1x10010, 10x1x10011, 100101001x, 100101001x, 100111001x}}

{10x01 \ {10101}}
{1xx1x \ {11011, 10111, 11x10}}
{}

{x0100 \ {10100}}
{x10xx \ {x10x0, 010x0, x1011}}
{
   x1000x0100 \ {
   x100010100, x1000x0100, 01000x0100}}

{x0xx0 \ {10x10, x0x10, 10xx0}}
{0x1x1 \ {01101, 0x111}, x01x0 \ {10100, 00110, 00110}}
{
   x01x0x0xx0 \ {
   x0110x0x00, x0100x0x10, x01x010x10, x01x0x0x10, x01x010xx0, 10100x0xx0, 00110x0xx0, 00110x0xx0}}

{1x1x0 \ {10100, 11110, 11100}, 111xx \ {11100, 11101, 1110x}}
{x01xx \ {00110, 001xx, 10100}}
{
   x01x01x1x0 \ {
   x01101x100, x01001x110, x01x010100, x01x011110, x01x011100, 001101x1x0, 001x01x1x0, 101001x1x0}, x01xx111xx \ {
   x01x1111x0, x01x0111x1, x011x1110x, x010x1111x, x01xx11100, x01xx11101, x01xx1110x, 00110111xx, 001xx111xx, 10100111xx}}

{0xx11 \ {0x011, 01111, 00x11}, x11xx \ {x1100, 111x1, 01101}}
{1100x \ {11000}, xx0x1 \ {xx001, 1x001, x0011}}
{
   xx0110xx11 \ {
   xx0110x011, xx01101111, xx01100x11, x00110xx11}, 1100xx110x \ {
   11001x1100, 11000x1101, 1100xx1100, 1100x11101, 1100x01101, 11000x110x}, xx0x1x11x1 \ {
   xx011x1101, xx001x1111, xx0x1111x1, xx0x101101, xx001x11x1, 1x001x11x1, x0011x11x1}}

{001xx \ {001x0, 00100, 00111}, 1xxxx \ {111x1, 10xx1, 11111}, 0x010 \ {01010, 00010, 00010}}
{1xx00 \ {1x000, 11100, 10x00}}
{
   1xx0000100 \ {
   1xx0000100, 1xx0000100, 1x00000100, 1110000100, 10x0000100}, 1xx001xx00 \ {
   1x0001xx00, 111001xx00, 10x001xx00}}

{}
{}
{}

{xx0x0 \ {x1010, 0x010, 00010}}
{1x0xx \ {10010, 11011, 1x011}}
{
   1x0x0xx0x0 \ {
   1x010xx000, 1x000xx010, 1x0x0x1010, 1x0x00x010, 1x0x000010, 10010xx0x0}}

{11xxx \ {1100x, 11001, 11001}, 1x011 \ {11011, 10011}, 00x0x \ {0010x, 00000, 00101}}
{1x0xx \ {10000, 11010}}
{
   1x0xx11xxx \ {
   1x0x111xx0, 1x0x011xx1, 1x01x11x0x, 1x00x11x1x, 1x0xx1100x, 1x0xx11001, 1x0xx11001, 1000011xxx, 1101011xxx}, 1x0111x011 \ {
   1x01111011, 1x01110011}, 1x00x00x0x \ {
   1x00100x00, 1x00000x01, 1x00x0010x, 1x00x00000, 1x00x00101, 1000000x0x}}

{x1111 \ {11111, 01111, 01111}, 11xx1 \ {11101, 11001}}
{x1xxx \ {11100, x100x, 11xx1}}
{
   x1x11x1111 \ {
   x1x1111111, x1x1101111, x1x1101111, 11x11x1111}, x1xx111xx1 \ {
   x1x1111x01, x1x0111x11, x1xx111101, x1xx111001, x100111xx1, 11xx111xx1}}

{x0xx1 \ {x0011, 00x01, 00x01}}
{}
{}

{000x1 \ {00011}, 01x0x \ {0100x, 01001, 0110x}}
{01x11 \ {01011, 01111, 01111}, xx111 \ {11111, x0111, 01111}}
{
   01x1100011 \ {
   01x1100011, 0101100011, 0111100011, 0111100011}, xx11100011 \ {
   xx11100011, 1111100011, x011100011, 0111100011}}

{11xx0 \ {11x10, 11x00, 110x0}}
{x1x1x \ {x1110, 0111x, x111x}, 10x0x \ {1000x, 10000, 10000}}
{
   x1x1011x10 \ {
   x1x1011x10, x1x1011010, x111011x10, 0111011x10, x111011x10}, 10x0011x00 \ {
   10x0011x00, 10x0011000, 1000011x00, 1000011x00, 1000011x00}}

{xx0x1 \ {01001, x0011, xx001}}
{0011x \ {00111, 00110, 00110}, 1xxx0 \ {10xx0, 10100, 10x00}}
{
   00111xx011 \ {
   00111x0011, 00111xx011}}

{xx0x0 \ {100x0, 1x000, x00x0}, x1000 \ {01000, 11000, 11000}}
{}
{}

{xx001 \ {0x001, x1001, 11001}}
{1x11x \ {1x111, 10110}}
{}

{010xx \ {01011, 01001, 01010}, 1xx01 \ {10001, 11x01, 11x01}}
{x10xx \ {x1011, x101x}}
{
   x10xx010xx \ {
   x10x1010x0, x10x0010x1, x101x0100x, x100x0101x, x10xx01011, x10xx01001, x10xx01010, x1011010xx, x101x010xx}, x10011xx01 \ {
   x100110001, x100111x01, x100111x01}}

{}
{1x0x0 \ {11010, 11000, 110x0}}
{}

{}
{0xx0x \ {01x0x, 00x0x, 01000}, x1000 \ {11000, 01000}}
{}

{}
{10x00 \ {10100, 10000}}
{}

{}
{x11xx \ {1111x, 111xx, 111xx}}
{}

{xxxxx \ {0xx0x, x0101, 0xxx0}, 01xxx \ {01111, 011x0, 01x01}}
{x110x \ {01100, 1110x}, 10x1x \ {10111, 10x10}}
{
   x110xxxx0x \ {
   x1101xxx00, x1100xxx01, x110x0xx0x, x110xx0101, x110x0xx00, 01100xxx0x, 1110xxxx0x}, 10x1xxxx1x \ {
   10x11xxx10, 10x10xxx11, 10x1x0xx10, 10111xxx1x, 10x10xxx1x}, x110x01x0x \ {
   x110101x00, x110001x01, x110x01100, x110x01x01, 0110001x0x, 1110x01x0x}, 10x1x01x1x \ {
   10x1101x10, 10x1001x11, 10x1x01111, 10x1x01110, 1011101x1x, 10x1001x1x}}

{}
{1x1x0 \ {111x0, 10100, 1x100}, 000x1 \ {00001, 00011, 00011}}
{}

{xx11x \ {xx111, 1x111, 11110}}
{x1x10 \ {01110, x1110}, 0001x \ {00010, 00011}}
{
   x1x10xx110 \ {
   x1x1011110, 01110xx110, x1110xx110}, 0001xxx11x \ {
   00011xx110, 00010xx111, 0001xxx111, 0001x1x111, 0001x11110, 00010xx11x, 00011xx11x}}

{}
{xx1x0 \ {101x0, 0x1x0, 111x0}}
{}

{0x010 \ {01010, 00010}, x110x \ {0110x, 01101}}
{0x1xx \ {00101, 0x111, 0x100}, x0x1x \ {x0x10, x0010, 10111}}
{
   0x1100x010 \ {
   0x11001010, 0x11000010}, x0x100x010 \ {
   x0x1001010, x0x1000010, x0x100x010, x00100x010}, 0x10xx110x \ {
   0x101x1100, 0x100x1101, 0x10x0110x, 0x10x01101, 00101x110x, 0x100x110x}}

{0101x \ {01010, 01011, 01011}}
{xx01x \ {01011, 0001x, 1001x}, xxxx1 \ {x10x1, 1x0x1, xx001}, 00xxx \ {000x0, 00011, 000x1}}
{
   xx01x0101x \ {
   xx01101010, xx01001011, xx01x01010, xx01x01011, xx01x01011, 010110101x, 0001x0101x, 1001x0101x}, xxx1101011 \ {
   xxx1101011, xxx1101011, x101101011, 1x01101011}, 00x1x0101x \ {
   00x1101010, 00x1001011, 00x1x01010, 00x1x01011, 00x1x01011, 000100101x, 000110101x, 000110101x}}

{x0x01 \ {00001, 10001, 10101}, x1010 \ {11010, 01010}}
{x0x1x \ {10x1x, 10010}, 010x0 \ {01010, 01000}, xxx00 \ {x0000, x0x00, 00100}}
{
   x0x10x1010 \ {
   x0x1011010, x0x1001010, 10x10x1010, 10010x1010}, 01010x1010 \ {
   0101011010, 0101001010, 01010x1010}}

{x0x0x \ {0010x, x000x, x0000}, 0xxxx \ {0xxx0, 0x0x0, 0011x}}
{101xx \ {101x0, 10110, 10100}}
{
   1010xx0x0x \ {
   10101x0x00, 10100x0x01, 1010x0010x, 1010xx000x, 1010xx0000, 10100x0x0x, 10100x0x0x}, 101xx0xxxx \ {
   101x10xxx0, 101x00xxx1, 1011x0xx0x, 1010x0xx1x, 101xx0xxx0, 101xx0x0x0, 101xx0011x, 101x00xxxx, 101100xxxx, 101000xxxx}}

{1xx00 \ {11x00, 1x000, 10000}, 0xx1x \ {0x011, 0x110, 00111}}
{xx010 \ {1x010, 00010, 0x010}, 1xxx0 \ {10010, 10110, 110x0}}
{
   1xx001xx00 \ {
   1xx0011x00, 1xx001x000, 1xx0010000, 110001xx00}, xx0100xx10 \ {
   xx0100x110, 1x0100xx10, 000100xx10, 0x0100xx10}, 1xx100xx10 \ {
   1xx100x110, 100100xx10, 101100xx10, 110100xx10}}

{x00xx \ {1000x, 10001, 00000}, x0x1x \ {1001x, 10110}, 1xx10 \ {11010, 11x10}}
{1xx10 \ {10x10, 10010}}
{
   1xx10x0010 \ {
   10x10x0010, 10010x0010}, 1xx10x0x10 \ {
   1xx1010010, 1xx1010110, 10x10x0x10, 10010x0x10}, 1xx101xx10 \ {
   1xx1011010, 1xx1011x10, 10x101xx10, 100101xx10}}

{0x010 \ {00010, 01010}}
{x100x \ {01000, 11000, 11000}, x100x \ {11000, 01001}}
{}

{}
{1x1x1 \ {10111, 11111}}
{}

{10x11 \ {10111, 10011}}
{1000x \ {10001, 10000}}
{}

{x00xx \ {10011, x00x0, 100x1}, xxxx1 \ {0x0x1, x1001, xx111}}
{xx010 \ {x0010, 1x010, 1x010}, xxx01 \ {11101, 11x01, 10001}}
{
   xx010x0010 \ {
   xx010x0010, x0010x0010, 1x010x0010, 1x010x0010}, xxx01x0001 \ {
   xxx0110001, 11101x0001, 11x01x0001, 10001x0001}, xxx01xxx01 \ {
   xxx010x001, xxx01x1001, 11101xxx01, 11x01xxx01, 10001xxx01}}

{1x0xx \ {1000x, 10011, 110x1}, xx011 \ {x0011, 00011, 1x011}}
{0x1xx \ {001x1, 00110, 0x1x0}}
{
   0x1xx1x0xx \ {
   0x1x11x0x0, 0x1x01x0x1, 0x11x1x00x, 0x10x1x01x, 0x1xx1000x, 0x1xx10011, 0x1xx110x1, 001x11x0xx, 001101x0xx, 0x1x01x0xx}, 0x111xx011 \ {
   0x111x0011, 0x11100011, 0x1111x011, 00111xx011}}

{xx101 \ {11101, 0x101, x0101}}
{x1xxx \ {11x0x, 0110x, 11xx0}, 10xxx \ {10xx1, 100x1, 10xx0}}
{
   x1x01xx101 \ {
   x1x0111101, x1x010x101, x1x01x0101, 11x01xx101, 01101xx101}, 10x01xx101 \ {
   10x0111101, 10x010x101, 10x01x0101, 10x01xx101, 10001xx101}}

{01x0x \ {0100x, 01001}}
{}
{}

{0x11x \ {0x111, 00111, 00111}}
{x01x0 \ {x0100, 00100, 001x0}}
{
   x01100x110 \ {
   001100x110}}

{10xx0 \ {10x10, 100x0, 10000}, xx0x1 \ {x0001, xx011, 1x011}}
{x1x0x \ {x1x01, 1100x, 11x01}, x1xxx \ {01x01, 01xx0, 01x10}, x1101 \ {01101, 11101}}
{
   x1x0010x00 \ {
   x1x0010000, x1x0010000, 1100010x00}, x1xx010xx0 \ {
   x1x1010x00, x1x0010x10, x1xx010x10, x1xx0100x0, x1xx010000, 01xx010xx0, 01x1010xx0}, x1x01xx001 \ {
   x1x01x0001, x1x01xx001, 11001xx001, 11x01xx001}, x1xx1xx0x1 \ {
   x1x11xx001, x1x01xx011, x1xx1x0001, x1xx1xx011, x1xx11x011, 01x01xx0x1}, x1101xx001 \ {
   x1101x0001, 01101xx001, 11101xx001}}

{x0001 \ {10001, 00001, 00001}}
{x10xx \ {110x1, 0100x, 110xx}, x1xx0 \ {110x0, 11x10, x10x0}, 0x010 \ {00010, 01010}}
{
   x1001x0001 \ {
   x100110001, x100100001, x100100001, 11001x0001, 01001x0001, 11001x0001}}

{00xxx \ {00001, 00x0x, 00x0x}, 00xx0 \ {00x00, 00010}, x0x10 \ {10010, 00110, 00110}}
{0x0xx \ {0100x, 0x01x, 0x00x}, 0x00x \ {0100x, 00000}}
{
   0x0xx00xxx \ {
   0x0x100xx0, 0x0x000xx1, 0x01x00x0x, 0x00x00x1x, 0x0xx00001, 0x0xx00x0x, 0x0xx00x0x, 0100x00xxx, 0x01x00xxx, 0x00x00xxx}, 0x00x00x0x \ {
   0x00100x00, 0x00000x01, 0x00x00001, 0x00x00x0x, 0x00x00x0x, 0100x00x0x, 0000000x0x}, 0x0x000xx0 \ {
   0x01000x00, 0x00000x10, 0x0x000x00, 0x0x000010, 0100000xx0, 0x01000xx0, 0x00000xx0}, 0x00000x00 \ {
   0x00000x00, 0100000x00, 0000000x00}, 0x010x0x10 \ {
   0x01010010, 0x01000110, 0x01000110, 0x010x0x10}}

{x10xx \ {x1011, 110x0, 01010}}
{xxx0x \ {11001, 0x101, 1110x}, x0010 \ {00010}, 0xxx0 \ {0x100, 011x0, 0x0x0}}
{
   xxx0xx100x \ {
   xxx01x1000, xxx00x1001, xxx0x11000, 11001x100x, 0x101x100x, 1110xx100x}, x0010x1010 \ {
   x001011010, x001001010, 00010x1010}, 0xxx0x10x0 \ {
   0xx10x1000, 0xx00x1010, 0xxx0110x0, 0xxx001010, 0x100x10x0, 011x0x10x0, 0x0x0x10x0}}

{00x10 \ {00010}}
{0xx11 \ {01x11, 01111, 01111}, 0xx1x \ {01x11, 0111x, 00110}, 011x0 \ {01100}}
{
   0xx1000x10 \ {
   0xx1000010, 0111000x10, 0011000x10}, 0111000x10 \ {
   0111000010}}

{x0x1x \ {0011x, x0110, 10x1x}}
{x01xx \ {x0100, 00101, 10100}}
{
   x011xx0x1x \ {
   x0111x0x10, x0110x0x11, x011x0011x, x011xx0110, x011x10x1x}}

{x0x00 \ {10000, x0100, 10x00}, 001xx \ {001x1, 00100}}
{00x0x \ {0010x}, xx111 \ {x1111}}
{
   00x00x0x00 \ {
   00x0010000, 00x00x0100, 00x0010x00, 00100x0x00}, 00x0x0010x \ {
   00x0100100, 00x0000101, 00x0x00101, 00x0x00100, 0010x0010x}, xx11100111 \ {
   xx11100111, x111100111}}

{xx01x \ {0x011, 0x010, 11010}}
{0xx1x \ {0001x, 0011x, 00111}}
{
   0xx1xxx01x \ {
   0xx11xx010, 0xx10xx011, 0xx1x0x011, 0xx1x0x010, 0xx1x11010, 0001xxx01x, 0011xxx01x, 00111xx01x}}

{0x01x \ {01011, 00010}, xx100 \ {1x100, x1100}}
{x1x00 \ {01100, x1100, 11x00}}
{
   x1x00xx100 \ {
   x1x001x100, x1x00x1100, 01100xx100, x1100xx100, 11x00xx100}}

{1x0xx \ {110x0, 1001x, 1x011}}
{1xx00 \ {10000, 11x00, 1x100}, 0x10x \ {00101, 0110x, 0x101}, 1xxx1 \ {1x111, 10011, 1xx01}}
{
   1xx001x000 \ {
   1xx0011000, 100001x000, 11x001x000, 1x1001x000}, 0x10x1x00x \ {
   0x1011x000, 0x1001x001, 0x10x11000, 001011x00x, 0110x1x00x, 0x1011x00x}, 1xxx11x0x1 \ {
   1xx111x001, 1xx011x011, 1xxx110011, 1xxx11x011, 1x1111x0x1, 100111x0x1, 1xx011x0x1}}

{x01x1 \ {001x1, 10101, 101x1}}
{xxxx1 \ {xx111, 1x0x1, x01x1}}
{
   xxxx1x01x1 \ {
   xxx11x0101, xxx01x0111, xxxx1001x1, xxxx110101, xxxx1101x1, xx111x01x1, 1x0x1x01x1, x01x1x01x1}}

{x1xx1 \ {11111, x1111, 11011}}
{0101x \ {01010, 01011}, xx010 \ {11010, 01010, 00010}}
{
   01011x1x11 \ {
   0101111111, 01011x1111, 0101111011, 01011x1x11}}

{x110x \ {x1101, 0110x, x1100}, 0x0x0 \ {01000, 010x0, 0x010}}
{1x0x0 \ {100x0, 110x0, 10010}}
{
   1x000x1100 \ {
   1x00001100, 1x000x1100, 10000x1100, 11000x1100}, 1x0x00x0x0 \ {
   1x0100x000, 1x0000x010, 1x0x001000, 1x0x0010x0, 1x0x00x010, 100x00x0x0, 110x00x0x0, 100100x0x0}}

{01x1x \ {01x11, 0101x, 01x10}}
{11x1x \ {11x10, 11x11}, 110x1 \ {11001}}
{
   11x1x01x1x \ {
   11x1101x10, 11x1001x11, 11x1x01x11, 11x1x0101x, 11x1x01x10, 11x1001x1x, 11x1101x1x}, 1101101x11 \ {
   1101101x11, 1101101011}}

{x10x0 \ {x1000, 11010, x1010}, x010x \ {x0100, 00100, x0101}}
{xx011 \ {01011, 0x011}}
{}

{x0x10 \ {00x10, 10x10, 10010}}
{xxx1x \ {x0111, 11111, x001x}, xx0x1 \ {11001, 110x1, xx001}, x001x \ {10011, 00010}}
{
   xxx10x0x10 \ {
   xxx1000x10, xxx1010x10, xxx1010010, x0010x0x10}, x0010x0x10 \ {
   x001000x10, x001010x10, x001010010, 00010x0x10}}

{0x110 \ {00110, 01110}, x11x0 \ {01110, 01100, x1100}}
{00xx1 \ {000x1, 00x11, 001x1}, 100x0 \ {10010, 10000}}
{
   100100x110 \ {
   1001000110, 1001001110, 100100x110}, 100x0x11x0 \ {
   10010x1100, 10000x1110, 100x001110, 100x001100, 100x0x1100, 10010x11x0, 10000x11x0}}

{1x10x \ {11100, 11101}, 0x1x0 \ {001x0, 0x100, 0x100}}
{}
{}

{xx0x1 \ {xx011, xx001, 110x1}, x1010 \ {01010, 11010}}
{x11xx \ {1111x, 11101, 11100}}
{
   x11x1xx0x1 \ {
   x1111xx001, x1101xx011, x11x1xx011, x11x1xx001, x11x1110x1, 11111xx0x1, 11101xx0x1}, x1110x1010 \ {
   x111001010, x111011010, 11110x1010}}

{x000x \ {00001, 10001}, 10xx1 \ {10x01, 10001, 10x11}}
{x10x0 \ {01000, 01010, 11000}, 0x110 \ {01110, 00110}}
{
   x1000x0000 \ {
   01000x0000, 11000x0000}}

{110xx \ {110x1, 11010}}
{0x110 \ {01110, 00110, 00110}, x1100 \ {11100, 01100}}
{
   0x11011010 \ {
   0x11011010, 0111011010, 0011011010, 0011011010}, x110011000 \ {
   1110011000, 0110011000}}

{1xx1x \ {11111, 1101x, 1x011}}
{}
{}

{1011x \ {10111}}
{0x1xx \ {011xx, 0011x}}
{
   0x11x1011x \ {
   0x11110110, 0x11010111, 0x11x10111, 0111x1011x, 0011x1011x}}

{110x1 \ {11011, 11001, 11001}}
{1xxx0 \ {10x00, 10000, 1xx00}}
{}

{x0x1x \ {00110, x0x10, x001x}}
{110xx \ {11010, 110x1, 1100x}, 1x11x \ {1x110, 1011x, 1011x}}
{
   1101xx0x1x \ {
   11011x0x10, 11010x0x11, 1101x00110, 1101xx0x10, 1101xx001x, 11010x0x1x, 11011x0x1x}, 1x11xx0x1x \ {
   1x111x0x10, 1x110x0x11, 1x11x00110, 1x11xx0x10, 1x11xx001x, 1x110x0x1x, 1011xx0x1x, 1011xx0x1x}}

{xx1x0 \ {0x1x0, 111x0, x0110}, 0x1x0 \ {001x0, 011x0, 01110}}
{x1111 \ {11111, 01111, 01111}}
{}

{}
{100x0 \ {10010, 10000, 10000}, x110x \ {01100, 01101, x1100}}
{}

{10xx1 \ {10101, 10011, 100x1}, 1x01x \ {10011, 1x010, 10010}}
{x0x10 \ {00x10, 10110, x0010}}
{
   x0x101x010 \ {
   x0x101x010, x0x1010010, 00x101x010, 101101x010, x00101x010}}

{x0xx1 \ {x0x01, 00011, 001x1}}
{x0x00 \ {10100, 00000, 00x00}}
{}

{0xxx1 \ {01x01, 010x1, 01011}}
{1x10x \ {1010x, 1x101, 11100}}
{
   1x1010xx01 \ {
   1x10101x01, 1x10101001, 101010xx01, 1x1010xx01}}

{x0xx0 \ {00100, 00xx0, 00000}}
{00x1x \ {00010, 0001x, 00x11}}
{
   00x10x0x10 \ {
   00x1000x10, 00010x0x10, 00010x0x10}}

{10xx0 \ {10110, 10x10, 10000}, x01x1 \ {001x1, 00111, 00111}}
{}
{}

{0x11x \ {00111}, 11xx0 \ {11000, 110x0, 11110}, xx100 \ {10100, 00100, 1x100}}
{}
{}

{x111x \ {0111x, x1110}, 00xx1 \ {00x11, 00111}, 1x001 \ {10001}}
{x00xx \ {000xx, x00x1, x0001}}
{
   x001xx111x \ {
   x0011x1110, x0010x1111, x001x0111x, x001xx1110, 0001xx111x, x0011x111x}, x00x100xx1 \ {
   x001100x01, x000100x11, x00x100x11, x00x100111, 000x100xx1, x00x100xx1, x000100xx1}, x00011x001 \ {
   x000110001, 000011x001, x00011x001, x00011x001}}

{xx0xx \ {xx000, 1x0x1, x0011}}
{xx000 \ {01000, 1x000, x0000}, x000x \ {1000x, 00001}}
{
   xx000xx000 \ {
   xx000xx000, 01000xx000, 1x000xx000, x0000xx000}, x000xxx00x \ {
   x0001xx000, x0000xx001, x000xxx000, x000x1x001, 1000xxx00x, 00001xx00x}}

{x10x0 \ {01000, 010x0}}
{x1101 \ {11101, 01101}}
{}

{}
{xx100 \ {01100, 00100, x0100}}
{}

{1x011 \ {10011, 11011, 11011}}
{1x1x1 \ {1x101, 11101}, 10xx1 \ {10011, 10001}}
{
   1x1111x011 \ {
   1x11110011, 1x11111011, 1x11111011}, 10x111x011 \ {
   10x1110011, 10x1111011, 10x1111011, 100111x011}}

{x1xxx \ {x1111, 11x10, 111x0}, 101x1 \ {10111, 10101}}
{x111x \ {1111x, x1111, x1110}}
{
   x111xx1x1x \ {
   x1111x1x10, x1110x1x11, x111xx1111, x111x11x10, x111x11110, 1111xx1x1x, x1111x1x1x, x1110x1x1x}, x111110111 \ {
   x111110111, 1111110111, x111110111}}

{0xxx1 \ {0x111, 01001, 01011}}
{xx001 \ {0x001, x0001}, x011x \ {0011x, x0110, 00110}}
{
   xx0010xx01 \ {
   xx00101001, 0x0010xx01, x00010xx01}, x01110xx11 \ {
   x01110x111, x011101011, 001110xx11}}

{1x10x \ {1110x, 1010x, 1010x}}
{x1xxx \ {01x01, 11x0x, x110x}, 110xx \ {1101x, 11000, 110x0}}
{
   x1x0x1x10x \ {
   x1x011x100, x1x001x101, x1x0x1110x, x1x0x1010x, x1x0x1010x, 01x011x10x, 11x0x1x10x, x110x1x10x}, 1100x1x10x \ {
   110011x100, 110001x101, 1100x1110x, 1100x1010x, 1100x1010x, 110001x10x, 110001x10x}}

{x1110 \ {01110, 11110, 11110}}
{11x10 \ {11010, 11110, 11110}}
{
   11x10x1110 \ {
   11x1001110, 11x1011110, 11x1011110, 11010x1110, 11110x1110, 11110x1110}}

{1011x \ {10111}, x1xx0 \ {01010, x1110, x11x0}, 1xx01 \ {10101, 11001, 10x01}}
{}
{}

{010xx \ {010x1, 01011, 010x0}, x1x01 \ {x1101, 11101}}
{x10x0 \ {x1010, 11000, 11010}}
{
   x10x0010x0 \ {
   x101001000, x100001010, x10x0010x0, x1010010x0, 11000010x0, 11010010x0}}

{x1111 \ {11111, 01111, 01111}}
{00x10 \ {00010, 00110, 00110}, xx010 \ {00010, x0010, 11010}}
{}

{x1x10 \ {01110, 11110}}
{xx1xx \ {111xx, x010x, 1x100}, 0x1x1 \ {00111, 001x1, 001x1}, 1xx1x \ {1x010, 10010, 1001x}}
{
   xx110x1x10 \ {
   xx11001110, xx11011110, 11110x1x10}, 1xx10x1x10 \ {
   1xx1001110, 1xx1011110, 1x010x1x10, 10010x1x10, 10010x1x10}}

{xx111 \ {1x111, 01111, x0111}}
{x0xx0 \ {00xx0, 10110, x0x00}, 0x0xx \ {00001, 0100x, 01001}}
{
   0x011xx111 \ {
   0x0111x111, 0x01101111, 0x011x0111}}

{1xx00 \ {11x00, 10x00}, 11xx0 \ {11x00, 11100}}
{1x111 \ {10111, 11111}, 10xx0 \ {10000, 10100, 10010}}
{
   10x001xx00 \ {
   10x0011x00, 10x0010x00, 100001xx00, 101001xx00}, 10xx011xx0 \ {
   10x1011x00, 10x0011x10, 10xx011x00, 10xx011100, 1000011xx0, 1010011xx0, 1001011xx0}}

{01xx1 \ {01001, 01101, 01x11}, 1xxx0 \ {11x00, 1xx00, 10x10}}
{0100x \ {01000, 01001}}
{
   0100101x01 \ {
   0100101001, 0100101101, 0100101x01}, 010001xx00 \ {
   0100011x00, 010001xx00, 010001xx00}}

{0x01x \ {0x011, 01011}}
{01xx1 \ {010x1, 01x01, 01x11}}
{
   01x110x011 \ {
   01x110x011, 01x1101011, 010110x011, 01x110x011}}

{1x1x1 \ {10101, 1x101}, 010xx \ {010x0, 01000, 01000}}
{x01x1 \ {x0101, 00111}, 11x0x \ {11100, 11x01, 1100x}, 1x10x \ {1110x, 1x101, 11101}}
{
   x01x11x1x1 \ {
   x01111x101, x01011x111, x01x110101, x01x11x101, x01011x1x1, 001111x1x1}, 11x011x101 \ {
   11x0110101, 11x011x101, 11x011x101, 110011x101}, 1x1011x101 \ {
   1x10110101, 1x1011x101, 111011x101, 1x1011x101, 111011x101}, x01x1010x1 \ {
   x011101001, x010101011, x0101010x1, 00111010x1}, 11x0x0100x \ {
   11x0101000, 11x0001001, 11x0x01000, 11x0x01000, 11x0x01000, 111000100x, 11x010100x, 1100x0100x}, 1x10x0100x \ {
   1x10101000, 1x10001001, 1x10x01000, 1x10x01000, 1x10x01000, 1110x0100x, 1x1010100x, 111010100x}}

{}
{x0111 \ {00111}}
{}

{xx011 \ {11011, 01011, 0x011}, 001x1 \ {00111}}
{x1x01 \ {11001, 01x01, 11101}, 10xx1 \ {10001, 10111, 10x01}}
{
   10x11xx011 \ {
   10x1111011, 10x1101011, 10x110x011, 10111xx011}, x1x0100101 \ {
   1100100101, 01x0100101, 1110100101}, 10xx1001x1 \ {
   10x1100101, 10x0100111, 10xx100111, 10001001x1, 10111001x1, 10x01001x1}}

{}
{xxxxx \ {011x1, x0x0x, 00x00}, x11x1 \ {01111}, 000x0 \ {00000}}
{}

{xx011 \ {00011, 11011, 01011}, x01xx \ {x01x1, x01x0, 101x0}}
{}
{}

{x0xx0 \ {x0100, 00xx0}, x11x0 \ {01110, 011x0, 011x0}}
{x0x10 \ {00010, 00110, x0110}, x1011 \ {11011, 01011, 01011}, 1111x \ {11110, 11111, 11111}}
{
   x0x10x0x10 \ {
   x0x1000x10, 00010x0x10, 00110x0x10, x0110x0x10}, 11110x0x10 \ {
   1111000x10, 11110x0x10}, x0x10x1110 \ {
   x0x1001110, x0x1001110, x0x1001110, 00010x1110, 00110x1110, x0110x1110}, 11110x1110 \ {
   1111001110, 1111001110, 1111001110, 11110x1110}}

{1xx1x \ {10x1x, 10x11, 1111x}, 0xx01 \ {01x01, 00101, 00001}}
{xxxx1 \ {10xx1, 1x0x1, x1x01}, x10xx \ {x100x, x10x1, 01011}, x0101 \ {10101, 00101}}
{
   xxx111xx11 \ {
   xxx1110x11, xxx1110x11, xxx1111111, 10x111xx11, 1x0111xx11}, x101x1xx1x \ {
   x10111xx10, x10101xx11, x101x10x1x, x101x10x11, x101x1111x, x10111xx1x, 010111xx1x}, xxx010xx01 \ {
   xxx0101x01, xxx0100101, xxx0100001, 10x010xx01, 1x0010xx01, x1x010xx01}, x10010xx01 \ {
   x100101x01, x100100101, x100100001, x10010xx01, x10010xx01}, x01010xx01 \ {
   x010101x01, x010100101, x010100001, 101010xx01, 001010xx01}}

{000xx \ {00011, 0000x, 00001}}
{1xxxx \ {1x110, 10x0x, 1xx01}, x11xx \ {111xx, 0110x, 11100}, 10xxx \ {1000x, 10000, 101xx}}
{
   1xxxx000xx \ {
   1xxx1000x0, 1xxx0000x1, 1xx1x0000x, 1xx0x0001x, 1xxxx00011, 1xxxx0000x, 1xxxx00001, 1x110000xx, 10x0x000xx, 1xx01000xx}, x11xx000xx \ {
   x11x1000x0, x11x0000x1, x111x0000x, x110x0001x, x11xx00011, x11xx0000x, x11xx00001, 111xx000xx, 0110x000xx, 11100000xx}, 10xxx000xx \ {
   10xx1000x0, 10xx0000x1, 10x1x0000x, 10x0x0001x, 10xxx00011, 10xxx0000x, 10xxx00001, 1000x000xx, 10000000xx, 101xx000xx}}

{}
{x010x \ {10100, 00101, 0010x}}
{}

{xxxx0 \ {100x0, 011x0, 11000}}
{xx0x0 \ {xx000, 1x010}, 0xxx1 \ {0xx01, 00xx1, 001x1}, 0x01x \ {0101x, 01010}}
{
   xx0x0xxxx0 \ {
   xx010xxx00, xx000xxx10, xx0x0100x0, xx0x0011x0, xx0x011000, xx000xxxx0, 1x010xxxx0}, 0x010xxx10 \ {
   0x01010010, 0x01001110, 01010xxx10, 01010xxx10}}

{1x111 \ {11111, 10111}}
{0x01x \ {01010, 01011}, 100xx \ {10010, 100x0, 1001x}, x11x0 \ {11110, 01110}}
{
   0x0111x111 \ {
   0x01111111, 0x01110111, 010111x111}, 100111x111 \ {
   1001111111, 1001110111, 100111x111}}

{x11x1 \ {111x1, 11101, 01101}}
{}
{}

{0x1x0 \ {011x0, 0x100, 0x100}, 1xxx0 \ {1x100, 1x0x0}}
{xx101 \ {1x101, 11101}, 1xx00 \ {10x00, 1x000, 11x00}, x110x \ {0110x, 01101, 11100}}
{
   1xx000x100 \ {
   1xx0001100, 1xx000x100, 1xx000x100, 10x000x100, 1x0000x100, 11x000x100}, x11000x100 \ {
   x110001100, x11000x100, x11000x100, 011000x100, 111000x100}, 1xx001xx00 \ {
   1xx001x100, 1xx001x000, 10x001xx00, 1x0001xx00, 11x001xx00}, x11001xx00 \ {
   x11001x100, x11001x000, 011001xx00, 111001xx00}}

{x0xx1 \ {x01x1, 00001, 00xx1}, 101xx \ {1010x, 101x0, 10111}}
{11x1x \ {1101x, 11111, 11011}, x11x1 \ {x1101, x1111}}
{
   11x11x0x11 \ {
   11x11x0111, 11x1100x11, 11011x0x11, 11111x0x11, 11011x0x11}, x11x1x0xx1 \ {
   x1111x0x01, x1101x0x11, x11x1x01x1, x11x100001, x11x100xx1, x1101x0xx1, x1111x0xx1}, 11x1x1011x \ {
   11x1110110, 11x1010111, 11x1x10110, 11x1x10111, 1101x1011x, 111111011x, 110111011x}, x11x1101x1 \ {
   x111110101, x110110111, x11x110101, x11x110111, x1101101x1, x1111101x1}}

{x0xx0 \ {000x0, 001x0, 00010}, x011x \ {00110, 1011x, 1011x}}
{}
{}

{x1100 \ {11100}, xx110 \ {x1110, 1x110}}
{x1xx0 \ {01010, 11010, x1110}, x111x \ {11110, x1111}}
{
   x1x00x1100 \ {
   x1x0011100}, x1x10xx110 \ {
   x1x10x1110, x1x101x110, 01010xx110, 11010xx110, x1110xx110}, x1110xx110 \ {
   x1110x1110, x11101x110, 11110xx110}}

{1x1x1 \ {10101, 11101, 101x1}}
{xx111 \ {0x111, 10111}, 0xxx1 \ {0x111, 001x1, 01101}, xxx01 \ {01x01, 0xx01, 11001}}
{
   xx1111x111 \ {
   xx11110111, 0x1111x111, 101111x111}, 0xxx11x1x1 \ {
   0xx111x101, 0xx011x111, 0xxx110101, 0xxx111101, 0xxx1101x1, 0x1111x1x1, 001x11x1x1, 011011x1x1}, xxx011x101 \ {
   xxx0110101, xxx0111101, xxx0110101, 01x011x101, 0xx011x101, 110011x101}}

{xxx10 \ {xx010, x1110, 11010}}
{xx1x0 \ {00110, x0110, x1110}}
{
   xx110xxx10 \ {
   xx110xx010, xx110x1110, xx11011010, 00110xxx10, x0110xxx10, x1110xxx10}}

{xxx01 \ {11001, 00x01, 10001}}
{00xxx \ {00x01, 0000x, 001x0}}
{
   00x01xxx01 \ {
   00x0111001, 00x0100x01, 00x0110001, 00x01xxx01, 00001xxx01}}

{x00x0 \ {00000, x0010, 00010}, xx110 \ {10110, 1x110, 00110}, 10xx0 \ {10100, 10x00, 10010}}
{}
{}

{10xx1 \ {10001, 10101, 10101}, 10x1x \ {10011, 10111, 10x10}, 10x1x \ {10010, 1011x}}
{01xx0 \ {011x0, 01x10}, 0x000 \ {00000, 01000, 01000}}
{
   01x1010x10 \ {
   01x1010x10, 0111010x10, 01x1010x10}}

{11xx0 \ {11x10, 11100, 11010}}
{}
{}

{}
{x0x01 \ {x0101, 00101, 10x01}, 11x1x \ {11011, 1101x, 11110}, 01xx1 \ {01011, 01111, 010x1}}
{}

{xx10x \ {1010x, 10100, 11100}, 101x0 \ {10110, 10100}, xx100 \ {10100, x1100, 00100}}
{xxxx1 \ {110x1, x1111, x1011}, xx100 \ {00100, x1100, x0100}}
{
   xxx01xx101 \ {
   xxx0110101, 11001xx101}, xx100xx100 \ {
   xx10010100, xx10010100, xx10011100, 00100xx100, x1100xx100, x0100xx100}, xx10010100 \ {
   xx10010100, 0010010100, x110010100, x010010100}}

{0xxx1 \ {010x1, 00xx1, 01x11}}
{x111x \ {11110, x1111, 01110}}
{
   x11110xx11 \ {
   x111101011, x111100x11, x111101x11, x11110xx11}}

{x001x \ {00011, 10011, x0011}}
{}
{}

{1001x \ {10011, 10010}, 01xxx \ {0101x, 011xx, 01x00}}
{x11x0 \ {01100, x1100, 01110}, x11x1 \ {011x1, 111x1, 111x1}}
{
   x111010010 \ {
   x111010010, 0111010010}, x111110011 \ {
   x111110011, 0111110011, 1111110011, 1111110011}, x11x001xx0 \ {
   x111001x00, x110001x10, x11x001010, x11x0011x0, x11x001x00, 0110001xx0, x110001xx0, 0111001xx0}, x11x101xx1 \ {
   x111101x01, x110101x11, x11x101011, x11x1011x1, 011x101xx1, 111x101xx1, 111x101xx1}}

{01x1x \ {01011, 01x11}, 1x00x \ {1x001, 1x000, 10001}}
{000x1 \ {00011}}
{
   0001101x11 \ {
   0001101011, 0001101x11, 0001101x11}, 000011x001 \ {
   000011x001, 0000110001}}

{00x1x \ {00011, 00110}, 0xx01 \ {0x001, 01101, 01101}}
{x011x \ {00110, x0110}}
{
   x011x00x1x \ {
   x011100x10, x011000x11, x011x00011, x011x00110, 0011000x1x, x011000x1x}}

{110xx \ {11010, 110x1, 110x0}, 10xx0 \ {10000, 10110, 101x0}}
{0x1x0 \ {01110, 011x0}}
{
   0x1x0110x0 \ {
   0x11011000, 0x10011010, 0x1x011010, 0x1x0110x0, 01110110x0, 011x0110x0}, 0x1x010xx0 \ {
   0x11010x00, 0x10010x10, 0x1x010000, 0x1x010110, 0x1x0101x0, 0111010xx0, 011x010xx0}}

{11x0x \ {11100, 1110x, 11001}, 10xx0 \ {101x0, 10110, 10100}, 000xx \ {000x0, 00010, 00000}}
{x0xx0 \ {00110, x00x0, x0x00}}
{
   x0x0011x00 \ {
   x0x0011100, x0x0011100, x000011x00, x0x0011x00}, x0xx010xx0 \ {
   x0x1010x00, x0x0010x10, x0xx0101x0, x0xx010110, x0xx010100, 0011010xx0, x00x010xx0, x0x0010xx0}, x0xx0000x0 \ {
   x0x1000000, x0x0000010, x0xx0000x0, x0xx000010, x0xx000000, 00110000x0, x00x0000x0, x0x00000x0}}

{x00x0 \ {100x0, 10000}, 0x0x1 \ {00001}}
{xx0xx \ {000xx, xx010, 1x010}, x00xx \ {x0000, x00x0, 00011}}
{
   xx0x0x00x0 \ {
   xx010x0000, xx000x0010, xx0x0100x0, xx0x010000, 000x0x00x0, xx010x00x0, 1x010x00x0}, x00x0x00x0 \ {
   x0010x0000, x0000x0010, x00x0100x0, x00x010000, x0000x00x0, x00x0x00x0}, xx0x10x0x1 \ {
   xx0110x001, xx0010x011, xx0x100001, 000x10x0x1}, x00x10x0x1 \ {
   x00110x001, x00010x011, x00x100001, 000110x0x1}}

{xxx01 \ {01001, 00001, 10001}}
{x01xx \ {10100, 0010x, 001x0}, x101x \ {x1010, 01010, 11011}}
{
   x0101xxx01 \ {
   x010101001, x010100001, x010110001, 00101xxx01}}

{100x1 \ {10001}}
{0x1x0 \ {001x0, 01100, 0x100}, x10x1 \ {11001, x1001, x1011}}
{
   x10x1100x1 \ {
   x101110001, x100110011, x10x110001, 11001100x1, x1001100x1, x1011100x1}}

{xx101 \ {1x101, 01101, x1101}, 0xx11 \ {00011, 01111}}
{00xx1 \ {00111, 00x11}, 011x1 \ {01111}}
{
   00x01xx101 \ {
   00x011x101, 00x0101101, 00x01x1101}, 01101xx101 \ {
   011011x101, 0110101101, 01101x1101}, 00x110xx11 \ {
   00x1100011, 00x1101111, 001110xx11, 00x110xx11}, 011110xx11 \ {
   0111100011, 0111101111, 011110xx11}}

{}
{1x100 \ {10100, 11100}, xx01x \ {11011, 10010, xx011}}
{}

{0001x \ {00011, 00010}}
{00xxx \ {00010, 0011x, 0011x}, xx1x1 \ {1x111, xx111, 1x1x1}}
{
   00x1x0001x \ {
   00x1100010, 00x1000011, 00x1x00011, 00x1x00010, 000100001x, 0011x0001x, 0011x0001x}, xx11100011 \ {
   xx11100011, 1x11100011, xx11100011, 1x11100011}}

{xx100 \ {11100, x0100, 0x100}, 00xxx \ {00100, 00000}}
{xxx11 \ {x1x11, x1111, 0xx11}, x110x \ {01101, x1101, 0110x}}
{
   x1100xx100 \ {
   x110011100, x1100x0100, x11000x100, 01100xx100}, xxx1100x11 \ {
   x1x1100x11, x111100x11, 0xx1100x11}, x110x00x0x \ {
   x110100x00, x110000x01, x110x00100, x110x00000, 0110100x0x, x110100x0x, 0110x00x0x}}

{x11x0 \ {01100, 111x0}, x1111 \ {11111, 01111}, xxx00 \ {1xx00, 01100}}
{1xx01 \ {10001, 11101, 1x101}}
{}

{x0100 \ {10100, 00100, 00100}}
{000x0 \ {00000, 00010}}
{
   00000x0100 \ {
   0000010100, 0000000100, 0000000100, 00000x0100}}

{0x0x1 \ {000x1, 0x011, 010x1}}
{1x0x1 \ {100x1, 11011, 1x011}, xx10x \ {x0101, x1100, 11101}}
{
   1x0x10x0x1 \ {
   1x0110x001, 1x0010x011, 1x0x1000x1, 1x0x10x011, 1x0x1010x1, 100x10x0x1, 110110x0x1, 1x0110x0x1}, xx1010x001 \ {
   xx10100001, xx10101001, x01010x001, 111010x001}}

{}
{0x11x \ {0011x, 00110, 00111}, 001x0 \ {00110, 00100, 00100}}
{}

{}
{xxx10 \ {01010, 1xx10}, 0x11x \ {0011x, 00111, 0111x}}
{}

{}
{1101x \ {11011}, 1xx10 \ {1x010, 1x110, 11010}}
{}

{}
{xxx11 \ {1xx11, 0x011, xx011}, 10x0x \ {1000x, 10100, 10001}, 00x1x \ {00x11, 00011, 00010}}
{}

{1x01x \ {11010, 1x011}, 1x0xx \ {1x001, 1x010, 1x0x1}}
{}
{}

{xx00x \ {0x000, 0x00x, 00000}}
{xx010 \ {00010, 0x010, 0x010}, 011xx \ {0110x, 01111, 0111x}}
{
   0110xxx00x \ {
   01101xx000, 01100xx001, 0110x0x000, 0110x0x00x, 0110x00000, 0110xxx00x}}

{xx1x1 \ {x1101, 1x111, 0x101}, xxx00 \ {x1000, x1100, 01x00}}
{1xx01 \ {11x01, 1x101, 11001}, 0x010 \ {01010, 00010}, 10x0x \ {10100, 10x01}}
{
   1xx01xx101 \ {
   1xx01x1101, 1xx010x101, 11x01xx101, 1x101xx101, 11001xx101}, 10x01xx101 \ {
   10x01x1101, 10x010x101, 10x01xx101}, 10x00xxx00 \ {
   10x00x1000, 10x00x1100, 10x0001x00, 10100xxx00}}

{0xx00 \ {01000, 00100, 0x100}}
{x1x01 \ {x1101, 01x01}}
{}

{1xx00 \ {10100, 11100, 10x00}, xx01x \ {1001x, x0011, 00010}}
{01xx0 \ {01100, 01010, 01x00}, 11x1x \ {1111x, 11011, 11010}}
{
   01x001xx00 \ {
   01x0010100, 01x0011100, 01x0010x00, 011001xx00, 01x001xx00}, 01x10xx010 \ {
   01x1010010, 01x1000010, 01010xx010}, 11x1xxx01x \ {
   11x11xx010, 11x10xx011, 11x1x1001x, 11x1xx0011, 11x1x00010, 1111xxx01x, 11011xx01x, 11010xx01x}}

{010x0 \ {01000, 01010, 01010}, xx10x \ {1010x, 0x10x, x110x}, x11xx \ {x110x, x11x0, x1110}}
{x1xx0 \ {011x0, 01010, 01010}}
{
   x1xx0010x0 \ {
   x1x1001000, x1x0001010, x1xx001000, x1xx001010, x1xx001010, 011x0010x0, 01010010x0, 01010010x0}, x1x00xx100 \ {
   x1x0010100, x1x000x100, x1x00x1100, 01100xx100}, x1xx0x11x0 \ {
   x1x10x1100, x1x00x1110, x1xx0x1100, x1xx0x11x0, x1xx0x1110, 011x0x11x0, 01010x11x0, 01010x11x0}}

{x10x0 \ {010x0, 110x0, 11000}, x0x1x \ {00x10, x001x, 00011}}
{xx0x0 \ {x10x0, xx000, 1x010}}
{
   xx0x0x10x0 \ {
   xx010x1000, xx000x1010, xx0x0010x0, xx0x0110x0, xx0x011000, x10x0x10x0, xx000x10x0, 1x010x10x0}, xx010x0x10 \ {
   xx01000x10, xx010x0010, x1010x0x10, 1x010x0x10}}

{xxx11 \ {01011, 10x11, 1x111}, 10xx1 \ {10x11, 101x1}, x00x1 \ {10011, 00011}}
{1x11x \ {10111, 1x111, 10110}, 1xx11 \ {10111, 11111, 1x111}}
{
   1x111xxx11 \ {
   1x11101011, 1x11110x11, 1x1111x111, 10111xxx11, 1x111xxx11}, 1xx11xxx11 \ {
   1xx1101011, 1xx1110x11, 1xx111x111, 10111xxx11, 11111xxx11, 1x111xxx11}, 1x11110x11 \ {
   1x11110x11, 1x11110111, 1011110x11, 1x11110x11}, 1xx1110x11 \ {
   1xx1110x11, 1xx1110111, 1011110x11, 1111110x11, 1x11110x11}, 1x111x0011 \ {
   1x11110011, 1x11100011, 10111x0011, 1x111x0011}, 1xx11x0011 \ {
   1xx1110011, 1xx1100011, 10111x0011, 11111x0011, 1x111x0011}}

{xx1x0 \ {1x110, x0100, xx100}}
{xx0x0 \ {x00x0, x1010, 110x0}}
{
   xx0x0xx1x0 \ {
   xx010xx100, xx000xx110, xx0x01x110, xx0x0x0100, xx0x0xx100, x00x0xx1x0, x1010xx1x0, 110x0xx1x0}}

{1xxx1 \ {10x11, 10111, 10x01}, 1110x \ {11101, 11100, 11100}}
{xx010 \ {x1010, 01010}}
{}

{}
{11x01 \ {11101, 11001, 11001}}
{}

{1xx0x \ {1x00x, 1110x, 11000}}
{}
{}

{xx10x \ {x110x, 00100, 0010x}, 11x0x \ {11000, 11100, 1100x}}
{01xxx \ {010xx, 01010, 0111x}}
{
   01x0xxx10x \ {
   01x01xx100, 01x00xx101, 01x0xx110x, 01x0x00100, 01x0x0010x, 0100xxx10x}, 01x0x11x0x \ {
   01x0111x00, 01x0011x01, 01x0x11000, 01x0x11100, 01x0x1100x, 0100x11x0x}}

{}
{0x0x0 \ {0x000, 00000, 010x0}, x0x00 \ {00x00, 10x00, 10x00}, xxxx0 \ {x0x10, 01110, 100x0}}
{}

{01x00 \ {01100}}
{xxx1x \ {x1x1x, xxx11, 00x10}}
{}

{0x1xx \ {0x11x, 0x110, 0x111}, 1xxx1 \ {11x11, 11x01, 10101}}
{10xxx \ {10111, 10x00, 10x01}, x10xx \ {1100x, x1011, 010xx}, 011x1 \ {01101}}
{
   10xxx0x1xx \ {
   10xx10x1x0, 10xx00x1x1, 10x1x0x10x, 10x0x0x11x, 10xxx0x11x, 10xxx0x110, 10xxx0x111, 101110x1xx, 10x000x1xx, 10x010x1xx}, x10xx0x1xx \ {
   x10x10x1x0, x10x00x1x1, x101x0x10x, x100x0x11x, x10xx0x11x, x10xx0x110, x10xx0x111, 1100x0x1xx, x10110x1xx, 010xx0x1xx}, 011x10x1x1 \ {
   011110x101, 011010x111, 011x10x111, 011x10x111, 011010x1x1}, 10xx11xxx1 \ {
   10x111xx01, 10x011xx11, 10xx111x11, 10xx111x01, 10xx110101, 101111xxx1, 10x011xxx1}, x10x11xxx1 \ {
   x10111xx01, x10011xx11, x10x111x11, x10x111x01, x10x110101, 110011xxx1, x10111xxx1, 010x11xxx1}, 011x11xxx1 \ {
   011111xx01, 011011xx11, 011x111x11, 011x111x01, 011x110101, 011011xxx1}}

{x1111 \ {11111, 01111}, 1x101 \ {10101}}
{1xx11 \ {10x11, 10011, 1x011}, x11x1 \ {01111, 111x1, 11101}, 10x0x \ {1010x, 10000, 10x01}}
{
   1xx11x1111 \ {
   1xx1111111, 1xx1101111, 10x11x1111, 10011x1111, 1x011x1111}, x1111x1111 \ {
   x111111111, x111101111, 01111x1111, 11111x1111}, x11011x101 \ {
   x110110101, 111011x101, 111011x101}, 10x011x101 \ {
   10x0110101, 101011x101, 10x011x101}}

{0xx0x \ {01101, 01x0x, 01x00}}
{x00x1 \ {00001, 000x1, x0011}, x01x0 \ {00100, x0110}}
{
   x00010xx01 \ {
   x000101101, x000101x01, 000010xx01, 000010xx01}, x01000xx00 \ {
   x010001x00, x010001x00, 001000xx00}}

{1x1xx \ {111x0, 10101, 11111}}
{x1xx1 \ {011x1, 01x11, x1x01}, x1x1x \ {01110, 11111, 0101x}, 1xxxx \ {1001x, 10010, 11x01}}
{
   x1xx11x1x1 \ {
   x1x111x101, x1x011x111, x1xx110101, x1xx111111, 011x11x1x1, 01x111x1x1, x1x011x1x1}, x1x1x1x11x \ {
   x1x111x110, x1x101x111, x1x1x11110, x1x1x11111, 011101x11x, 111111x11x, 0101x1x11x}, 1xxxx1x1xx \ {
   1xxx11x1x0, 1xxx01x1x1, 1xx1x1x10x, 1xx0x1x11x, 1xxxx111x0, 1xxxx10101, 1xxxx11111, 1001x1x1xx, 100101x1xx, 11x011x1xx}}

{1xxx1 \ {10111, 1x101, 1xx01}}
{110x1 \ {11011}, x0x01 \ {10101, 00001, 00001}}
{
   110x11xxx1 \ {
   110111xx01, 110011xx11, 110x110111, 110x11x101, 110x11xx01, 110111xxx1}, x0x011xx01 \ {
   x0x011x101, x0x011xx01, 101011xx01, 000011xx01, 000011xx01}}

{}
{0x100 \ {01100}, xx11x \ {11110, 0x110, xx111}}
{}

{x110x \ {01100, x1101, 1110x}}
{xxx0x \ {0010x, 0x001, 01100}}
{
   xxx0xx110x \ {
   xxx01x1100, xxx00x1101, xxx0x01100, xxx0xx1101, xxx0x1110x, 0010xx110x, 0x001x110x, 01100x110x}}

{xxx0x \ {0x101, 11x01, x0x0x}, 1xx00 \ {11000, 10000, 1x100}, x1010 \ {11010}}
{}
{}

{}
{10x0x \ {10100, 1000x, 10x01}}
{}

{10x0x \ {10100, 1010x}}
{x1xx1 \ {x1x11, 01111, x1111}, 00x11 \ {00011}}
{
   x1x0110x01 \ {
   x1x0110101}}

{0xxx1 \ {01x01, 000x1, 01x11}, xx11x \ {x1110, 10111, 1x11x}}
{1x11x \ {1x111, 11110, 1111x}, 110x0 \ {11010}}
{
   1x1110xx11 \ {
   1x11100011, 1x11101x11, 1x1110xx11, 111110xx11}, 1x11xxx11x \ {
   1x111xx110, 1x110xx111, 1x11xx1110, 1x11x10111, 1x11x1x11x, 1x111xx11x, 11110xx11x, 1111xxx11x}, 11010xx110 \ {
   11010x1110, 110101x110, 11010xx110}}

{xx0x0 \ {01010, 110x0, 000x0}, x1x0x \ {01x01, 01x00, x1000}, 10xx1 \ {10001, 10101, 10101}}
{001x0 \ {00110, 00100}}
{
   001x0xx0x0 \ {
   00110xx000, 00100xx010, 001x001010, 001x0110x0, 001x0000x0, 00110xx0x0, 00100xx0x0}, 00100x1x00 \ {
   0010001x00, 00100x1000, 00100x1x00}}

{}
{00xx1 \ {00001, 00x01, 00101}, x0xx1 \ {00xx1, x0x01}}
{}

{x11x1 \ {01101, 11111}}
{10xx1 \ {10101, 10x01, 10001}, 101x1 \ {10111, 10101}, x0x11 \ {x0111, x0011, x0011}}
{
   10xx1x11x1 \ {
   10x11x1101, 10x01x1111, 10xx101101, 10xx111111, 10101x11x1, 10x01x11x1, 10001x11x1}, 101x1x11x1 \ {
   10111x1101, 10101x1111, 101x101101, 101x111111, 10111x11x1, 10101x11x1}, x0x11x1111 \ {
   x0x1111111, x0111x1111, x0011x1111, x0011x1111}}

{1x1xx \ {111xx, 101x0, 1x11x}, x101x \ {0101x, x1010, 11010}, 0xxx0 \ {0xx10, 00000, 00x00}}
{10x11 \ {10011}, x010x \ {10100, 0010x}, 00xxx \ {00x01, 00xx1, 00101}}
{
   10x111x111 \ {
   10x1111111, 10x111x111, 100111x111}, x010x1x10x \ {
   x01011x100, x01001x101, x010x1110x, x010x10100, 101001x10x, 0010x1x10x}, 00xxx1x1xx \ {
   00xx11x1x0, 00xx01x1x1, 00x1x1x10x, 00x0x1x11x, 00xxx111xx, 00xxx101x0, 00xxx1x11x, 00x011x1xx, 00xx11x1xx, 001011x1xx}, 10x11x1011 \ {
   10x1101011, 10011x1011}, 00x1xx101x \ {
   00x11x1010, 00x10x1011, 00x1x0101x, 00x1xx1010, 00x1x11010, 00x11x101x}, x01000xx00 \ {
   x010000000, x010000x00, 101000xx00, 001000xx00}, 00xx00xxx0 \ {
   00x100xx00, 00x000xx10, 00xx00xx10, 00xx000000, 00xx000x00}}

{xxx1x \ {01x11, 00010, x0x1x}}
{x1110 \ {01110, 11110}}
{
   x1110xxx10 \ {
   x111000010, x1110x0x10, 01110xxx10, 11110xxx10}}

{x0x10 \ {10110, 00010, 10010}, x001x \ {x0010, 00011, 10010}, 0xx1x \ {0011x, 0xx10, 00010}}
{11x0x \ {11x00, 11100}, 01x1x \ {01011, 01010, 0111x}}
{
   01x10x0x10 \ {
   01x1010110, 01x1000010, 01x1010010, 01010x0x10, 01110x0x10}, 01x1xx001x \ {
   01x11x0010, 01x10x0011, 01x1xx0010, 01x1x00011, 01x1x10010, 01011x001x, 01010x001x, 0111xx001x}, 01x1x0xx1x \ {
   01x110xx10, 01x100xx11, 01x1x0011x, 01x1x0xx10, 01x1x00010, 010110xx1x, 010100xx1x, 0111x0xx1x}}

{}
{x0x01 \ {10x01, 00x01, x0101}, 01xx0 \ {01000, 010x0, 01110}}
{}

{0x1x0 \ {01100, 00100, 01110}, xxx11 \ {01111, x1x11, 0x011}}
{}
{}

{}
{}
{}

{0xx1x \ {01010, 0xx11, 01110}, 0x1xx \ {01110, 001x0, 0x110}}
{010x0 \ {01010}}
{
   010100xx10 \ {
   0101001010, 0101001110, 010100xx10}, 010x00x1x0 \ {
   010100x100, 010000x110, 010x001110, 010x0001x0, 010x00x110, 010100x1x0}}

{11xxx \ {111x1, 11101}}
{}
{}

{xx000 \ {01000, x0000, 10000}}
{x000x \ {00001, x0001, x0001}}
{
   x0000xx000 \ {
   x000001000, x0000x0000, x000010000}}

{00x1x \ {0001x, 00x11, 0011x}, xxx10 \ {0xx10, 0x010, 1xx10}}
{0xxx1 \ {010x1, 01111, 00xx1}, 1xx01 \ {11x01, 10101, 10001}, 00x1x \ {00111, 0001x, 00x10}}
{
   0xx1100x11 \ {
   0xx1100011, 0xx1100x11, 0xx1100111, 0101100x11, 0111100x11, 00x1100x11}, 00x1x00x1x \ {
   00x1100x10, 00x1000x11, 00x1x0001x, 00x1x00x11, 00x1x0011x, 0011100x1x, 0001x00x1x, 00x1000x1x}, 00x10xxx10 \ {
   00x100xx10, 00x100x010, 00x101xx10, 00010xxx10, 00x10xxx10}}

{1x1xx \ {10101, 1011x, 1x1x0}, 001xx \ {0010x, 0011x, 001x0}}
{01xxx \ {010x1, 011x1}, 10x11 \ {10011, 10111, 10111}}
{
   01xxx1x1xx \ {
   01xx11x1x0, 01xx01x1x1, 01x1x1x10x, 01x0x1x11x, 01xxx10101, 01xxx1011x, 01xxx1x1x0, 010x11x1xx, 011x11x1xx}, 10x111x111 \ {
   10x1110111, 100111x111, 101111x111, 101111x111}, 01xxx001xx \ {
   01xx1001x0, 01xx0001x1, 01x1x0010x, 01x0x0011x, 01xxx0010x, 01xxx0011x, 01xxx001x0, 010x1001xx, 011x1001xx}, 10x1100111 \ {
   10x1100111, 1001100111, 1011100111, 1011100111}}

{010xx \ {01011, 01010, 0100x}, x1xx0 \ {11010, 01010, x1000}, 1x110 \ {11110, 10110}}
{}
{}

{0x100 \ {01100}, 0x100 \ {01100, 00100}, 00x11 \ {00111, 00011}}
{101xx \ {10110, 10100, 10111}, xxx0x \ {1x101, x1001, x010x}, x10x0 \ {01000, 110x0, 010x0}}
{
   101000x100 \ {
   1010001100, 101000x100}, xxx000x100 \ {
   xxx0001100, x01000x100}, x10000x100 \ {
   x100001100, 010000x100, 110000x100, 010000x100}, 1011100x11 \ {
   1011100111, 1011100011, 1011100x11}}

{}
{0xx00 \ {00x00, 00100}, x01x1 \ {101x1, 10101, 001x1}}
{}

{1xx11 \ {11011, 10x11, 11111}}
{10x01 \ {10101, 10001}, xxx1x \ {10110, 00x11, 1x111}}
{
   xxx111xx11 \ {
   xxx1111011, xxx1110x11, xxx1111111, 00x111xx11, 1x1111xx11}}

{0x000 \ {01000, 00000}, 0x1x0 \ {0x110, 0x100, 01100}}
{}
{}

{xx0x1 \ {00011, 11011, 000x1}}
{xxx10 \ {11010, 0xx10, 0xx10}, 1x0x1 \ {11011, 110x1, 10001}, 0011x \ {00110, 00111}}
{
   1x0x1xx0x1 \ {
   1x011xx001, 1x001xx011, 1x0x100011, 1x0x111011, 1x0x1000x1, 11011xx0x1, 110x1xx0x1, 10001xx0x1}, 00111xx011 \ {
   0011100011, 0011111011, 0011100011, 00111xx011}}

{x0xxx \ {10011, x001x, x00x0}}
{1x010 \ {11010, 10010, 10010}, x1x1x \ {11010, x1110, x1110}}
{
   1x010x0x10 \ {
   1x010x0010, 1x010x0010, 11010x0x10, 10010x0x10, 10010x0x10}, x1x1xx0x1x \ {
   x1x11x0x10, x1x10x0x11, x1x1x10011, x1x1xx001x, x1x1xx0010, 11010x0x1x, x1110x0x1x, x1110x0x1x}}

{10xx1 \ {100x1, 10101, 10001}, 11x0x \ {11001, 11000, 1110x}, x111x \ {x1111, 11110}}
{0x1x0 \ {01100, 0x110, 011x0}, x10x1 \ {11011, 010x1, x1001}}
{
   x10x110xx1 \ {
   x101110x01, x100110x11, x10x1100x1, x10x110101, x10x110001, 1101110xx1, 010x110xx1, x100110xx1}, 0x10011x00 \ {
   0x10011000, 0x10011100, 0110011x00, 0110011x00}, x100111x01 \ {
   x100111001, x100111101, 0100111x01, x100111x01}, 0x110x1110 \ {
   0x11011110, 0x110x1110, 01110x1110}, x1011x1111 \ {
   x1011x1111, 11011x1111, 01011x1111}}

{1x1xx \ {111xx, 1x1x1, 10111}}
{xxxxx \ {x0x10, 001x0, x01x0}}
{
   xxxxx1x1xx \ {
   xxxx11x1x0, xxxx01x1x1, xxx1x1x10x, xxx0x1x11x, xxxxx111xx, xxxxx1x1x1, xxxxx10111, x0x101x1xx, 001x01x1xx, x01x01x1xx}}

{0xx10 \ {01010, 0x110}}
{xxxxx \ {01x0x, 111x0, 11000}}
{
   xxx100xx10 \ {
   xxx1001010, xxx100x110, 111100xx10}}

{100xx \ {10011, 1001x, 100x1}, x01x0 \ {x0100, 001x0, 00100}}
{1x10x \ {11100, 10100, 1010x}, x111x \ {x1111, 1111x, 01110}, x1x11 \ {01011, x1011, 11011}}
{
   1x10x1000x \ {
   1x10110000, 1x10010001, 1x10x10001, 111001000x, 101001000x, 1010x1000x}, x111x1001x \ {
   x111110010, x111010011, x111x10011, x111x1001x, x111x10011, x11111001x, 1111x1001x, 011101001x}, x1x1110011 \ {
   x1x1110011, x1x1110011, x1x1110011, 0101110011, x101110011, 1101110011}, 1x100x0100 \ {
   1x100x0100, 1x10000100, 1x10000100, 11100x0100, 10100x0100, 10100x0100}, x1110x0110 \ {
   x111000110, 11110x0110, 01110x0110}}

{xxx1x \ {11x1x, 00x11, 0x110}, 100xx \ {10010, 10001, 10000}}
{xxxx0 \ {11100, 11x00, 01xx0}, xxx0x \ {01x00, 1010x, x1000}}
{
   xxx10xxx10 \ {
   xxx1011x10, xxx100x110, 01x10xxx10}, xxxx0100x0 \ {
   xxx1010000, xxx0010010, xxxx010010, xxxx010000, 11100100x0, 11x00100x0, 01xx0100x0}, xxx0x1000x \ {
   xxx0110000, xxx0010001, xxx0x10001, xxx0x10000, 01x001000x, 1010x1000x, x10001000x}}

{}
{1x10x \ {11100, 1010x, 1010x}, 10x11 \ {10111}}
{}

{x01x1 \ {x0111, 101x1, 10101}, 1xxx0 \ {1x000, 1xx00, 11xx0}}
{0xxx0 \ {011x0, 0x0x0, 00000}}
{
   0xxx01xxx0 \ {
   0xx101xx00, 0xx001xx10, 0xxx01x000, 0xxx01xx00, 0xxx011xx0, 011x01xxx0, 0x0x01xxx0, 000001xxx0}}

{0011x \ {00111, 00110}, 11x0x \ {1100x, 11x00, 11x00}}
{1110x \ {11100, 11101, 11101}, 1x0xx \ {110x1, 1x000, 1x000}}
{
   1x01x0011x \ {
   1x01100110, 1x01000111, 1x01x00111, 1x01x00110, 110110011x}, 1110x11x0x \ {
   1110111x00, 1110011x01, 1110x1100x, 1110x11x00, 1110x11x00, 1110011x0x, 1110111x0x, 1110111x0x}, 1x00x11x0x \ {
   1x00111x00, 1x00011x01, 1x00x1100x, 1x00x11x00, 1x00x11x00, 1100111x0x, 1x00011x0x, 1x00011x0x}}

{1xx0x \ {11101, 10000, 10000}, 00x01 \ {00001, 00101}}
{0x11x \ {0x110, 0111x, 00110}}
{}

{}
{x111x \ {01111, 11111}, 0x0x0 \ {000x0, 010x0, 01000}, xx110 \ {0x110, 11110, 00110}}
{}

{01x0x \ {0100x, 01101, 01101}}
{101x0 \ {10110, 10100}}
{
   1010001x00 \ {
   1010001000, 1010001x00}}

{xx0xx \ {x100x, x1010, 0x000}}
{1xx1x \ {10x10, 11010, 1xx10}, 11x00 \ {11100, 11000, 11000}, 0x01x \ {01011, 00010, 01010}}
{
   1xx1xxx01x \ {
   1xx11xx010, 1xx10xx011, 1xx1xx1010, 10x10xx01x, 11010xx01x, 1xx10xx01x}, 11x00xx000 \ {
   11x00x1000, 11x000x000, 11100xx000, 11000xx000, 11000xx000}, 0x01xxx01x \ {
   0x011xx010, 0x010xx011, 0x01xx1010, 01011xx01x, 00010xx01x, 01010xx01x}}

{x100x \ {01000, x1000, 01001}, x0x11 \ {00011, x0111}}
{0111x \ {01111, 01110, 01110}, 0x01x \ {01010, 0001x, 0101x}}
{
   01111x0x11 \ {
   0111100011, 01111x0111, 01111x0x11}, 0x011x0x11 \ {
   0x01100011, 0x011x0111, 00011x0x11, 01011x0x11}}

{x1x1x \ {01x1x, 0111x, 1101x}}
{}
{}

{0xxx0 \ {0x0x0, 01010, 0x010}}
{xxx01 \ {10x01, 1x101, 0xx01}, 00x1x \ {00110, 00011, 0011x}}
{
   00x100xx10 \ {
   00x100x010, 00x1001010, 00x100x010, 001100xx10, 001100xx10}}

{0xxx0 \ {0x000, 000x0, 00xx0}, xx1xx \ {1x10x, 01111, 01111}}
{x1xx0 \ {110x0, x10x0, x1000}, x0xx0 \ {00100, 00000, 00110}}
{
   x1xx00xxx0 \ {
   x1x100xx00, x1x000xx10, x1xx00x000, x1xx0000x0, x1xx000xx0, 110x00xxx0, x10x00xxx0, x10000xxx0}, x0xx00xxx0 \ {
   x0x100xx00, x0x000xx10, x0xx00x000, x0xx0000x0, x0xx000xx0, 001000xxx0, 000000xxx0, 001100xxx0}, x1xx0xx1x0 \ {
   x1x10xx100, x1x00xx110, x1xx01x100, 110x0xx1x0, x10x0xx1x0, x1000xx1x0}, x0xx0xx1x0 \ {
   x0x10xx100, x0x00xx110, x0xx01x100, 00100xx1x0, 00000xx1x0, 00110xx1x0}}

{x0x0x \ {10101, 10x00, 00x00}, x1011 \ {11011, 01011}}
{11x00 \ {11000}, x11x0 \ {x1100, 01100, 01110}, 1x100 \ {10100}}
{
   11x00x0x00 \ {
   11x0010x00, 11x0000x00, 11000x0x00}, x1100x0x00 \ {
   x110010x00, x110000x00, x1100x0x00, 01100x0x00}, 1x100x0x00 \ {
   1x10010x00, 1x10000x00, 10100x0x00}}

{001xx \ {00101, 001x0, 00111}}
{01x0x \ {01000, 0110x, 01x01}, 100x0 \ {10000}}
{
   01x0x0010x \ {
   01x0100100, 01x0000101, 01x0x00101, 01x0x00100, 010000010x, 0110x0010x, 01x010010x}, 100x0001x0 \ {
   1001000100, 1000000110, 100x0001x0, 10000001x0}}

{110xx \ {110x1, 1101x}, 00xx1 \ {00001, 00x11}}
{11xxx \ {11101, 11110, 111x0}, x01x1 \ {10101, 001x1, 101x1}}
{
   11xxx110xx \ {
   11xx1110x0, 11xx0110x1, 11x1x1100x, 11x0x1101x, 11xxx110x1, 11xxx1101x, 11101110xx, 11110110xx, 111x0110xx}, x01x1110x1 \ {
   x011111001, x010111011, x01x1110x1, x01x111011, 10101110x1, 001x1110x1, 101x1110x1}, 11xx100xx1 \ {
   11x1100x01, 11x0100x11, 11xx100001, 11xx100x11, 1110100xx1}, x01x100xx1 \ {
   x011100x01, x010100x11, x01x100001, x01x100x11, 1010100xx1, 001x100xx1, 101x100xx1}}

{x01x0 \ {00100, 00110, 10110}}
{x11x0 \ {x1110, 01110}}
{
   x11x0x01x0 \ {
   x1110x0100, x1100x0110, x11x000100, x11x000110, x11x010110, x1110x01x0, 01110x01x0}}

{xx10x \ {11100, 10100, 1110x}, 1110x \ {11100, 11101}, 1110x \ {11101, 11100, 11100}}
{x1x10 \ {11x10, 11010, x1110}}
{}

{0x010 \ {00010}, 1x0x1 \ {10001, 110x1, 11011}}
{x101x \ {x1011, 01011, 11011}, x110x \ {1110x, 01101}}
{
   x10100x010 \ {
   x101000010}, x10111x011 \ {
   x101111011, x101111011, x10111x011, 010111x011, 110111x011}, x11011x001 \ {
   x110110001, x110111001, 111011x001, 011011x001}}

{01x1x \ {0111x, 01010, 01110}}
{}
{}

{00xxx \ {00x1x, 0000x}}
{x00x1 \ {00011, 00001}, x00x1 \ {000x1, 10011, 00001}}
{
   x00x100xx1 \ {
   x001100x01, x000100x11, x00x100x11, x00x100001, 0001100xx1, 0000100xx1}}

{1x101 \ {10101, 11101}}
{10xx1 \ {10111, 10001, 101x1}}
{
   10x011x101 \ {
   10x0110101, 10x0111101, 100011x101, 101011x101}}

{1x1xx \ {11100, 111xx, 10111}}
{xx0x1 \ {x0001, 110x1, x10x1}, 1x110 \ {11110}}
{
   xx0x11x1x1 \ {
   xx0111x101, xx0011x111, xx0x1111x1, xx0x110111, x00011x1x1, 110x11x1x1, x10x11x1x1}, 1x1101x110 \ {
   1x11011110, 111101x110}}

{xx0xx \ {110xx, x000x, 01010}}
{1x10x \ {1x101, 1010x, 1x100}}
{
   1x10xxx00x \ {
   1x101xx000, 1x100xx001, 1x10x1100x, 1x10xx000x, 1x101xx00x, 1010xxx00x, 1x100xx00x}}

{x111x \ {0111x, x1111, 01111}}
{xx1x0 \ {10100, 11100, 111x0}, xx0xx \ {010x1, 1001x, 10010}}
{
   xx110x1110 \ {
   xx11001110, 11110x1110}, xx01xx111x \ {
   xx011x1110, xx010x1111, xx01x0111x, xx01xx1111, xx01x01111, 01011x111x, 1001xx111x, 10010x111x}}

{1x10x \ {1110x, 1x100, 1010x}, xx0xx \ {01000, x10x0, x0011}}
{}
{}

{110x1 \ {11001, 11011, 11011}, 0xx10 \ {00110, 01110, 00x10}, 0x1x0 \ {011x0, 001x0, 00100}}
{1xx00 \ {10100, 11100, 11000}, xx10x \ {0x10x}}
{
   xx10111001 \ {
   xx10111001, 0x10111001}, 1xx000x100 \ {
   1xx0001100, 1xx0000100, 1xx0000100, 101000x100, 111000x100, 110000x100}, xx1000x100 \ {
   xx10001100, xx10000100, xx10000100, 0x1000x100}}

{xx011 \ {01011, x0011, 10011}}
{1xx11 \ {10x11, 11011, 11011}}
{
   1xx11xx011 \ {
   1xx1101011, 1xx11x0011, 1xx1110011, 10x11xx011, 11011xx011, 11011xx011}}

{xx110 \ {x0110, 01110, 11110}}
{00x01 \ {00101, 00001}}
{}

{x0xxx \ {10011, 001xx, 00xx0}}
{1xx0x \ {1000x, 1x000, 11x0x}}
{
   1xx0xx0x0x \ {
   1xx01x0x00, 1xx00x0x01, 1xx0x0010x, 1xx0x00x00, 1000xx0x0x, 1x000x0x0x, 11x0xx0x0x}}

{10xx1 \ {10101, 101x1}, 1010x \ {10100, 10101, 10101}}
{10xx0 \ {10x00, 10010, 10110}}
{
   10x0010100 \ {
   10x0010100, 10x0010100}}

{xxx1x \ {0xx1x, 10x1x, x0x1x}, 1xxx1 \ {1x111, 11x11, 11xx1}}
{01x1x \ {01110, 0111x, 01010}}
{
   01x1xxxx1x \ {
   01x11xxx10, 01x10xxx11, 01x1x0xx1x, 01x1x10x1x, 01x1xx0x1x, 01110xxx1x, 0111xxxx1x, 01010xxx1x}, 01x111xx11 \ {
   01x111x111, 01x1111x11, 01x1111x11, 011111xx11}}

{xx110 \ {x1110, 1x110, 00110}, 10xx0 \ {100x0, 10100, 10110}}
{x01xx \ {10111, 00101, x0110}}
{
   x0110xx110 \ {
   x0110x1110, x01101x110, x011000110, x0110xx110}, x01x010xx0 \ {
   x011010x00, x010010x10, x01x0100x0, x01x010100, x01x010110, x011010xx0}}

{0x10x \ {00101, 01101, 00100}, x011x \ {00111, x0110, 1011x}}
{0xxx0 \ {01000, 01xx0, 0x000}}
{
   0xx000x100 \ {
   0xx0000100, 010000x100, 01x000x100, 0x0000x100}, 0xx10x0110 \ {
   0xx10x0110, 0xx1010110, 01x10x0110}}

{xxx11 \ {00011, x0111, 1xx11}}
{x1x00 \ {01000}, x1xx1 \ {x10x1, 01111}}
{
   x1x11xxx11 \ {
   x1x1100011, x1x11x0111, x1x111xx11, x1011xxx11, 01111xxx11}}

{}
{111xx \ {111x1, 11111, 11110}}
{}

{xx0x1 \ {010x1, 11001, 000x1}, x11x0 \ {111x0, 11100, 01110}}
{00x1x \ {00x10, 00110, 00011}, 0xxx1 \ {01xx1, 0x111, 00001}}
{
   00x11xx011 \ {
   00x1101011, 00x1100011, 00011xx011}, 0xxx1xx0x1 \ {
   0xx11xx001, 0xx01xx011, 0xxx1010x1, 0xxx111001, 0xxx1000x1, 01xx1xx0x1, 0x111xx0x1, 00001xx0x1}, 00x10x1110 \ {
   00x1011110, 00x1001110, 00x10x1110, 00110x1110}}

{x1x01 \ {11101, 11001, x1001}, 1xxx0 \ {10100, 11xx0}}
{00xxx \ {000xx, 00xx1}, x100x \ {01000, x1001}}
{
   00x01x1x01 \ {
   00x0111101, 00x0111001, 00x01x1001, 00001x1x01, 00x01x1x01}, x1001x1x01 \ {
   x100111101, x100111001, x1001x1001, x1001x1x01}, 00xx01xxx0 \ {
   00x101xx00, 00x001xx10, 00xx010100, 00xx011xx0, 000x01xxx0}, x10001xx00 \ {
   x100010100, x100011x00, 010001xx00}}

{xx01x \ {00010, x001x, 11011}}
{10xx1 \ {101x1, 10101, 10111}, 1x11x \ {11111, 10111}}
{
   10x11xx011 \ {
   10x11x0011, 10x1111011, 10111xx011, 10111xx011}, 1x11xxx01x \ {
   1x111xx010, 1x110xx011, 1x11x00010, 1x11xx001x, 1x11x11011, 11111xx01x, 10111xx01x}}

{01x1x \ {0101x, 01010, 01111}, 10x0x \ {10000, 10101, 10001}}
{}
{}

{}
{xx01x \ {00010, 11010, 1x011}}
{}

{x1001 \ {11001, 01001}, xx100 \ {11100, 0x100, 01100}}
{x010x \ {10100, x0100, 10101}}
{
   x0101x1001 \ {
   x010111001, x010101001, 10101x1001}, x0100xx100 \ {
   x010011100, x01000x100, x010001100, 10100xx100, x0100xx100}}

{}
{x110x \ {01101, 0110x, 01100}, 11x0x \ {11101, 1100x}, xx10x \ {x010x, 1x100, x0100}}
{}

{0011x \ {00111}, x1x0x \ {01x0x, 01001, 01000}}
{110x0 \ {11010, 11000, 11000}, x1xx1 \ {11xx1, 01x01, 11001}, x1x01 \ {01001, x1101}}
{
   1101000110 \ {
   1101000110}, x1x1100111 \ {
   x1x1100111, 11x1100111}, 11000x1x00 \ {
   1100001x00, 1100001000, 11000x1x00, 11000x1x00}, x1x01x1x01 \ {
   x1x0101x01, x1x0101001, 11x01x1x01, 01x01x1x01, 11001x1x01}, x1x01x1x01 \ {
   x1x0101x01, x1x0101001, 01001x1x01, x1101x1x01}}

{x0xx1 \ {00x11, 00xx1, 10101}, 1xx11 \ {11011, 11x11, 11x11}}
{}
{}

{110xx \ {11000, 1101x}}
{xx1xx \ {001x1, 0x11x, 1x100}, 0x1xx \ {0x111, 0x10x, 01100}, 00xx1 \ {00x11, 00111, 00011}}
{
   xx1xx110xx \ {
   xx1x1110x0, xx1x0110x1, xx11x1100x, xx10x1101x, xx1xx11000, xx1xx1101x, 001x1110xx, 0x11x110xx, 1x100110xx}, 0x1xx110xx \ {
   0x1x1110x0, 0x1x0110x1, 0x11x1100x, 0x10x1101x, 0x1xx11000, 0x1xx1101x, 0x111110xx, 0x10x110xx, 01100110xx}, 00xx1110x1 \ {
   00x1111001, 00x0111011, 00xx111011, 00x11110x1, 00111110x1, 00011110x1}}

{x1x0x \ {11x01, x1000, x110x}, x010x \ {10100, x0100, 00101}, 01xxx \ {01011, 01x11, 0111x}}
{101xx \ {101x1, 1010x, 10110}, 11x1x \ {1101x, 11011}}
{
   1010xx1x0x \ {
   10101x1x00, 10100x1x01, 1010x11x01, 1010xx1000, 1010xx110x, 10101x1x0x, 1010xx1x0x}, 1010xx010x \ {
   10101x0100, 10100x0101, 1010x10100, 1010xx0100, 1010x00101, 10101x010x, 1010xx010x}, 101xx01xxx \ {
   101x101xx0, 101x001xx1, 1011x01x0x, 1010x01x1x, 101xx01011, 101xx01x11, 101xx0111x, 101x101xxx, 1010x01xxx, 1011001xxx}, 11x1x01x1x \ {
   11x1101x10, 11x1001x11, 11x1x01011, 11x1x01x11, 11x1x0111x, 1101x01x1x, 1101101x1x}}

{10x00 \ {10100, 10000}}
{x01xx \ {10101, 00111, 0011x}}
{
   x010010x00 \ {
   x010010100, x010010000}}

{10xxx \ {10111, 10001, 10x10}}
{x1111 \ {01111, 11111}}
{
   x111110x11 \ {
   x111110111, 0111110x11, 1111110x11}}

{1x000 \ {11000, 10000, 10000}}
{00x0x \ {0010x, 0000x, 0000x}}
{
   00x001x000 \ {
   00x0011000, 00x0010000, 00x0010000, 001001x000, 000001x000, 000001x000}}

{}
{xxx1x \ {01011, x0x11, 1x01x}, 0x10x \ {0110x, 0x100, 0010x}, 1x01x \ {1101x, 11010}}
{}

{x0x00 \ {00100, 10x00, x0000}, x01x1 \ {00101, 10101, 00111}}
{00x0x \ {0000x, 0010x}, 1x0x1 \ {10001, 1x001}}
{
   00x00x0x00 \ {
   00x0000100, 00x0010x00, 00x00x0000, 00000x0x00, 00100x0x00}, 00x01x0101 \ {
   00x0100101, 00x0110101, 00001x0101, 00101x0101}, 1x0x1x01x1 \ {
   1x011x0101, 1x001x0111, 1x0x100101, 1x0x110101, 1x0x100111, 10001x01x1, 1x001x01x1}}

{00xx1 \ {000x1, 00001}}
{x1100 \ {11100}}
{}

{1x10x \ {1x100, 10100, 1x101}, x1xx0 \ {01x10, x10x0, x1000}}
{xx00x \ {0100x, xx001, x100x}}
{
   xx00x1x10x \ {
   xx0011x100, xx0001x101, xx00x1x100, xx00x10100, xx00x1x101, 0100x1x10x, xx0011x10x, x100x1x10x}, xx000x1x00 \ {
   xx000x1000, xx000x1000, 01000x1x00, x1000x1x00}}

{}
{00x0x \ {00100, 00x00, 00x00}, x0x11 \ {x0011, 00111, 10011}}
{}

{x001x \ {00010, 10010, 00011}}
{xxxxx \ {x0010, 11x11, 1xx00}, xxx10 \ {1x010, x1110, 00110}}
{
   xxx1xx001x \ {
   xxx11x0010, xxx10x0011, xxx1x00010, xxx1x10010, xxx1x00011, x0010x001x, 11x11x001x}, xxx10x0010 \ {
   xxx1000010, xxx1010010, 1x010x0010, x1110x0010, 00110x0010}}

{xxx00 \ {x0x00, x1100, x1000}}
{xx1x1 \ {11101, 00111, 101x1}, x1x11 \ {11x11, 01x11}}
{}

{0110x \ {01100, 01101}}
{}
{}

{0x101 \ {01101}, 10x01 \ {10001, 10101}}
{01x1x \ {0111x, 01x11, 01111}}
{}

{xx0x1 \ {000x1, 10011}, 111xx \ {11101, 11111, 1111x}, x0x00 \ {00100, 10x00, 00000}}
{00x1x \ {00111, 0011x}}
{
   00x11xx011 \ {
   00x1100011, 00x1110011, 00111xx011, 00111xx011}, 00x1x1111x \ {
   00x1111110, 00x1011111, 00x1x11111, 00x1x1111x, 001111111x, 0011x1111x}}

{x1x10 \ {x1110, 11110, x1010}, x11x0 \ {01100, 01110}}
{0xx10 \ {0x110, 00x10, 00x10}}
{
   0xx10x1x10 \ {
   0xx10x1110, 0xx1011110, 0xx10x1010, 0x110x1x10, 00x10x1x10, 00x10x1x10}, 0xx10x1110 \ {
   0xx1001110, 0x110x1110, 00x10x1110, 00x10x1110}}

{x110x \ {11100, x1100, x1101}}
{1xx1x \ {10010, 1x011, 1x01x}}
{}

{0100x \ {01000, 01001, 01001}, 1x0xx \ {1000x, 1101x, 110x1}}
{x110x \ {11101, 0110x}, 11xxx \ {11x10, 11x11, 11011}}
{
   x110x0100x \ {
   x110101000, x110001001, x110x01000, x110x01001, x110x01001, 111010100x, 0110x0100x}, 11x0x0100x \ {
   11x0101000, 11x0001001, 11x0x01000, 11x0x01001, 11x0x01001}, x110x1x00x \ {
   x11011x000, x11001x001, x110x1000x, x110x11001, 111011x00x, 0110x1x00x}, 11xxx1x0xx \ {
   11xx11x0x0, 11xx01x0x1, 11x1x1x00x, 11x0x1x01x, 11xxx1000x, 11xxx1101x, 11xxx110x1, 11x101x0xx, 11x111x0xx, 110111x0xx}}

{01xxx \ {01010, 01x0x, 01111}}
{x00x1 \ {00011, 100x1, 00001}}
{
   x00x101xx1 \ {
   x001101x01, x000101x11, x00x101x01, x00x101111, 0001101xx1, 100x101xx1, 0000101xx1}}

{1x0x1 \ {10001, 1x011, 100x1}, x0110 \ {10110, 00110, 00110}}
{1xxxx \ {11100, 101xx, 101xx}, x1xx1 \ {111x1, 11001, 010x1}}
{
   1xxx11x0x1 \ {
   1xx111x001, 1xx011x011, 1xxx110001, 1xxx11x011, 1xxx1100x1, 101x11x0x1, 101x11x0x1}, x1xx11x0x1 \ {
   x1x111x001, x1x011x011, x1xx110001, x1xx11x011, x1xx1100x1, 111x11x0x1, 110011x0x1, 010x11x0x1}, 1xx10x0110 \ {
   1xx1010110, 1xx1000110, 1xx1000110, 10110x0110, 10110x0110}}

{xx111 \ {01111, 10111, 10111}, 0xx10 \ {00x10, 00010, 01110}, x0x0x \ {1010x, 10001, x000x}}
{101xx \ {1011x, 101x0, 10110}, x111x \ {11111, 01111, 01111}, x11x1 \ {x1111, x1101, x1101}}
{
   10111xx111 \ {
   1011101111, 1011110111, 1011110111, 10111xx111}, x1111xx111 \ {
   x111101111, x111110111, x111110111, 11111xx111, 01111xx111, 01111xx111}, 101100xx10 \ {
   1011000x10, 1011000010, 1011001110, 101100xx10, 101100xx10, 101100xx10}, x11100xx10 \ {
   x111000x10, x111000010, x111001110}, 1010xx0x0x \ {
   10101x0x00, 10100x0x01, 1010x1010x, 1010x10001, 1010xx000x, 10100x0x0x}, x1101x0x01 \ {
   x110110101, x110110001, x1101x0001, x1101x0x01, x1101x0x01}}

{}
{x0xx1 \ {100x1, 000x1, 00x01}, 100xx \ {100x0, 10001, 100x1}}
{}

{x11xx \ {x111x, 011x0, x11x1}, 1xxxx \ {11xxx, 1111x, 11111}, 00xx0 \ {00010, 00100, 00110}}
{01xxx \ {011x0, 01101, 010x1}, 11xx0 \ {11000, 11010}}
{
   01xxxx11xx \ {
   01xx1x11x0, 01xx0x11x1, 01x1xx110x, 01x0xx111x, 01xxxx111x, 01xxx011x0, 01xxxx11x1, 011x0x11xx, 01101x11xx, 010x1x11xx}, 11xx0x11x0 \ {
   11x10x1100, 11x00x1110, 11xx0x1110, 11xx0011x0, 11000x11x0, 11010x11x0}, 01xxx1xxxx \ {
   01xx11xxx0, 01xx01xxx1, 01x1x1xx0x, 01x0x1xx1x, 01xxx11xxx, 01xxx1111x, 01xxx11111, 011x01xxxx, 011011xxxx, 010x11xxxx}, 11xx01xxx0 \ {
   11x101xx00, 11x001xx10, 11xx011xx0, 11xx011110, 110001xxx0, 110101xxx0}, 01xx000xx0 \ {
   01x1000x00, 01x0000x10, 01xx000010, 01xx000100, 01xx000110, 011x000xx0}, 11xx000xx0 \ {
   11x1000x00, 11x0000x10, 11xx000010, 11xx000100, 11xx000110, 1100000xx0, 1101000xx0}}

{xxx01 \ {0x101, x0x01, 00001}, x01x0 \ {00100, 101x0}}
{xxx1x \ {x1x10, 01111, x0x10}}
{
   xxx10x0110 \ {
   xxx1010110, x1x10x0110, x0x10x0110}}

{x1xx0 \ {01x10, 11x10, x1x00}, x11x1 \ {011x1, 11101, 11101}}
{x010x \ {00101, x0101}, 01xxx \ {01011, 01x10, 0101x}, x00x1 \ {00001, 10011, 000x1}}
{
   x0100x1x00 \ {
   x0100x1x00}, 01xx0x1xx0 \ {
   01x10x1x00, 01x00x1x10, 01xx001x10, 01xx011x10, 01xx0x1x00, 01x10x1xx0, 01010x1xx0}, x0101x1101 \ {
   x010101101, x010111101, x010111101, 00101x1101, x0101x1101}, 01xx1x11x1 \ {
   01x11x1101, 01x01x1111, 01xx1011x1, 01xx111101, 01xx111101, 01011x11x1, 01011x11x1}, x00x1x11x1 \ {
   x0011x1101, x0001x1111, x00x1011x1, x00x111101, x00x111101, 00001x11x1, 10011x11x1, 000x1x11x1}}

{}
{x1x1x \ {x1110, 01010, 1101x}}
{}

{xx0x0 \ {x10x0, 10000, 01010}, 1x1x1 \ {11101, 11111, 10101}}
{x0xx0 \ {x0x00, 00x10}}
{
   x0xx0xx0x0 \ {
   x0x10xx000, x0x00xx010, x0xx0x10x0, x0xx010000, x0xx001010, x0x00xx0x0, 00x10xx0x0}}

{}
{xx0xx \ {x00x1, 11010, x1000}}
{}

{001xx \ {00100, 0010x, 0011x}, 01x0x \ {01100, 01x00, 01x00}}
{xx0xx \ {00001, 11011, 00010}}
{
   xx0xx001xx \ {
   xx0x1001x0, xx0x0001x1, xx01x0010x, xx00x0011x, xx0xx00100, xx0xx0010x, xx0xx0011x, 00001001xx, 11011001xx, 00010001xx}, xx00x01x0x \ {
   xx00101x00, xx00001x01, xx00x01100, xx00x01x00, xx00x01x00, 0000101x0x}}

{110x0 \ {11010, 11000}, x100x \ {01001, 1100x, 0100x}}
{1x001 \ {10001, 11001, 11001}, 1011x \ {10111, 10110, 10110}}
{
   1011011010 \ {
   1011011010, 1011011010, 1011011010}, 1x001x1001 \ {
   1x00101001, 1x00111001, 1x00101001, 10001x1001, 11001x1001, 11001x1001}}

{xx0x0 \ {x1000, 11010, 01010}}
{1x0xx \ {1x0x1, 1001x, 10000}, 011x1 \ {01101}, xx10x \ {xx101, 0110x, x010x}}
{
   1x0x0xx0x0 \ {
   1x010xx000, 1x000xx010, 1x0x0x1000, 1x0x011010, 1x0x001010, 10010xx0x0, 10000xx0x0}, xx100xx000 \ {
   xx100x1000, 01100xx000, x0100xx000}}

{x01x0 \ {x0110, 00100}}
{0x0xx \ {00000, 010x0, 01001}, 01x11 \ {01111, 01011}, 01xx0 \ {01100, 01010, 01010}}
{
   0x0x0x01x0 \ {
   0x010x0100, 0x000x0110, 0x0x0x0110, 0x0x000100, 00000x01x0, 010x0x01x0}, 01xx0x01x0 \ {
   01x10x0100, 01x00x0110, 01xx0x0110, 01xx000100, 01100x01x0, 01010x01x0, 01010x01x0}}

{1xx10 \ {10x10, 10110, 10110}, xxx1x \ {1001x, 0011x, x1010}, 1xx10 \ {10110, 1x110, 11010}}
{0x10x \ {01101, 00100, 01100}}
{}

{0x1x0 \ {01110, 011x0, 0x110}, x100x \ {11000, 0100x, 01001}, x11xx \ {011x0, 11111, x11x1}}
{011x0 \ {01110}, x1xxx \ {11x10, 01100, 110x0}}
{
   011x00x1x0 \ {
   011100x100, 011000x110, 011x001110, 011x0011x0, 011x00x110, 011100x1x0}, x1xx00x1x0 \ {
   x1x100x100, x1x000x110, x1xx001110, x1xx0011x0, x1xx00x110, 11x100x1x0, 011000x1x0, 110x00x1x0}, 01100x1000 \ {
   0110011000, 0110001000}, x1x0xx100x \ {
   x1x01x1000, x1x00x1001, x1x0x11000, x1x0x0100x, x1x0x01001, 01100x100x, 11000x100x}, 011x0x11x0 \ {
   01110x1100, 01100x1110, 011x0011x0, 01110x11x0}, x1xxxx11xx \ {
   x1xx1x11x0, x1xx0x11x1, x1x1xx110x, x1x0xx111x, x1xxx011x0, x1xxx11111, x1xxxx11x1, 11x10x11xx, 01100x11xx, 110x0x11xx}}

{0x10x \ {0010x, 01101, 00101}, x1000 \ {11000, 01000}}
{11xxx \ {11000, 11010, 11x00}, xx001 \ {00001, 1x001}}
{
   11x0x0x10x \ {
   11x010x100, 11x000x101, 11x0x0010x, 11x0x01101, 11x0x00101, 110000x10x, 11x000x10x}, xx0010x101 \ {
   xx00100101, xx00101101, xx00100101, 000010x101, 1x0010x101}, 11x00x1000 \ {
   11x0011000, 11x0001000, 11000x1000, 11x00x1000}}

{10x0x \ {10101, 10000}, 0xx0x \ {00x01, 01x00, 01100}}
{xx011 \ {01011, x1011}, x011x \ {x0110, 1011x, 10110}}
{}

{x0xx1 \ {10011, x01x1, 10101}, x1xxx \ {x10x1, 11011, 110x0}}
{xx0x0 \ {01010, 1x000, x1010}, 0xxx0 \ {01110, 00000, 001x0}, 10xx1 \ {10111, 101x1, 10101}}
{
   10xx1x0xx1 \ {
   10x11x0x01, 10x01x0x11, 10xx110011, 10xx1x01x1, 10xx110101, 10111x0xx1, 101x1x0xx1, 10101x0xx1}, xx0x0x1xx0 \ {
   xx010x1x00, xx000x1x10, xx0x0110x0, 01010x1xx0, 1x000x1xx0, x1010x1xx0}, 0xxx0x1xx0 \ {
   0xx10x1x00, 0xx00x1x10, 0xxx0110x0, 01110x1xx0, 00000x1xx0, 001x0x1xx0}, 10xx1x1xx1 \ {
   10x11x1x01, 10x01x1x11, 10xx1x10x1, 10xx111011, 10111x1xx1, 101x1x1xx1, 10101x1xx1}}

{x0x00 \ {10x00, 00x00, x0000}, 0xx00 \ {00000, 01000, 00100}}
{1000x \ {10001, 10000}}
{
   10000x0x00 \ {
   1000010x00, 1000000x00, 10000x0000, 10000x0x00}, 100000xx00 \ {
   1000000000, 1000001000, 1000000100, 100000xx00}}

{x101x \ {01010, 11011, 11011}, 10xxx \ {1001x, 100xx, 10000}}
{111xx \ {11110, 11111, 1111x}, 011xx \ {01110, 01101, 011x1}}
{
   1111xx101x \ {
   11111x1010, 11110x1011, 1111x01010, 1111x11011, 1111x11011, 11110x101x, 11111x101x, 1111xx101x}, 0111xx101x \ {
   01111x1010, 01110x1011, 0111x01010, 0111x11011, 0111x11011, 01110x101x, 01111x101x}, 111xx10xxx \ {
   111x110xx0, 111x010xx1, 1111x10x0x, 1110x10x1x, 111xx1001x, 111xx100xx, 111xx10000, 1111010xxx, 1111110xxx, 1111x10xxx}, 011xx10xxx \ {
   011x110xx0, 011x010xx1, 0111x10x0x, 0110x10x1x, 011xx1001x, 011xx100xx, 011xx10000, 0111010xxx, 0110110xxx, 011x110xxx}}

{x1x11 \ {01011, 01x11}, xxx01 \ {01x01, 00101, x0x01}}
{xx111 \ {10111, x1111, x1111}, x1xx1 \ {01x11, 11x11, x1x11}}
{
   xx111x1x11 \ {
   xx11101011, xx11101x11, 10111x1x11, x1111x1x11, x1111x1x11}, x1x11x1x11 \ {
   x1x1101011, x1x1101x11, 01x11x1x11, 11x11x1x11, x1x11x1x11}, x1x01xxx01 \ {
   x1x0101x01, x1x0100101, x1x01x0x01}}

{}
{x11xx \ {1110x, x11x0, 111x1}, 00x0x \ {00x01, 0010x, 00100}}
{}

{1xxx1 \ {1x001, 1xx01, 11x11}, x1xxx \ {01001, x100x, 11001}}
{xxx10 \ {x0010, x0x10, xx010}, 1xx10 \ {10110, 11110, 11110}}
{
   xxx10x1x10 \ {
   x0010x1x10, x0x10x1x10, xx010x1x10}, 1xx10x1x10 \ {
   10110x1x10, 11110x1x10, 11110x1x10}}

{x11x0 \ {01100, 011x0, 11110}, 0100x \ {01000, 01001}}
{010x0 \ {01000, 01010, 01010}, 0xx01 \ {0x001, 00101}}
{
   010x0x11x0 \ {
   01010x1100, 01000x1110, 010x001100, 010x0011x0, 010x011110, 01000x11x0, 01010x11x0, 01010x11x0}, 0100001000 \ {
   0100001000, 0100001000}, 0xx0101001 \ {
   0xx0101001, 0x00101001, 0010101001}}

{1x000 \ {10000, 11000}, x0x10 \ {00110, 10110}, 01xx0 \ {01000, 01010}}
{}
{}

{0xx1x \ {0001x, 00x10, 0x01x}, 1x1x1 \ {10111, 101x1, 10101}}
{x0xxx \ {10xx1, x0001, 101x1}, 00x1x \ {00x11, 00011, 00011}}
{
   x0x1x0xx1x \ {
   x0x110xx10, x0x100xx11, x0x1x0001x, x0x1x00x10, x0x1x0x01x, 10x110xx1x, 101110xx1x}, 00x1x0xx1x \ {
   00x110xx10, 00x100xx11, 00x1x0001x, 00x1x00x10, 00x1x0x01x, 00x110xx1x, 000110xx1x, 000110xx1x}, x0xx11x1x1 \ {
   x0x111x101, x0x011x111, x0xx110111, x0xx1101x1, x0xx110101, 10xx11x1x1, x00011x1x1, 101x11x1x1}, 00x111x111 \ {
   00x1110111, 00x1110111, 00x111x111, 000111x111, 000111x111}}

{x10x0 \ {11000, 010x0, 01000}, x11x0 \ {x1110, 01110, 11100}, x001x \ {x0011, 00011, 10010}}
{0x011 \ {01011}}
{
   0x011x0011 \ {
   0x011x0011, 0x01100011, 01011x0011}}

{111x1 \ {11111}}
{x111x \ {0111x, x1110, 11111}, 1xx10 \ {11010, 10x10, 1x110}}
{
   x111111111 \ {
   x111111111, 0111111111, 1111111111}}

{110x0 \ {11010, 11000}}
{x10xx \ {110x1, 010x0, x1000}}
{
   x10x0110x0 \ {
   x101011000, x100011010, x10x011010, x10x011000, 010x0110x0, x1000110x0}}

{x11xx \ {x1100, x1101}, x0xx1 \ {10001, 101x1, x0x11}, 11x0x \ {1110x, 11100, 11100}}
{x0xxx \ {00xx0, 000x0, 101x1}}
{
   x0xxxx11xx \ {
   x0xx1x11x0, x0xx0x11x1, x0x1xx110x, x0x0xx111x, x0xxxx1100, x0xxxx1101, 00xx0x11xx, 000x0x11xx, 101x1x11xx}, x0xx1x0xx1 \ {
   x0x11x0x01, x0x01x0x11, x0xx110001, x0xx1101x1, x0xx1x0x11, 101x1x0xx1}, x0x0x11x0x \ {
   x0x0111x00, x0x0011x01, x0x0x1110x, x0x0x11100, x0x0x11100, 00x0011x0x, 0000011x0x, 1010111x0x}}

{1000x \ {10001, 10000}}
{}
{}

{xx001 \ {x1001, 01001, 00001}, x1x11 \ {11x11, 01111}, 0xx00 \ {00000, 0x000, 00100}}
{x01xx \ {x0111, 00101, 10111}, 110xx \ {11001, 11011, 1101x}}
{
   x0101xx001 \ {
   x0101x1001, x010101001, x010100001, 00101xx001}, 11001xx001 \ {
   11001x1001, 1100101001, 1100100001, 11001xx001}, x0111x1x11 \ {
   x011111x11, x011101111, x0111x1x11, 10111x1x11}, 11011x1x11 \ {
   1101111x11, 1101101111, 11011x1x11, 11011x1x11}, x01000xx00 \ {
   x010000000, x01000x000, x010000100}, 110000xx00 \ {
   1100000000, 110000x000, 1100000100}}

{0xxx1 \ {010x1, 00x01, 000x1}, x0xxx \ {x0x00, 00101, 10x11}}
{00x00 \ {00100, 00000}, x11xx \ {11101, 011x1, 011xx}}
{
   x11x10xxx1 \ {
   x11110xx01, x11010xx11, x11x1010x1, x11x100x01, x11x1000x1, 111010xxx1, 011x10xxx1, 011x10xxx1}, 00x00x0x00 \ {
   00x00x0x00, 00100x0x00, 00000x0x00}, x11xxx0xxx \ {
   x11x1x0xx0, x11x0x0xx1, x111xx0x0x, x110xx0x1x, x11xxx0x00, x11xx00101, x11xx10x11, 11101x0xxx, 011x1x0xxx, 011xxx0xxx}}

{0xx01 \ {00001, 01001, 01001}, 10xx0 \ {10110, 10100}}
{11x01 \ {11001, 11101, 11101}}
{
   11x010xx01 \ {
   11x0100001, 11x0101001, 11x0101001, 110010xx01, 111010xx01, 111010xx01}}

{xxx1x \ {00x11, 1111x, 0001x}, xx0xx \ {x1001, 010x0, xx011}}
{}
{}

{xx1xx \ {00100, 011xx, x1101}, x1xxx \ {01xx0, 010x1, x11x1}, xxx10 \ {10010, 10110, 01010}}
{x01x1 \ {x0111, 101x1, 10111}}
{
   x01x1xx1x1 \ {
   x0111xx101, x0101xx111, x01x1011x1, x01x1x1101, x0111xx1x1, 101x1xx1x1, 10111xx1x1}, x01x1x1xx1 \ {
   x0111x1x01, x0101x1x11, x01x1010x1, x01x1x11x1, x0111x1xx1, 101x1x1xx1, 10111x1xx1}}

{11xx0 \ {110x0, 11000, 11x00}}
{x01xx \ {101x1, 0010x, 00101}}
{
   x01x011xx0 \ {
   x011011x00, x010011x10, x01x0110x0, x01x011000, x01x011x00, 0010011xx0}}

{0xx11 \ {01x11, 00x11, 00x11}, 011xx \ {01100, 011x0, 011x1}, 10xx1 \ {101x1, 10x01, 10101}}
{xx1x1 \ {111x1, 0x1x1, 0x1x1}, 0x1x0 \ {01100, 0x110}}
{
   xx1110xx11 \ {
   xx11101x11, xx11100x11, xx11100x11, 111110xx11, 0x1110xx11, 0x1110xx11}, xx1x1011x1 \ {
   xx11101101, xx10101111, xx1x1011x1, 111x1011x1, 0x1x1011x1, 0x1x1011x1}, 0x1x0011x0 \ {
   0x11001100, 0x10001110, 0x1x001100, 0x1x0011x0, 01100011x0, 0x110011x0}, xx1x110xx1 \ {
   xx11110x01, xx10110x11, xx1x1101x1, xx1x110x01, xx1x110101, 111x110xx1, 0x1x110xx1, 0x1x110xx1}}

{x1x00 \ {x1000, 11x00, x1100}}
{xx011 \ {0x011, x1011}, x11xx \ {01110, 01111, 111xx}}
{
   x1100x1x00 \ {
   x1100x1000, x110011x00, x1100x1100, 11100x1x00}}

{11xx0 \ {11x10, 11110, 11010}, 1x1x0 \ {10110, 1x100, 1x100}}
{x0x0x \ {00001, x000x, 00101}, xx1x1 \ {11111, xx111, 011x1}}
{
   x0x0011x00 \ {
   x000011x00}, x0x001x100 \ {
   x0x001x100, x0x001x100, x00001x100}}

{0xxx0 \ {0x010, 01010, 00110}}
{x101x \ {11010, 01011, 01010}}
{
   x10100xx10 \ {
   x10100x010, x101001010, x101000110, 110100xx10, 010100xx10}}

{1x00x \ {1100x, 10000, 11000}, 00x10 \ {00010, 00110}}
{xx1xx \ {x0101, 011xx, 101x1}, 101xx \ {10111, 10101, 101x1}, xx100 \ {01100, 1x100, 1x100}}
{
   xx10x1x00x \ {
   xx1011x000, xx1001x001, xx10x1100x, xx10x10000, xx10x11000, x01011x00x, 0110x1x00x, 101011x00x}, 1010x1x00x \ {
   101011x000, 101001x001, 1010x1100x, 1010x10000, 1010x11000, 101011x00x, 101011x00x}, xx1001x000 \ {
   xx10011000, xx10010000, xx10011000, 011001x000, 1x1001x000, 1x1001x000}, xx11000x10 \ {
   xx11000010, xx11000110, 0111000x10}, 1011000x10 \ {
   1011000010, 1011000110}}

{10xx1 \ {10011, 10111, 10001}}
{010x1 \ {01001, 01011}, 111x0 \ {11100, 11110}}
{
   010x110xx1 \ {
   0101110x01, 0100110x11, 010x110011, 010x110111, 010x110001, 0100110xx1, 0101110xx1}}

{1x1x1 \ {11111, 10111, 101x1}}
{1x11x \ {1011x, 10110, 1111x}}
{
   1x1111x111 \ {
   1x11111111, 1x11110111, 1x11110111, 101111x111, 111111x111}}

{x00x0 \ {00010, 10010, 100x0}}
{x00x1 \ {00011, 10011}, 00x0x \ {00000, 00x01, 00001}}
{
   00x00x0000 \ {
   00x0010000, 00000x0000}}

{x10x0 \ {11000, 11010, 01000}}
{1xxx1 \ {11111, 10101, 11x01}}
{}

{}
{0xx0x \ {00101, 0xx01, 00000}, 0x0x0 \ {0x010, 000x0, 00000}}
{}

{0xx01 \ {00101, 00001, 00x01}, 01x11 \ {01111, 01011}}
{}
{}

{x1xx1 \ {x1x01, 01011, x11x1}}
{0x1x0 \ {0x100, 01110, 01110}, x00x0 \ {10010, 100x0, 100x0}}
{}

{0xx10 \ {0x010, 00110, 01010}, 10x11 \ {10011, 10111}}
{}
{}

{xx011 \ {1x011, x0011}, 010x1 \ {01001, 01011}}
{xx0xx \ {100xx, 1x011, xx0x0}}
{
   xx011xx011 \ {
   xx0111x011, xx011x0011, 10011xx011, 1x011xx011}, xx0x1010x1 \ {
   xx01101001, xx00101011, xx0x101001, xx0x101011, 100x1010x1, 1x011010x1}}

{}
{xxxx0 \ {xx100, xx010, 10x10}}
{}

{xxxx0 \ {1x100, x1x10, x1110}}
{x010x \ {x0101, 10100}, x0011 \ {10011, 00011}, x11x0 \ {01100, 11100, x1100}}
{
   x0100xxx00 \ {
   x01001x100, 10100xxx00}, x11x0xxxx0 \ {
   x1110xxx00, x1100xxx10, x11x01x100, x11x0x1x10, x11x0x1110, 01100xxxx0, 11100xxxx0, x1100xxxx0}}

{x0x00 \ {x0000, 00x00, 00000}, 0x1xx \ {0x100, 0111x, 011x0}}
{1x1x1 \ {11101, 11111}, x1x10 \ {11010, 01x10, 01010}, x0x01 \ {00101, x0101}}
{
   1x1x10x1x1 \ {
   1x1110x101, 1x1010x111, 1x1x101111, 111010x1x1, 111110x1x1}, x1x100x110 \ {
   x1x1001110, x1x1001110, 110100x110, 01x100x110, 010100x110}, x0x010x101 \ {
   001010x101, x01010x101}}

{0x01x \ {00010, 0001x, 0001x}}
{0x0x1 \ {0x001, 010x1, 0x011}}
{
   0x0110x011 \ {
   0x01100011, 0x01100011, 010110x011, 0x0110x011}}

{}
{}
{}

{00xxx \ {000x1, 00101}, 01x0x \ {0110x, 01100}}
{01x10 \ {01010, 01110}, 1x00x \ {11001, 1100x, 10000}}
{
   01x1000x10 \ {
   0101000x10, 0111000x10}, 1x00x00x0x \ {
   1x00100x00, 1x00000x01, 1x00x00001, 1x00x00101, 1100100x0x, 1100x00x0x, 1000000x0x}, 1x00x01x0x \ {
   1x00101x00, 1x00001x01, 1x00x0110x, 1x00x01100, 1100101x0x, 1100x01x0x, 1000001x0x}}

{0x11x \ {0x111, 00111, 0x110}, 1xxx0 \ {10x10, 10x00, 1x0x0}, 0xxx1 \ {01001, 00x11, 0xx11}}
{1xx10 \ {10010, 1x110, 10x10}, 111xx \ {111x0, 11110, 111x1}}
{
   1xx100x110 \ {
   1xx100x110, 100100x110, 1x1100x110, 10x100x110}, 1111x0x11x \ {
   111110x110, 111100x111, 1111x0x111, 1111x00111, 1111x0x110, 111100x11x, 111100x11x, 111110x11x}, 1xx101xx10 \ {
   1xx1010x10, 1xx101x010, 100101xx10, 1x1101xx10, 10x101xx10}, 111x01xxx0 \ {
   111101xx00, 111001xx10, 111x010x10, 111x010x00, 111x01x0x0, 111x01xxx0, 111101xxx0}, 111x10xxx1 \ {
   111110xx01, 111010xx11, 111x101001, 111x100x11, 111x10xx11, 111x10xxx1}}

{x1x00 \ {01x00, 11x00, x1000}}
{01xxx \ {0111x, 011x1, 01x0x}}
{
   01x00x1x00 \ {
   01x0001x00, 01x0011x00, 01x00x1000, 01x00x1x00}}

{010xx \ {01000, 0101x, 01011}}
{1x110 \ {11110, 10110}, 0011x \ {00111, 00110}}
{
   1x11001010 \ {
   1x11001010, 1111001010, 1011001010}, 0011x0101x \ {
   0011101010, 0011001011, 0011x0101x, 0011x01011, 001110101x, 001100101x}}

{x01x0 \ {x0110, x0100}, 1x101 \ {10101}}
{x0x1x \ {x001x, 10x11, 00111}}
{
   x0x10x0110 \ {
   x0x10x0110, x0010x0110}}

{101x1 \ {10101, 10111, 10111}, 0010x \ {00101, 00100, 00100}}
{0x1x1 \ {01101, 00111}, xxx00 \ {xx100, 11000, 10000}}
{
   0x1x1101x1 \ {
   0x11110101, 0x10110111, 0x1x110101, 0x1x110111, 0x1x110111, 01101101x1, 00111101x1}, 0x10100101 \ {
   0x10100101, 0110100101}, xxx0000100 \ {
   xxx0000100, xxx0000100, xx10000100, 1100000100, 1000000100}}

{}
{01x10 \ {01110, 01010}}
{}

{11xxx \ {11x1x, 11001, 11x01}, 011x0 \ {01110, 01100}}
{0xx10 \ {00010, 01x10, 00110}}
{
   0xx1011x10 \ {
   0xx1011x10, 0001011x10, 01x1011x10, 0011011x10}, 0xx1001110 \ {
   0xx1001110, 0001001110, 01x1001110, 0011001110}}

{1x10x \ {11100, 1010x, 1x101}, 1xx1x \ {10011, 1xx10, 1101x}}
{10x10 \ {10110}, 01xxx \ {010xx, 01010, 01xx1}, xx1xx \ {0x1xx, x01xx, xx11x}}
{
   01x0x1x10x \ {
   01x011x100, 01x001x101, 01x0x11100, 01x0x1010x, 01x0x1x101, 0100x1x10x, 01x011x10x}, xx10x1x10x \ {
   xx1011x100, xx1001x101, xx10x11100, xx10x1010x, xx10x1x101, 0x10x1x10x, x010x1x10x}, 10x101xx10 \ {
   10x101xx10, 10x1011010, 101101xx10}, 01x1x1xx1x \ {
   01x111xx10, 01x101xx11, 01x1x10011, 01x1x1xx10, 01x1x1101x, 0101x1xx1x, 010101xx1x, 01x111xx1x}, xx11x1xx1x \ {
   xx1111xx10, xx1101xx11, xx11x10011, xx11x1xx10, xx11x1101x, 0x11x1xx1x, x011x1xx1x, xx11x1xx1x}}

{01x0x \ {01101, 0110x, 01x01}, 00x10 \ {00010, 00110, 00110}}
{001x1 \ {00101, 00111}, x0xx1 \ {00x01, x0011, 10x01}}
{
   0010101x01 \ {
   0010101101, 0010101101, 0010101x01, 0010101x01}, x0x0101x01 \ {
   x0x0101101, x0x0101101, x0x0101x01, 00x0101x01, 10x0101x01}}

{xx101 \ {01101, x1101, x0101}, 101x0 \ {10110, 10100}, 11x00 \ {11000}}
{}
{}

{10x11 \ {10111, 10011, 10011}, xx001 \ {x0001, 01001, 01001}}
{}
{}

{0xx0x \ {01x01, 0x10x}}
{}
{}

{10xx0 \ {10100, 10110, 10010}, xx0xx \ {000x1, 10001, x00xx}}
{}
{}

{0xxx0 \ {01x10, 00100, 0xx10}, 0110x \ {01100, 01101}}
{01x1x \ {0101x, 01110, 01x11}, 1x01x \ {1x011, 1001x, 1001x}}
{
   01x100xx10 \ {
   01x1001x10, 01x100xx10, 010100xx10, 011100xx10}, 1x0100xx10 \ {
   1x01001x10, 1x0100xx10, 100100xx10, 100100xx10}}

{0x0xx \ {010x0, 010x1, 01001}, 0x0xx \ {0x0x1, 01000, 0100x}, 11x10 \ {11110, 11010}}
{011x0 \ {01100}, 110x0 \ {11000}}
{
   011x00x0x0 \ {
   011100x000, 011000x010, 011x001000, 011x001000, 011000x0x0}, 110x00x0x0 \ {
   110100x000, 110000x010, 110x001000, 110x001000, 110000x0x0}, 0111011x10 \ {
   0111011110, 0111011010}, 1101011x10 \ {
   1101011110, 1101011010}}

{x11x0 \ {011x0, x1110, 111x0}, 0xx01 \ {00001, 01101, 00101}}
{x000x \ {10000, 10001, 00001}}
{
   x0000x1100 \ {
   x000001100, x000011100, 10000x1100}, x00010xx01 \ {
   x000100001, x000101101, x000100101, 100010xx01, 000010xx01}}

{10xxx \ {10001, 10x0x, 10100}, xx0x1 \ {0x0x1, xx001, x0011}}
{0xx1x \ {0x11x, 0x010, 0111x}, 000xx \ {0000x, 00001, 0001x}}
{
   0xx1x10x1x \ {
   0xx1110x10, 0xx1010x11, 0x11x10x1x, 0x01010x1x, 0111x10x1x}, 000xx10xxx \ {
   000x110xx0, 000x010xx1, 0001x10x0x, 0000x10x1x, 000xx10001, 000xx10x0x, 000xx10100, 0000x10xxx, 0000110xxx, 0001x10xxx}, 0xx11xx011 \ {
   0xx110x011, 0xx11x0011, 0x111xx011, 01111xx011}, 000x1xx0x1 \ {
   00011xx001, 00001xx011, 000x10x0x1, 000x1xx001, 000x1x0011, 00001xx0x1, 00001xx0x1, 00011xx0x1}}

{x00xx \ {1000x, x001x, 100xx}, xxx10 \ {01x10, 10x10, 00x10}}
{01xxx \ {01010, 01101, 01110}, x100x \ {01001, 01000, 11001}}
{
   01xxxx00xx \ {
   01xx1x00x0, 01xx0x00x1, 01x1xx000x, 01x0xx001x, 01xxx1000x, 01xxxx001x, 01xxx100xx, 01010x00xx, 01101x00xx, 01110x00xx}, x100xx000x \ {
   x1001x0000, x1000x0001, x100x1000x, x100x1000x, 01001x000x, 01000x000x, 11001x000x}, 01x10xxx10 \ {
   01x1001x10, 01x1010x10, 01x1000x10, 01010xxx10, 01110xxx10}}

{00x10 \ {00110, 00010}}
{00xxx \ {00101, 0010x, 001x0}}
{
   00x1000x10 \ {
   00x1000110, 00x1000010, 0011000x10}}

{111xx \ {111x0, 11100}}
{x101x \ {x1011, 01011}, x11xx \ {x11x0, 11100, x110x}}
{
   x101x1111x \ {
   x101111110, x101011111, x101x11110, x10111111x, 010111111x}, x11xx111xx \ {
   x11x1111x0, x11x0111x1, x111x1110x, x110x1111x, x11xx111x0, x11xx11100, x11x0111xx, 11100111xx, x110x111xx}}

{x00xx \ {10000, x0011, x00x0}, xx1x0 \ {0x1x0, xx110, xx100}}
{10x1x \ {10110, 10x11}, x110x \ {x1101, 0110x, 1110x}}
{
   10x1xx001x \ {
   10x11x0010, 10x10x0011, 10x1xx0011, 10x1xx0010, 10110x001x, 10x11x001x}, x110xx000x \ {
   x1101x0000, x1100x0001, x110x10000, x110xx0000, x1101x000x, 0110xx000x, 1110xx000x}, 10x10xx110 \ {
   10x100x110, 10x10xx110, 10110xx110}, x1100xx100 \ {
   x11000x100, x1100xx100, 01100xx100, 11100xx100}}

{x011x \ {10110, 00111, x0111}}
{0x1x1 \ {001x1, 00101, 011x1}, 000x1 \ {00001}}
{
   0x111x0111 \ {
   0x11100111, 0x111x0111, 00111x0111, 01111x0111}, 00011x0111 \ {
   0001100111, 00011x0111}}

{xxxxx \ {10101, x1xx1, xx1xx}, 0xx10 \ {0x110, 01110, 01010}}
{10x01 \ {10101}, x1x0x \ {x1100, 1110x, x110x}}
{
   10x01xxx01 \ {
   10x0110101, 10x01x1x01, 10x01xx101, 10101xxx01}, x1x0xxxx0x \ {
   x1x01xxx00, x1x00xxx01, x1x0x10101, x1x0xx1x01, x1x0xxx10x, x1100xxx0x, 1110xxxx0x, x110xxxx0x}}

{1x1x1 \ {11111, 11101, 10111}}
{x110x \ {0110x, 11101}}
{
   x11011x101 \ {
   x110111101, 011011x101, 111011x101}}

{}
{xx001 \ {1x001, 11001, 11001}}
{}

{00x0x \ {00x00, 00x01, 0010x}, 0110x \ {01101}, x01x0 \ {x0110, 10110, 10110}}
{}
{}

{1x0xx \ {100x1, 1x000}}
{xxx01 \ {11001, 10x01, 01101}, x0x0x \ {10000, 00101, x0101}, 0x10x \ {00100, 0010x, 0010x}}
{
   xxx011x001 \ {
   xxx0110001, 110011x001, 10x011x001, 011011x001}, x0x0x1x00x \ {
   x0x011x000, x0x001x001, x0x0x10001, x0x0x1x000, 100001x00x, 001011x00x, x01011x00x}, 0x10x1x00x \ {
   0x1011x000, 0x1001x001, 0x10x10001, 0x10x1x000, 001001x00x, 0010x1x00x, 0010x1x00x}}

{xx10x \ {x110x, 10101, 11100}}
{1011x \ {10111, 10110, 10110}, x0xxx \ {x0100, 00100, 00001}}
{
   x0x0xxx10x \ {
   x0x01xx100, x0x00xx101, x0x0xx110x, x0x0x10101, x0x0x11100, x0100xx10x, 00100xx10x, 00001xx10x}}

{x1x11 \ {x1011, 11011, 11x11}, xx10x \ {1110x, 1x100, 0x100}}
{xxx1x \ {x1110, 00111, 01x1x}}
{
   xxx11x1x11 \ {
   xxx11x1011, xxx1111011, xxx1111x11, 00111x1x11, 01x11x1x11}}

{x0x11 \ {10011, x0111, 00x11}}
{xxxx1 \ {0x101, 000x1, 00101}}
{
   xxx11x0x11 \ {
   xxx1110011, xxx11x0111, xxx1100x11, 00011x0x11}}

{01xxx \ {011x0, 01x00, 01x01}, x1xxx \ {11101, 11011, x1x11}}
{xx111 \ {x1111, 1x111, x0111}, x0xx1 \ {10001, 10111, 001x1}}
{
   xx11101x11 \ {
   x111101x11, 1x11101x11, x011101x11}, x0xx101xx1 \ {
   x0x1101x01, x0x0101x11, x0xx101x01, 1000101xx1, 1011101xx1, 001x101xx1}, xx111x1x11 \ {
   xx11111011, xx111x1x11, x1111x1x11, 1x111x1x11, x0111x1x11}, x0xx1x1xx1 \ {
   x0x11x1x01, x0x01x1x11, x0xx111101, x0xx111011, x0xx1x1x11, 10001x1xx1, 10111x1xx1, 001x1x1xx1}}

{xx001 \ {1x001, 0x001, 10001}, 011xx \ {0110x, 01101, 0111x}}
{100xx \ {10001, 100x1}}
{
   10001xx001 \ {
   100011x001, 100010x001, 1000110001, 10001xx001, 10001xx001}, 100xx011xx \ {
   100x1011x0, 100x0011x1, 1001x0110x, 1000x0111x, 100xx0110x, 100xx01101, 100xx0111x, 10001011xx, 100x1011xx}}

{01xx1 \ {01111, 01001}}
{x0xx1 \ {00001, x00x1, x0001}}
{
   x0xx101xx1 \ {
   x0x1101x01, x0x0101x11, x0xx101111, x0xx101001, 0000101xx1, x00x101xx1, x000101xx1}}

{x110x \ {1110x, 01101, x1101}, x11x0 \ {11100, 011x0}}
{x011x \ {00110, 0011x, 1011x}, 01xxx \ {010x1, 01100}}
{
   01x0xx110x \ {
   01x01x1100, 01x00x1101, 01x0x1110x, 01x0x01101, 01x0xx1101, 01001x110x, 01100x110x}, x0110x1110 \ {
   x011001110, 00110x1110, 00110x1110, 10110x1110}, 01xx0x11x0 \ {
   01x10x1100, 01x00x1110, 01xx011100, 01xx0011x0, 01100x11x0}}

{11xx1 \ {11101, 11111, 111x1}}
{1x001 \ {11001, 10001}, xxxx0 \ {101x0, 0xx10, 1x100}, 1xxx1 \ {10xx1, 10101, 1xx01}}
{
   1x00111x01 \ {
   1x00111101, 1x00111101, 1100111x01, 1000111x01}, 1xxx111xx1 \ {
   1xx1111x01, 1xx0111x11, 1xxx111101, 1xxx111111, 1xxx1111x1, 10xx111xx1, 1010111xx1, 1xx0111xx1}}

{x011x \ {x0111, 1011x, 00110}}
{x0010 \ {10010, 00010, 00010}, 00x1x \ {00010, 00011, 00110}}
{
   x0010x0110 \ {
   x001010110, x001000110, 10010x0110, 00010x0110, 00010x0110}, 00x1xx011x \ {
   00x11x0110, 00x10x0111, 00x1xx0111, 00x1x1011x, 00x1x00110, 00010x011x, 00011x011x, 00110x011x}}

{x010x \ {00100, x0100, 10100}, 01x10 \ {01110, 01010}}
{0xx0x \ {0xx01, 0000x, 0x100}}
{
   0xx0xx010x \ {
   0xx01x0100, 0xx00x0101, 0xx0x00100, 0xx0xx0100, 0xx0x10100, 0xx01x010x, 0000xx010x, 0x100x010x}}

{011xx \ {011x0, 01101, 0111x}, xx1xx \ {x110x, x01x0, 0111x}}
{00x01 \ {00101, 00001}, 0xxx1 \ {00111, 00001, 00011}}
{
   00x0101101 \ {
   00x0101101, 0010101101, 0000101101}, 0xxx1011x1 \ {
   0xx1101101, 0xx0101111, 0xxx101101, 0xxx101111, 00111011x1, 00001011x1, 00011011x1}, 00x01xx101 \ {
   00x01x1101, 00101xx101, 00001xx101}, 0xxx1xx1x1 \ {
   0xx11xx101, 0xx01xx111, 0xxx1x1101, 0xxx101111, 00111xx1x1, 00001xx1x1, 00011xx1x1}}

{111xx \ {111x1, 1111x, 1111x}, x011x \ {x0111, 00110}}
{xx11x \ {xx110, x1111, 01111}, x10xx \ {01001, 1101x, 11010}}
{
   xx11x1111x \ {
   xx11111110, xx11011111, xx11x11111, xx11x1111x, xx11x1111x, xx1101111x, x11111111x, 011111111x}, x10xx111xx \ {
   x10x1111x0, x10x0111x1, x101x1110x, x100x1111x, x10xx111x1, x10xx1111x, x10xx1111x, 01001111xx, 1101x111xx, 11010111xx}, xx11xx011x \ {
   xx111x0110, xx110x0111, xx11xx0111, xx11x00110, xx110x011x, x1111x011x, 01111x011x}, x101xx011x \ {
   x1011x0110, x1010x0111, x101xx0111, x101x00110, 1101xx011x, 11010x011x}}

{x1xx1 \ {010x1, 11x01, x1111}}
{0x10x \ {0x101, 00101, 00100}}
{
   0x101x1x01 \ {
   0x10101001, 0x10111x01, 0x101x1x01, 00101x1x01}}

{}
{11x1x \ {11010, 11x10, 1111x}}
{}

{1001x \ {10011, 10010}}
{x000x \ {10000, x0000, 1000x}, 1x001 \ {10001, 11001}, 0xxxx \ {0000x, 0x10x, 0x0xx}}
{
   0xx1x1001x \ {
   0xx1110010, 0xx1010011, 0xx1x10011, 0xx1x10010, 0x01x1001x}}

{xx0xx \ {x0001, 0x01x, x000x}, xx00x \ {x1000, x100x, 1x001}, xx1x0 \ {11110, 01100, 11100}}
{xx101 \ {1x101, 01101, 0x101}, 01xxx \ {011x1, 01001, 0101x}}
{
   xx101xx001 \ {
   xx101x0001, xx101x0001, 1x101xx001, 01101xx001, 0x101xx001}, 01xxxxx0xx \ {
   01xx1xx0x0, 01xx0xx0x1, 01x1xxx00x, 01x0xxx01x, 01xxxx0001, 01xxx0x01x, 01xxxx000x, 011x1xx0xx, 01001xx0xx, 0101xxx0xx}, xx101xx001 \ {
   xx101x1001, xx1011x001, 1x101xx001, 01101xx001, 0x101xx001}, 01x0xxx00x \ {
   01x01xx000, 01x00xx001, 01x0xx1000, 01x0xx100x, 01x0x1x001, 01101xx00x, 01001xx00x}, 01xx0xx1x0 \ {
   01x10xx100, 01x00xx110, 01xx011110, 01xx001100, 01xx011100, 01010xx1x0}}

{1xxx0 \ {10010, 10000, 110x0}, 0x001 \ {01001, 00001}}
{x1x11 \ {01011, 11x11, 11x11}}
{}

{111xx \ {11110, 11100, 11111}, x110x \ {01100, 1110x, x1100}}
{}
{}

{1x0x1 \ {10001, 110x1, 110x1}}
{10xx0 \ {100x0, 10x10}, xx11x \ {1x110, 0111x, 11110}, 01x00 \ {01100, 01000, 01000}}
{
   xx1111x011 \ {
   xx11111011, xx11111011, 011111x011}}

{1001x \ {10010, 10011}}
{}
{}

{101x0 \ {10100, 10110}, 1x1x1 \ {11111, 10101, 10111}}
{1x0xx \ {1x000, 1001x, 1000x}}
{
   1x0x0101x0 \ {
   1x01010100, 1x00010110, 1x0x010100, 1x0x010110, 1x000101x0, 10010101x0, 10000101x0}, 1x0x11x1x1 \ {
   1x0111x101, 1x0011x111, 1x0x111111, 1x0x110101, 1x0x110111, 100111x1x1, 100011x1x1}}

{x11x0 \ {11110, 111x0, x1100}, xx0xx \ {1000x, 0x00x, 00001}, 1xxxx \ {1x11x, 101xx, 10000}}
{1xx01 \ {10x01, 11x01, 10101}, 0x1xx \ {0110x, 001xx, 0x101}, x101x \ {11010, x1011, 01011}}
{
   0x1x0x11x0 \ {
   0x110x1100, 0x100x1110, 0x1x011110, 0x1x0111x0, 0x1x0x1100, 01100x11x0, 001x0x11x0}, x1010x1110 \ {
   x101011110, x101011110, 11010x1110}, 1xx01xx001 \ {
   1xx0110001, 1xx010x001, 1xx0100001, 10x01xx001, 11x01xx001, 10101xx001}, 0x1xxxx0xx \ {
   0x1x1xx0x0, 0x1x0xx0x1, 0x11xxx00x, 0x10xxx01x, 0x1xx1000x, 0x1xx0x00x, 0x1xx00001, 0110xxx0xx, 001xxxx0xx, 0x101xx0xx}, x101xxx01x \ {
   x1011xx010, x1010xx011, 11010xx01x, x1011xx01x, 01011xx01x}, 1xx011xx01 \ {
   1xx0110101, 10x011xx01, 11x011xx01, 101011xx01}, 0x1xx1xxxx \ {
   0x1x11xxx0, 0x1x01xxx1, 0x11x1xx0x, 0x10x1xx1x, 0x1xx1x11x, 0x1xx101xx, 0x1xx10000, 0110x1xxxx, 001xx1xxxx, 0x1011xxxx}, x101x1xx1x \ {
   x10111xx10, x10101xx11, x101x1x11x, x101x1011x, 110101xx1x, x10111xx1x, 010111xx1x}}

{0111x \ {01111, 01110}}
{0x00x \ {00000, 0x001, 0100x}, x1x0x \ {01101, 01001, x100x}, x0xxx \ {00100, 001x1, 00x01}}
{
   x0x1x0111x \ {
   x0x1101110, x0x1001111, x0x1x01111, x0x1x01110, 001110111x}}

{x11x0 \ {011x0, 11100}, xxx0x \ {xx001, x000x, xxx00}, x1x1x \ {x1111, 1101x, x1110}}
{01x0x \ {0100x, 01001, 01101}}
{
   01x00x1100 \ {
   01x0001100, 01x0011100, 01000x1100}, 01x0xxxx0x \ {
   01x01xxx00, 01x00xxx01, 01x0xxx001, 01x0xx000x, 01x0xxxx00, 0100xxxx0x, 01001xxx0x, 01101xxx0x}}

{}
{xx1xx \ {0x101, 101xx, 0x110}, 0xx00 \ {0x100, 01000, 01000}}
{}

{}
{00x1x \ {00010, 0011x, 00110}, x0x1x \ {x0110, 10111, 10x10}}
{}

{}
{10xxx \ {10001, 10011, 10xx0}, x1xxx \ {1101x, x1001, 11xx0}, x1xx1 \ {01111, 11101, 11x11}}
{}

{x1x11 \ {11x11, 11011, 11111}, xxx10 \ {x0110, 00x10, 11x10}}
{xx100 \ {11100, x1100, 1x100}, 1x01x \ {11011, 10010, 1001x}}
{
   1x011x1x11 \ {
   1x01111x11, 1x01111011, 1x01111111, 11011x1x11, 10011x1x11}, 1x010xxx10 \ {
   1x010x0110, 1x01000x10, 1x01011x10, 10010xxx10, 10010xxx10}}

{10xx1 \ {10011, 10001, 10x01}}
{01x1x \ {0101x, 01110}}
{
   01x1110x11 \ {
   01x1110011, 0101110x11}}

{xx010 \ {1x010, 10010, 11010}, xx10x \ {11101, 0x100, 11100}}
{x0x10 \ {x0010, x0110, 00110}, 00xx1 \ {00101, 001x1, 000x1}}
{
   x0x10xx010 \ {
   x0x101x010, x0x1010010, x0x1011010, x0010xx010, x0110xx010, 00110xx010}, 00x01xx101 \ {
   00x0111101, 00101xx101, 00101xx101, 00001xx101}}

{x1xxx \ {01000, x1xx1, 01x00}, 00x01 \ {00001, 00101}}
{x110x \ {11100, 11101, x1100}, 1xx1x \ {11x11, 1x010, 1x011}}
{
   x110xx1x0x \ {
   x1101x1x00, x1100x1x01, x110x01000, x110xx1x01, x110x01x00, 11100x1x0x, 11101x1x0x, x1100x1x0x}, 1xx1xx1x1x \ {
   1xx11x1x10, 1xx10x1x11, 1xx1xx1x11, 11x11x1x1x, 1x010x1x1x, 1x011x1x1x}, x110100x01 \ {
   x110100001, x110100101, 1110100x01}}

{1x00x \ {11000, 10001, 11001}, 10xx1 \ {101x1, 10111}, 10x1x \ {10x10, 10x11, 10111}}
{00xx0 \ {001x0, 00000, 00110}}
{
   00x001x000 \ {
   00x0011000, 001001x000, 000001x000}, 00x1010x10 \ {
   00x1010x10, 0011010x10, 0011010x10}}

{x0x1x \ {00x10, 00x1x}, 11x1x \ {1111x}}
{01xx0 \ {01x00, 010x0}, xx111 \ {11111, 0x111, 1x111}}
{
   01x10x0x10 \ {
   01x1000x10, 01x1000x10, 01010x0x10}, xx111x0x11 \ {
   xx11100x11, 11111x0x11, 0x111x0x11, 1x111x0x11}, 01x1011x10 \ {
   01x1011110, 0101011x10}, xx11111x11 \ {
   xx11111111, 1111111x11, 0x11111x11, 1x11111x11}}

{x1xx1 \ {010x1, 01011, x1x01}}
{0x0x0 \ {0x010, 01000, 0x000}, 011xx \ {01100, 01110, 01110}}
{
   011x1x1xx1 \ {
   01111x1x01, 01101x1x11, 011x1010x1, 011x101011, 011x1x1x01}}

{0xx10 \ {00110, 01110, 0x010}, 01x0x \ {0100x, 01000, 01000}}
{xx1xx \ {x010x, 0110x, 101xx}, 00xx1 \ {00x01, 00011}}
{
   xx1100xx10 \ {
   xx11000110, xx11001110, xx1100x010, 101100xx10}, xx10x01x0x \ {
   xx10101x00, xx10001x01, xx10x0100x, xx10x01000, xx10x01000, x010x01x0x, 0110x01x0x, 1010x01x0x}, 00x0101x01 \ {
   00x0101001, 00x0101x01}}

{x0x1x \ {00x11, 10011, 00x10}, x1xxx \ {x1100, 11011, x1x01}}
{010xx \ {010x0, 01010, 01011}, xx100 \ {00100, 1x100, 11100}}
{
   0101xx0x1x \ {
   01011x0x10, 01010x0x11, 0101x00x11, 0101x10011, 0101x00x10, 01010x0x1x, 01010x0x1x, 01011x0x1x}, 010xxx1xxx \ {
   010x1x1xx0, 010x0x1xx1, 0101xx1x0x, 0100xx1x1x, 010xxx1100, 010xx11011, 010xxx1x01, 010x0x1xxx, 01010x1xxx, 01011x1xxx}, xx100x1x00 \ {
   xx100x1100, 00100x1x00, 1x100x1x00, 11100x1x00}}

{1x0x0 \ {100x0, 11010, 11000}, 00x0x \ {00101, 00x00, 0010x}, x1x11 \ {01111, 01011, 01011}}
{0111x \ {01110, 01111}}
{
   011101x010 \ {
   0111010010, 0111011010, 011101x010}, 01111x1x11 \ {
   0111101111, 0111101011, 0111101011, 01111x1x11}}

{xx1x1 \ {x1101, x01x1, 00101}}
{0011x \ {00110, 00111}}
{
   00111xx111 \ {
   00111x0111, 00111xx111}}

{}
{x1x0x \ {x1101, x100x, 11x01}}
{}

{xx011 \ {x0011, 10011, 0x011}, xx00x \ {1x000, 01000, 01000}}
{}
{}

{1x001 \ {11001, 10001}, 10xx0 \ {10x00, 10100, 100x0}}
{1x011 \ {11011, 10011, 10011}}
{}

{xxx1x \ {x1x11, xx11x, 1011x}, x1x11 \ {11111, 11011, 01111}}
{x01x0 \ {x0100, x0110, 10110}}
{
   x0110xxx10 \ {
   x0110xx110, x011010110, x0110xxx10, 10110xxx10}}

{x0xx0 \ {10000, 00100, x0x00}}
{00xx1 \ {00001, 001x1, 00011}, 1101x \ {11010}, 01x0x \ {01001, 01x01, 0100x}}
{
   11010x0x10 \ {
   11010x0x10}, 01x00x0x00 \ {
   01x0010000, 01x0000100, 01x00x0x00, 01000x0x00}}

{x1x10 \ {11x10, x1110, 01x10}, 110xx \ {1101x, 11000, 11010}}
{1011x \ {10110}}
{
   10110x1x10 \ {
   1011011x10, 10110x1110, 1011001x10, 10110x1x10}, 1011x1101x \ {
   1011111010, 1011011011, 1011x1101x, 1011x11010, 101101101x}}

{1xxx1 \ {11111, 1x011, 10xx1}, 110xx \ {11000, 1101x, 110x1}}
{1xx0x \ {11x00, 10x0x, 10x01}}
{
   1xx011xx01 \ {
   1xx0110x01, 10x011xx01, 10x011xx01}, 1xx0x1100x \ {
   1xx0111000, 1xx0011001, 1xx0x11000, 1xx0x11001, 11x001100x, 10x0x1100x, 10x011100x}}

{x1xxx \ {11x10, 11100, 010xx}}
{}
{}

{01x00 \ {01100, 01000}}
{1xx1x \ {11x10, 11010, 1x111}, 10x10 \ {10110}}
{}

{}
{0x010 \ {01010}, xx101 \ {11101, 00101, 01101}}
{}

{000xx \ {000x0, 0001x, 00011}}
{x11xx \ {x1110, 111xx, x11x0}, x101x \ {x1011, 11011}}
{
   x11xx000xx \ {
   x11x1000x0, x11x0000x1, x111x0000x, x110x0001x, x11xx000x0, x11xx0001x, x11xx00011, x1110000xx, 111xx000xx, x11x0000xx}, x101x0001x \ {
   x101100010, x101000011, x101x00010, x101x0001x, x101x00011, x10110001x, 110110001x}}

{01x1x \ {0111x, 01011}}
{0xxx0 \ {00100, 01110, 0x010}, xx000 \ {0x000, 10000, 10000}}
{
   0xx1001x10 \ {
   0xx1001110, 0111001x10, 0x01001x10}}

{x100x \ {01000, 0100x, 11001}}
{11xx1 \ {11111, 111x1}, x1xx0 \ {11x00, 11100, x1110}}
{
   11x01x1001 \ {
   11x0101001, 11x0111001, 11101x1001}, x1x00x1000 \ {
   x1x0001000, x1x0001000, 11x00x1000, 11100x1000}}

{x1xxx \ {11xxx, 1101x, 0111x}, 1xxx1 \ {1x0x1, 10001, 11x01}}
{x00x1 \ {000x1, 00001, x0001}, xx11x \ {x111x, 0x11x, 0x111}}
{
   x00x1x1xx1 \ {
   x0011x1x01, x0001x1x11, x00x111xx1, x00x111011, x00x101111, 000x1x1xx1, 00001x1xx1, x0001x1xx1}, xx11xx1x1x \ {
   xx111x1x10, xx110x1x11, xx11x11x1x, xx11x1101x, xx11x0111x, x111xx1x1x, 0x11xx1x1x, 0x111x1x1x}, x00x11xxx1 \ {
   x00111xx01, x00011xx11, x00x11x0x1, x00x110001, x00x111x01, 000x11xxx1, 000011xxx1, x00011xxx1}, xx1111xx11 \ {
   xx1111x011, x11111xx11, 0x1111xx11, 0x1111xx11}}

{11xx0 \ {11x10, 11110}, x0010 \ {00010, 10010}}
{x0xx0 \ {x0000, x0100, 10110}, x0xx0 \ {10000, x0100, 10x00}}
{
   x0xx011xx0 \ {
   x0x1011x00, x0x0011x10, x0xx011x10, x0xx011110, x000011xx0, x010011xx0, 1011011xx0}, x0xx011xx0 \ {
   x0x1011x00, x0x0011x10, x0xx011x10, x0xx011110, 1000011xx0, x010011xx0, 10x0011xx0}, x0x10x0010 \ {
   x0x1000010, x0x1010010}}

{x110x \ {x1100, 11100, 0110x}, xxx01 \ {xx101, 00001, 1xx01}}
{xx101 \ {x0101, x1101, 11101}, x101x \ {11010, x1010}}
{
   xx101x1101 \ {
   xx10101101, x0101x1101, x1101x1101, 11101x1101}, xx101xxx01 \ {
   xx101xx101, xx10100001, xx1011xx01, x0101xxx01, x1101xxx01, 11101xxx01}}

{x000x \ {x0001, 1000x, 0000x}, x0xxx \ {00101, 00x0x, x000x}}
{10xx0 \ {10010, 101x0, 101x0}}
{
   10x00x0000 \ {
   10x0010000, 10x0000000, 10100x0000, 10100x0000}, 10xx0x0xx0 \ {
   10x10x0x00, 10x00x0x10, 10xx000x00, 10xx0x0000, 10010x0xx0, 101x0x0xx0, 101x0x0xx0}}

{01xxx \ {01x00, 01x0x, 01000}, x11xx \ {01101, 0111x, 1110x}}
{1xxx1 \ {10x01, 100x1, 1x101}}
{
   1xxx101xx1 \ {
   1xx1101x01, 1xx0101x11, 1xxx101x01, 10x0101xx1, 100x101xx1, 1x10101xx1}, 1xxx1x11x1 \ {
   1xx11x1101, 1xx01x1111, 1xxx101101, 1xxx101111, 1xxx111101, 10x01x11x1, 100x1x11x1, 1x101x11x1}}

{}
{x001x \ {00010, 10011, 0001x}, 0x0x1 \ {0x011, 0x001, 01001}}
{}

{01xx1 \ {011x1, 010x1}, 0xxx0 \ {01110, 00100, 01000}}
{}
{}

{1xxx0 \ {100x0, 10010, 110x0}}
{x0110 \ {00110}}
{
   x01101xx10 \ {
   x011010010, x011010010, x011011010, 001101xx10}}

{10x1x \ {10x11, 10011, 10111}, 0xx0x \ {0xx01, 0x001, 0x000}}
{x0x11 \ {10x11, 10011, x0011}}
{
   x0x1110x11 \ {
   x0x1110x11, x0x1110011, x0x1110111, 10x1110x11, 1001110x11, x001110x11}}

{10x00 \ {10000, 10100}, 11xxx \ {11001, 11111, 111xx}}
{1x1x1 \ {11111, 11101, 10101}}
{
   1x1x111xx1 \ {
   1x11111x01, 1x10111x11, 1x1x111001, 1x1x111111, 1x1x1111x1, 1111111xx1, 1110111xx1, 1010111xx1}}

{0x01x \ {00011, 0101x, 0101x}, 0xx01 \ {01001, 0x001}}
{10xxx \ {10111, 100xx, 10x01}}
{
   10x1x0x01x \ {
   10x110x010, 10x100x011, 10x1x00011, 10x1x0101x, 10x1x0101x, 101110x01x, 1001x0x01x}, 10x010xx01 \ {
   10x0101001, 10x010x001, 100010xx01, 10x010xx01}}

{}
{11xxx \ {11110, 1110x, 11x1x}, x101x \ {x1011, 0101x, 11011}, 01x1x \ {01x10, 0101x, 0111x}}
{}

{01x0x \ {0100x, 01101, 01101}}
{11xx0 \ {11100, 11010, 11110}, xx1x0 \ {00100, 00110, 00110}, 110xx \ {11010, 110x1, 1101x}}
{
   11x0001x00 \ {
   11x0001000, 1110001x00}, xx10001x00 \ {
   xx10001000, 0010001x00}, 1100x01x0x \ {
   1100101x00, 1100001x01, 1100x0100x, 1100x01101, 1100x01101, 1100101x0x}}

{1001x \ {10010, 10011}, x110x \ {01100, x1101}, xx1xx \ {0x10x, 1x11x, 0x101}}
{}
{}

{xx10x \ {00100, 10101, xx101}}
{1x01x \ {1x011, 1001x}}
{}

{xx0x0 \ {01010, 010x0, xx010}}
{1x1x0 \ {1x100, 111x0}}
{
   1x1x0xx0x0 \ {
   1x110xx000, 1x100xx010, 1x1x001010, 1x1x0010x0, 1x1x0xx010, 1x100xx0x0, 111x0xx0x0}}

{00xx0 \ {000x0}}
{}
{}

{}
{xxx11 \ {01111, 10111, 11x11}, x00x1 \ {000x1, 10001, 00011}, x0xx0 \ {00000, x0x10, 10x00}}
{}

{}
{xxx01 \ {0x001, x1x01, 11x01}, 11x0x \ {11000, 11101, 11x00}}
{}

{1x001 \ {10001, 11001}, 011x1 \ {01111}}
{}
{}

{01x0x \ {01x01, 01000}}
{xxx10 \ {xx110, 01010, 01010}}
{}

{0x000 \ {01000, 00000}}
{0x1x0 \ {00100, 01110, 00110}, xx11x \ {x1111, 10110, 0x111}}
{
   0x1000x000 \ {
   0x10001000, 0x10000000, 001000x000}}

{11x0x \ {1110x, 11101, 11000}, 0xx11 \ {01x11, 0x111}}
{10x00 \ {10100}, x0xx0 \ {00x00, x0110, 00000}}
{
   10x0011x00 \ {
   10x0011100, 10x0011000, 1010011x00}, x0x0011x00 \ {
   x0x0011100, x0x0011000, 00x0011x00, 0000011x00}}

{}
{x1x10 \ {11x10, x1110}, 0xx01 \ {00101, 0x101, 01001}, x001x \ {10010, 1001x, x0010}}
{}

{0xx1x \ {00010, 01x10, 0xx10}, 00xx1 \ {00101, 001x1, 00x01}}
{x1x01 \ {11101, 11001, x1001}, xx1xx \ {111x0, 01111, 0x100}}
{
   xx11x0xx1x \ {
   xx1110xx10, xx1100xx11, xx11x00010, xx11x01x10, xx11x0xx10, 111100xx1x, 011110xx1x}, x1x0100x01 \ {
   x1x0100101, x1x0100101, x1x0100x01, 1110100x01, 1100100x01, x100100x01}, xx1x100xx1 \ {
   xx11100x01, xx10100x11, xx1x100101, xx1x1001x1, xx1x100x01, 0111100xx1}}

{xxxxx \ {x1xxx, 1x111, 010x1}, xx0xx \ {11010, 1x01x, 0x0xx}, 01xx1 \ {01101, 01011, 01x01}}
{10x0x \ {10001, 1010x}, 01x0x \ {01100, 01101}}
{
   10x0xxxx0x \ {
   10x01xxx00, 10x00xxx01, 10x0xx1x0x, 10x0x01001, 10001xxx0x, 1010xxxx0x}, 01x0xxxx0x \ {
   01x01xxx00, 01x00xxx01, 01x0xx1x0x, 01x0x01001, 01100xxx0x, 01101xxx0x}, 10x0xxx00x \ {
   10x01xx000, 10x00xx001, 10x0x0x00x, 10001xx00x, 1010xxx00x}, 01x0xxx00x \ {
   01x01xx000, 01x00xx001, 01x0x0x00x, 01100xx00x, 01101xx00x}, 10x0101x01 \ {
   10x0101101, 10x0101x01, 1000101x01, 1010101x01}, 01x0101x01 \ {
   01x0101101, 01x0101x01, 0110101x01}}

{}
{}
{}

{}
{10x10 \ {10110, 10010, 10010}, x10xx \ {110xx, x1000, 11011}}
{}

{00x1x \ {00x10, 0011x, 00011}, 01x01 \ {01001, 01101}, xxxx0 \ {11010, 01x00, 1xx00}}
{xx11x \ {1x110, 0x11x, x0110}, x1x10 \ {11010, x1010, x1010}}
{
   xx11x00x1x \ {
   xx11100x10, xx11000x11, xx11x00x10, xx11x0011x, xx11x00011, 1x11000x1x, 0x11x00x1x, x011000x1x}, x1x1000x10 \ {
   x1x1000x10, x1x1000110, 1101000x10, x101000x10, x101000x10}, xx110xxx10 \ {
   xx11011010, 1x110xxx10, 0x110xxx10, x0110xxx10}, x1x10xxx10 \ {
   x1x1011010, 11010xxx10, x1010xxx10, x1010xxx10}}

{x10x1 \ {01011, 01001, 010x1}, xx110 \ {00110, x1110, 11110}}
{x0x0x \ {00001, 00x0x, 0010x}, xxx11 \ {1xx11, x1111}}
{
   x0x01x1001 \ {
   x0x0101001, x0x0101001, 00001x1001, 00x01x1001, 00101x1001}, xxx11x1011 \ {
   xxx1101011, xxx1101011, 1xx11x1011, x1111x1011}}

{x001x \ {1001x, 00011}, 1x0x0 \ {11010, 10010, 10010}}
{x1xxx \ {01110, 010x0, 01x0x}, 00x01 \ {00101, 00001}, 0xx01 \ {00001}}
{
   x1x1xx001x \ {
   x1x11x0010, x1x10x0011, x1x1x1001x, x1x1x00011, 01110x001x, 01010x001x}, x1xx01x0x0 \ {
   x1x101x000, x1x001x010, x1xx011010, x1xx010010, x1xx010010, 011101x0x0, 010x01x0x0, 01x001x0x0}}

{xx110 \ {11110, x0110}, x101x \ {0101x, x1011, 1101x}}
{xx00x \ {1x000, 11001, 10001}}
{}

{110xx \ {11000, 110x0}, 1xxx0 \ {1x110, 1x100, 1x0x0}}
{0x0x0 \ {0x000, 01010, 010x0}, xx010 \ {1x010, 11010}}
{
   0x0x0110x0 \ {
   0x01011000, 0x00011010, 0x0x011000, 0x0x0110x0, 0x000110x0, 01010110x0, 010x0110x0}, xx01011010 \ {
   xx01011010, 1x01011010, 1101011010}, 0x0x01xxx0 \ {
   0x0101xx00, 0x0001xx10, 0x0x01x110, 0x0x01x100, 0x0x01x0x0, 0x0001xxx0, 010101xxx0, 010x01xxx0}, xx0101xx10 \ {
   xx0101x110, xx0101x010, 1x0101xx10, 110101xx10}}

{x0010 \ {10010}, 011xx \ {01110, 011x1, 011x1}}
{}
{}

{xx100 \ {11100, x0100, 10100}}
{1xx01 \ {11x01, 11001, 1x101}, x0000 \ {10000}}
{
   x0000xx100 \ {
   x000011100, x0000x0100, x000010100, 10000xx100}}

{01xx1 \ {01101, 01111, 01111}, 0x0xx \ {00010, 010x0, 00001}, 10x0x \ {10x01, 1000x, 1000x}}
{xxx00 \ {01x00, 11100, 01000}, 1xxxx \ {1xx01, 1xxx0, 1x101}}
{
   1xxx101xx1 \ {
   1xx1101x01, 1xx0101x11, 1xxx101101, 1xxx101111, 1xxx101111, 1xx0101xx1, 1x10101xx1}, xxx000x000 \ {
   xxx0001000, 01x000x000, 111000x000, 010000x000}, 1xxxx0x0xx \ {
   1xxx10x0x0, 1xxx00x0x1, 1xx1x0x00x, 1xx0x0x01x, 1xxxx00010, 1xxxx010x0, 1xxxx00001, 1xx010x0xx, 1xxx00x0xx, 1x1010x0xx}, xxx0010x00 \ {
   xxx0010000, xxx0010000, 01x0010x00, 1110010x00, 0100010x00}, 1xx0x10x0x \ {
   1xx0110x00, 1xx0010x01, 1xx0x10x01, 1xx0x1000x, 1xx0x1000x, 1xx0110x0x, 1xx0010x0x, 1x10110x0x}}

{1xxxx \ {10001, 11001, 1x101}}
{0x100 \ {01100}}
{
   0x1001xx00 \ {
   011001xx00}}

{00xx1 \ {000x1, 00001, 00111}}
{}
{}

{x1x00 \ {01000, 11100, 11000}}
{0x1x0 \ {01110, 011x0}}
{
   0x100x1x00 \ {
   0x10001000, 0x10011100, 0x10011000, 01100x1x00}}

{0xx10 \ {01010, 00010, 00x10}, 1x00x \ {1100x, 10000, 1000x}}
{xxxx1 \ {00011, 010x1, 1x1x1}}
{
   xxx011x001 \ {
   xxx0111001, xxx0110001, 010011x001, 1x1011x001}}

{xxxxx \ {x1xx0, 11x01, xx1x0}}
{111xx \ {1110x, 111x0, 111x0}}
{
   111xxxxxxx \ {
   111x1xxxx0, 111x0xxxx1, 1111xxxx0x, 1110xxxx1x, 111xxx1xx0, 111xx11x01, 111xxxx1x0, 1110xxxxxx, 111x0xxxxx, 111x0xxxxx}}

{xx00x \ {1x000, 0x000, 1000x}}
{xx10x \ {0110x, x110x, 00101}, xxxxx \ {x11x0, 0x111, xx1xx}}
{
   xx10xxx00x \ {
   xx101xx000, xx100xx001, xx10x1x000, xx10x0x000, xx10x1000x, 0110xxx00x, x110xxx00x, 00101xx00x}, xxx0xxx00x \ {
   xxx01xx000, xxx00xx001, xxx0x1x000, xxx0x0x000, xxx0x1000x, x1100xx00x, xx10xxx00x}}

{1x011 \ {11011, 10011}, 1x0xx \ {110x1, 1x00x, 1x011}}
{x1xxx \ {x1111, x1xx0, 01110}}
{
   x1x111x011 \ {
   x1x1111011, x1x1110011, x11111x011}, x1xxx1x0xx \ {
   x1xx11x0x0, x1xx01x0x1, x1x1x1x00x, x1x0x1x01x, x1xxx110x1, x1xxx1x00x, x1xxx1x011, x11111x0xx, x1xx01x0xx, 011101x0xx}}

{x00x0 \ {00000, x0010}, 0xxx1 \ {00x11, 00011, 01011}}
{x100x \ {1100x, 0100x, x1000}}
{
   x1000x0000 \ {
   x100000000, 11000x0000, 01000x0000, x1000x0000}, x10010xx01 \ {
   110010xx01, 010010xx01}}

{x011x \ {10111, 0011x, 10110}, xx100 \ {1x100, x1100, 11100}}
{x0100 \ {10100, 00100, 00100}}
{
   x0100xx100 \ {
   x01001x100, x0100x1100, x010011100, 10100xx100, 00100xx100, 00100xx100}}

{1x010 \ {11010, 10010, 10010}, xxxxx \ {0x0xx, x1xx1, x0001}}
{xxx01 \ {00x01, x0x01, x1x01}}
{
   xxx01xxx01 \ {
   xxx010x001, xxx01x1x01, xxx01x0001, 00x01xxx01, x0x01xxx01, x1x01xxx01}}

{}
{1xx0x \ {1x10x, 11000, 1xx00}, x0x00 \ {10x00, x0000}}
{}

{xxx01 \ {0xx01, 00101, 01101}}
{xx0x0 \ {x1010, 10000, 1x000}, 0x11x \ {0x110, 01111, 01111}}
{}

{11x10 \ {11010, 11110}, 0010x \ {00101, 00100, 00100}, 11x11 \ {11011}}
{xxx10 \ {10x10, 0xx10, 11010}, x11xx \ {01110, x11x1, 1111x}, xx1xx \ {1x11x, 1x101, x0100}}
{
   xxx1011x10 \ {
   xxx1011010, xxx1011110, 10x1011x10, 0xx1011x10, 1101011x10}, x111011x10 \ {
   x111011010, x111011110, 0111011x10, 1111011x10}, xx11011x10 \ {
   xx11011010, xx11011110, 1x11011x10}, x110x0010x \ {
   x110100100, x110000101, x110x00101, x110x00100, x110x00100, x11010010x}, xx10x0010x \ {
   xx10100100, xx10000101, xx10x00101, xx10x00100, xx10x00100, 1x1010010x, x01000010x}, x111111x11 \ {
   x111111011, x111111x11, 1111111x11}, xx11111x11 \ {
   xx11111011, 1x11111x11}}

{1xx10 \ {1x110, 11110, 11x10}, xx10x \ {x0101, 01101, 0010x}}
{01xxx \ {01x0x, 01100, 0101x}}
{
   01x101xx10 \ {
   01x101x110, 01x1011110, 01x1011x10, 010101xx10}, 01x0xxx10x \ {
   01x01xx100, 01x00xx101, 01x0xx0101, 01x0x01101, 01x0x0010x, 01x0xxx10x, 01100xx10x}}

{}
{10xxx \ {10001, 100x1}}
{}

{11x1x \ {11111, 11011, 11010}, xx000 \ {00000, 10000}}
{xx101 \ {00101, 11101}, 0x100 \ {00100}, x0x1x \ {0011x, x001x, x0010}}
{
   x0x1x11x1x \ {
   x0x1111x10, x0x1011x11, x0x1x11111, x0x1x11011, x0x1x11010, 0011x11x1x, x001x11x1x, x001011x1x}, 0x100xx000 \ {
   0x10000000, 0x10010000, 00100xx000}}

{xxx00 \ {01100, 00x00, 00000}}
{x10x1 \ {11001, x1001, 11011}}
{}

{000xx \ {0000x, 000x1, 000x0}, 11xxx \ {1100x, 11001, 11x00}}
{1xxxx \ {10xxx, 110x0, 111x0}}
{
   1xxxx000xx \ {
   1xxx1000x0, 1xxx0000x1, 1xx1x0000x, 1xx0x0001x, 1xxxx0000x, 1xxxx000x1, 1xxxx000x0, 10xxx000xx, 110x0000xx, 111x0000xx}, 1xxxx11xxx \ {
   1xxx111xx0, 1xxx011xx1, 1xx1x11x0x, 1xx0x11x1x, 1xxxx1100x, 1xxxx11001, 1xxxx11x00, 10xxx11xxx, 110x011xxx, 111x011xxx}}

{0x10x \ {01100, 00101, 0x101}, 1xx10 \ {11110, 1x010, 1x010}}
{1x11x \ {1111x, 10111, 10110}}
{
   1x1101xx10 \ {
   1x11011110, 1x1101x010, 1x1101x010, 111101xx10, 101101xx10}}

{0xx0x \ {01100, 00x01, 00x00}, x01xx \ {10101, 10110, 1010x}}
{011xx \ {0111x, 0110x, 011x1}}
{
   0110x0xx0x \ {
   011010xx00, 011000xx01, 0110x01100, 0110x00x01, 0110x00x00, 0110x0xx0x, 011010xx0x}, 011xxx01xx \ {
   011x1x01x0, 011x0x01x1, 0111xx010x, 0110xx011x, 011xx10101, 011xx10110, 011xx1010x, 0111xx01xx, 0110xx01xx, 011x1x01xx}}

{001x0 \ {00100, 00110}, 1x0xx \ {10011, 11000, 1000x}}
{x011x \ {0011x, 00111}}
{
   x011000110 \ {
   x011000110, 0011000110}, x011x1x01x \ {
   x01111x010, x01101x011, x011x10011, 0011x1x01x, 001111x01x}}

{01xxx \ {01xx1, 01110, 01110}, 0xxx1 \ {01x01, 000x1, 001x1}}
{00xx1 \ {001x1, 00001}}
{
   00xx101xx1 \ {
   00x1101x01, 00x0101x11, 00xx101xx1, 001x101xx1, 0000101xx1}, 00xx10xxx1 \ {
   00x110xx01, 00x010xx11, 00xx101x01, 00xx1000x1, 00xx1001x1, 001x10xxx1, 000010xxx1}}

{0x10x \ {0110x, 00100, 00101}}
{1x00x \ {10000, 11000, 10001}, x1x0x \ {01101, 11000, 01x0x}}
{
   1x00x0x10x \ {
   1x0010x100, 1x0000x101, 1x00x0110x, 1x00x00100, 1x00x00101, 100000x10x, 110000x10x, 100010x10x}, x1x0x0x10x \ {
   x1x010x100, x1x000x101, x1x0x0110x, x1x0x00100, x1x0x00101, 011010x10x, 110000x10x, 01x0x0x10x}}

{xxxx0 \ {0xx10, 01x00, x0xx0}, x1x0x \ {01101, 11001, 01000}}
{0xx10 \ {01010, 01110, 00110}, xx110 \ {01110, 11110, 10110}}
{
   0xx10xxx10 \ {
   0xx100xx10, 0xx10x0x10, 01010xxx10, 01110xxx10, 00110xxx10}, xx110xxx10 \ {
   xx1100xx10, xx110x0x10, 01110xxx10, 11110xxx10, 10110xxx10}}

{xxxxx \ {1xxxx, x0111, 0x0x1}, 0x01x \ {0001x, 01010, 01010}}
{x0x11 \ {10x11, 00111, 10011}}
{
   x0x11xxx11 \ {
   x0x111xx11, x0x11x0111, x0x110x011, 10x11xxx11, 00111xxx11, 10011xxx11}, x0x110x011 \ {
   x0x1100011, 10x110x011, 001110x011, 100110x011}}

{11xx1 \ {11x11, 110x1}}
{00x1x \ {00x10, 0011x, 00111}}
{
   00x1111x11 \ {
   00x1111x11, 00x1111011, 0011111x11, 0011111x11}}

{110x1 \ {11011}, 001x0 \ {00110, 00100, 00100}}
{xx01x \ {x1010, x101x, xx010}, 1x01x \ {1x011, 1x010, 10010}, xxx0x \ {11001, 01000, 01x00}}
{
   xx01111011 \ {
   xx01111011, x101111011}, 1x01111011 \ {
   1x01111011, 1x01111011}, xxx0111001 \ {
   1100111001}, xx01000110 \ {
   xx01000110, x101000110, x101000110, xx01000110}, 1x01000110 \ {
   1x01000110, 1x01000110, 1001000110}, xxx0000100 \ {
   xxx0000100, xxx0000100, 0100000100, 01x0000100}}

{x1xx0 \ {11x00, 01x00}, xx101 \ {0x101, 10101, 00101}}
{001x0 \ {00100, 00110, 00110}, x1x10 \ {01010, 11110}}
{
   001x0x1xx0 \ {
   00110x1x00, 00100x1x10, 001x011x00, 001x001x00, 00100x1xx0, 00110x1xx0, 00110x1xx0}, x1x10x1x10 \ {
   01010x1x10, 11110x1x10}}

{x1x01 \ {11x01, 11001, 11001}, 11xx0 \ {11x00, 11000, 110x0}, xx10x \ {11101, 01100, 00100}}
{xxxx1 \ {1x1x1, 011x1, xxx11}, x11x1 \ {11101, 01101, 11111}}
{
   xxx01x1x01 \ {
   xxx0111x01, xxx0111001, xxx0111001, 1x101x1x01, 01101x1x01}, x1101x1x01 \ {
   x110111x01, x110111001, x110111001, 11101x1x01, 01101x1x01}, xxx01xx101 \ {
   xxx0111101, 1x101xx101, 01101xx101}, x1101xx101 \ {
   x110111101, 11101xx101, 01101xx101}}

{xx1x0 \ {111x0, 1x100, 0x1x0}, 1x0xx \ {1100x, 1x0x0, 11011}, xxxx1 \ {01011, 10111, 01xx1}}
{1xxxx \ {1x1xx, 1111x, 10x00}}
{
   1xxx0xx1x0 \ {
   1xx10xx100, 1xx00xx110, 1xxx0111x0, 1xxx01x100, 1xxx00x1x0, 1x1x0xx1x0, 11110xx1x0, 10x00xx1x0}, 1xxxx1x0xx \ {
   1xxx11x0x0, 1xxx01x0x1, 1xx1x1x00x, 1xx0x1x01x, 1xxxx1100x, 1xxxx1x0x0, 1xxxx11011, 1x1xx1x0xx, 1111x1x0xx, 10x001x0xx}, 1xxx1xxxx1 \ {
   1xx11xxx01, 1xx01xxx11, 1xxx101011, 1xxx110111, 1xxx101xx1, 1x1x1xxxx1, 11111xxxx1}}

{xx011 \ {01011, x1011, 00011}, x01xx \ {001xx, 0011x, 1010x}}
{x11xx \ {x11x1, 111xx, 011x0}, x0x1x \ {10x11, 10010}}
{
   x1111xx011 \ {
   x111101011, x1111x1011, x111100011, x1111xx011, 11111xx011}, x0x11xx011 \ {
   x0x1101011, x0x11x1011, x0x1100011, 10x11xx011}, x11xxx01xx \ {
   x11x1x01x0, x11x0x01x1, x111xx010x, x110xx011x, x11xx001xx, x11xx0011x, x11xx1010x, x11x1x01xx, 111xxx01xx, 011x0x01xx}, x0x1xx011x \ {
   x0x11x0110, x0x10x0111, x0x1x0011x, x0x1x0011x, 10x11x011x, 10010x011x}}

{x000x \ {0000x, 00001, x0000}, 0000x \ {00000}}
{00x1x \ {00011, 00111}}
{}

{x111x \ {11111}}
{011xx \ {011x0, 0111x, 0111x}, x1xx1 \ {x1x11, x1111, 11111}}
{
   0111xx111x \ {
   01111x1110, 01110x1111, 0111x11111, 01110x111x, 0111xx111x, 0111xx111x}, x1x11x1111 \ {
   x1x1111111, x1x11x1111, x1111x1111, 11111x1111}}

{1xx1x \ {11x1x, 10111}, x011x \ {0011x, 1011x, 10111}, x110x \ {x1100, x1101, 01100}}
{0xx11 \ {01x11, 01111, 00111}, x1001 \ {11001, 01001}}
{
   0xx111xx11 \ {
   0xx1111x11, 0xx1110111, 01x111xx11, 011111xx11, 001111xx11}, 0xx11x0111 \ {
   0xx1100111, 0xx1110111, 0xx1110111, 01x11x0111, 01111x0111, 00111x0111}, x1001x1101 \ {
   x1001x1101, 11001x1101, 01001x1101}}

{1x10x \ {10101, 10100, 11100}, 00xx0 \ {00100, 00x00, 00x00}}
{xx110 \ {11110, 1x110, 00110}, 0x0xx \ {01000, 010xx, 010x1}, x01x0 \ {001x0, 101x0}}
{
   0x00x1x10x \ {
   0x0011x100, 0x0001x101, 0x00x10101, 0x00x10100, 0x00x11100, 010001x10x, 0100x1x10x, 010011x10x}, x01001x100 \ {
   x010010100, x010011100, 001001x100, 101001x100}, xx11000x10 \ {
   1111000x10, 1x11000x10, 0011000x10}, 0x0x000xx0 \ {
   0x01000x00, 0x00000x10, 0x0x000100, 0x0x000x00, 0x0x000x00, 0100000xx0, 010x000xx0}, x01x000xx0 \ {
   x011000x00, x010000x10, x01x000100, x01x000x00, x01x000x00, 001x000xx0, 101x000xx0}}

{xxx10 \ {11x10, 10110, x0010}}
{01x00 \ {01000}}
{}

{}
{xx111 \ {x1111, 1x111, 11111}}
{}

{x0101 \ {00101, 10101}, x1x01 \ {01101, x1101, x1101}}
{xxx1x \ {1xx1x, xxx10, x0x1x}, 0xx10 \ {01110, 00110, 00110}}
{}

{0x11x \ {0111x, 0x111, 0011x}, 0xx0x \ {0010x, 00000, 01100}}
{}
{}

{1xxx1 \ {10x11, 1xx11, 100x1}, x0011 \ {10011, 00011}}
{}
{}

{}
{01x11 \ {01111, 01011}, 0x11x \ {0111x}}
{}

{1xx10 \ {1x010, 1x110, 10010}, xx00x \ {0x00x, 10000, 0x000}}
{x1x0x \ {01000, x1001, x100x}}
{
   x1x0xxx00x \ {
   x1x01xx000, x1x00xx001, x1x0x0x00x, x1x0x10000, x1x0x0x000, 01000xx00x, x1001xx00x, x100xxx00x}}

{0xx11 \ {00111, 01011, 01x11}, 0x1xx \ {00110, 00100, 001x1}}
{01xx1 \ {01111, 01011, 01x11}, xxx10 \ {11x10, 0x110, x1110}}
{
   01x110xx11 \ {
   01x1100111, 01x1101011, 01x1101x11, 011110xx11, 010110xx11, 01x110xx11}, 01xx10x1x1 \ {
   01x110x101, 01x010x111, 01xx1001x1, 011110x1x1, 010110x1x1, 01x110x1x1}, xxx100x110 \ {
   xxx1000110, 11x100x110, 0x1100x110, x11100x110}}

{1x000 \ {11000, 10000, 10000}, 00xxx \ {00100, 0000x}}
{xxx1x \ {x0011, 10x11, x001x}, x1xx1 \ {x1111, x11x1, 01101}}
{
   xxx1x00x1x \ {
   xxx1100x10, xxx1000x11, x001100x1x, 10x1100x1x, x001x00x1x}, x1xx100xx1 \ {
   x1x1100x01, x1x0100x11, x1xx100001, x111100xx1, x11x100xx1, 0110100xx1}}

{1100x \ {11001, 11000}, 0x1x1 \ {01111, 001x1, 00111}}
{xx01x \ {x101x, 11011, x0010}, xx1x0 \ {1x110, 0x110}}
{
   xx10011000 \ {
   xx10011000}, xx0110x111 \ {
   xx01101111, xx01100111, xx01100111, x10110x111, 110110x111}}

{1110x \ {11101, 11100, 11100}}
{010x1 \ {01011, 01001}, 1xx1x \ {11110, 11011, 1x110}}
{
   0100111101 \ {
   0100111101, 0100111101}}

{10x01 \ {10001}}
{x00xx \ {x0010, 000xx, 10011}, x1x00 \ {11100, 01x00}}
{
   x000110x01 \ {
   x000110001, 0000110x01}}

{001x0 \ {00100, 00110}}
{11xxx \ {11100, 1101x}, xx101 \ {x1101, 1x101, 10101}, 10x10 \ {10110}}
{
   11xx0001x0 \ {
   11x1000100, 11x0000110, 11xx000100, 11xx000110, 11100001x0, 11010001x0}, 10x1000110 \ {
   10x1000110, 1011000110}}

{}
{01x01 \ {01001}}
{}

{x0xx1 \ {x01x1, x0001, 00xx1}, xx1x1 \ {00111, 10111, 1x1x1}}
{x11xx \ {x1111, 0111x, 0110x}, 11x0x \ {1100x, 11101}}
{
   x11x1x0xx1 \ {
   x1111x0x01, x1101x0x11, x11x1x01x1, x11x1x0001, x11x100xx1, x1111x0xx1, 01111x0xx1, 01101x0xx1}, 11x01x0x01 \ {
   11x01x0101, 11x01x0001, 11x0100x01, 11001x0x01, 11101x0x01}, x11x1xx1x1 \ {
   x1111xx101, x1101xx111, x11x100111, x11x110111, x11x11x1x1, x1111xx1x1, 01111xx1x1, 01101xx1x1}, 11x01xx101 \ {
   11x011x101, 11001xx101, 11101xx101}}

{00xx1 \ {00001, 00x01, 00111}}
{100xx \ {10010, 1000x, 10000}, 0xx00 \ {00000, 00100, 01000}, xxxx1 \ {x1x01, 00101, 11xx1}}
{
   100x100xx1 \ {
   1001100x01, 1000100x11, 100x100001, 100x100x01, 100x100111, 1000100xx1}, xxxx100xx1 \ {
   xxx1100x01, xxx0100x11, xxxx100001, xxxx100x01, xxxx100111, x1x0100xx1, 0010100xx1, 11xx100xx1}}

{x00xx \ {x0010, 1001x, x0000}, 010x1 \ {01011, 01001}}
{x0x1x \ {10x1x, x0010, x001x}, 0111x \ {01110, 01111}}
{
   x0x1xx001x \ {
   x0x11x0010, x0x10x0011, x0x1xx0010, x0x1x1001x, 10x1xx001x, x0010x001x, x001xx001x}, 0111xx001x \ {
   01111x0010, 01110x0011, 0111xx0010, 0111x1001x, 01110x001x, 01111x001x}, x0x1101011 \ {
   x0x1101011, 10x1101011, x001101011}, 0111101011 \ {
   0111101011, 0111101011}}

{1xxx1 \ {10101, 100x1, 11xx1}, x0101 \ {10101, 00101}}
{0x00x \ {01000, 0x001, 0100x}}
{
   0x0011xx01 \ {
   0x00110101, 0x00110001, 0x00111x01, 0x0011xx01, 010011xx01}, 0x001x0101 \ {
   0x00110101, 0x00100101, 0x001x0101, 01001x0101}}

{10x0x \ {10x01, 10001}}
{0x1x1 \ {01101, 0x101, 0x101}}
{
   0x10110x01 \ {
   0x10110x01, 0x10110001, 0110110x01, 0x10110x01, 0x10110x01}}

{11xx1 \ {11001, 11011}, xx0x0 \ {1x0x0, x0010, x00x0}}
{1xx01 \ {11x01, 10x01, 10101}, x0xxx \ {10101, x000x, 10xx1}, xx10x \ {01100, 01101, 0110x}}
{
   1xx0111x01 \ {
   1xx0111001, 11x0111x01, 10x0111x01, 1010111x01}, x0xx111xx1 \ {
   x0x1111x01, x0x0111x11, x0xx111001, x0xx111011, 1010111xx1, x000111xx1, 10xx111xx1}, xx10111x01 \ {
   xx10111001, 0110111x01, 0110111x01}, x0xx0xx0x0 \ {
   x0x10xx000, x0x00xx010, x0xx01x0x0, x0xx0x0010, x0xx0x00x0, x0000xx0x0}, xx100xx000 \ {
   xx1001x000, xx100x0000, 01100xx000, 01100xx000}}

{xxx1x \ {00110, xx111, x001x}}
{00x11 \ {00111, 00011}, 0xxx0 \ {01x10, 00100}, x010x \ {10101, x0100, 00100}}
{
   00x11xxx11 \ {
   00x11xx111, 00x11x0011, 00111xxx11, 00011xxx11}, 0xx10xxx10 \ {
   0xx1000110, 0xx10x0010, 01x10xxx10}}

{0xxx0 \ {00000, 0x110, 00110}}
{x11x0 \ {x1110, 01110, x1100}, x00x1 \ {00001, 10001}}
{
   x11x00xxx0 \ {
   x11100xx00, x11000xx10, x11x000000, x11x00x110, x11x000110, x11100xxx0, 011100xxx0, x11000xxx0}}

{}
{0x1x0 \ {011x0, 01110, 00100}}
{}

{1x0x1 \ {110x1, 100x1, 10001}}
{00x10 \ {00010, 00110}, x10xx \ {x1011, 11001, 01010}}
{
   x10x11x0x1 \ {
   x10111x001, x10011x011, x10x1110x1, x10x1100x1, x10x110001, x10111x0x1, 110011x0x1}}

{111x0 \ {11100}, 0x1xx \ {0010x, 01101, 011x0}}
{xx0x0 \ {x0000, 0x010, x1000}}
{
   xx0x0111x0 \ {
   xx01011100, xx00011110, xx0x011100, x0000111x0, 0x010111x0, x1000111x0}, xx0x00x1x0 \ {
   xx0100x100, xx0000x110, xx0x000100, xx0x0011x0, x00000x1x0, 0x0100x1x0, x10000x1x0}}

{x0x1x \ {x0111, 0001x, 1011x}, 111x0 \ {11110, 11100, 11100}}
{}
{}

{x0x00 \ {00x00, x0000, x0100}, 0x101 \ {01101}}
{1xxxx \ {10x11, 1x101, 10x1x}, 0x1x0 \ {011x0, 0x110}}
{
   1xx00x0x00 \ {
   1xx0000x00, 1xx00x0000, 1xx00x0100}, 0x100x0x00 \ {
   0x10000x00, 0x100x0000, 0x100x0100, 01100x0x00}, 1xx010x101 \ {
   1xx0101101, 1x1010x101}}

{xx110 \ {10110, 01110, 0x110}}
{1111x \ {11110, 11111}}
{
   11110xx110 \ {
   1111010110, 1111001110, 111100x110, 11110xx110}}

{x10xx \ {110xx, 1100x, 110x0}, xx0xx \ {x00x1, xx010, x10x1}}
{0011x \ {00111}, xx0x0 \ {100x0, 01000, 1x010}, 0xx0x \ {0x101, 01100, 00001}}
{
   0011xx101x \ {
   00111x1010, 00110x1011, 0011x1101x, 0011x11010, 00111x101x}, xx0x0x10x0 \ {
   xx010x1000, xx000x1010, xx0x0110x0, xx0x011000, xx0x0110x0, 100x0x10x0, 01000x10x0, 1x010x10x0}, 0xx0xx100x \ {
   0xx01x1000, 0xx00x1001, 0xx0x1100x, 0xx0x1100x, 0xx0x11000, 0x101x100x, 01100x100x, 00001x100x}, 0011xxx01x \ {
   00111xx010, 00110xx011, 0011xx0011, 0011xxx010, 0011xx1011, 00111xx01x}, xx0x0xx0x0 \ {
   xx010xx000, xx000xx010, xx0x0xx010, 100x0xx0x0, 01000xx0x0, 1x010xx0x0}, 0xx0xxx00x \ {
   0xx01xx000, 0xx00xx001, 0xx0xx0001, 0xx0xx1001, 0x101xx00x, 01100xx00x, 00001xx00x}}

{x1x10 \ {01110, 11110, x1010}, x1xxx \ {1111x, x1xx0, x1011}}
{x1011 \ {11011, 01011}, 10x0x \ {1000x, 10001, 10x00}, 10x1x \ {10x11, 10x10, 10111}}
{
   10x10x1x10 \ {
   10x1001110, 10x1011110, 10x10x1010, 10x10x1x10}, x1011x1x11 \ {
   x101111111, x1011x1011, 11011x1x11, 01011x1x11}, 10x0xx1x0x \ {
   10x01x1x00, 10x00x1x01, 10x0xx1x00, 1000xx1x0x, 10001x1x0x, 10x00x1x0x}, 10x1xx1x1x \ {
   10x11x1x10, 10x10x1x11, 10x1x1111x, 10x1xx1x10, 10x1xx1011, 10x11x1x1x, 10x10x1x1x, 10111x1x1x}}

{0110x \ {01100, 01101}, x1x00 \ {x1100, 01000}}
{00xx0 \ {001x0, 00010, 00x00}, 00xx1 \ {00x11, 00111, 00001}}
{
   00x0001100 \ {
   00x0001100, 0010001100, 00x0001100}, 00x0101101 \ {
   00x0101101, 0000101101}, 00x00x1x00 \ {
   00x00x1100, 00x0001000, 00100x1x00, 00x00x1x00}}

{x11xx \ {1110x, 111xx, x11x0}, 1x1x1 \ {11101, 11111, 10111}}
{x011x \ {00110, 0011x, x0111}, 011x1 \ {01101}}
{
   x011xx111x \ {
   x0111x1110, x0110x1111, x011x1111x, x011xx1110, 00110x111x, 0011xx111x, x0111x111x}, 011x1x11x1 \ {
   01111x1101, 01101x1111, 011x111101, 011x1111x1, 01101x11x1}, x01111x111 \ {
   x011111111, x011110111, 001111x111, x01111x111}, 011x11x1x1 \ {
   011111x101, 011011x111, 011x111101, 011x111111, 011x110111, 011011x1x1}}

{1x0x1 \ {11001, 1x011, 1x011}, x001x \ {10010, 0001x}}
{0001x \ {00011, 00010}, 00x10 \ {00010, 00110}}
{
   000111x011 \ {
   000111x011, 000111x011, 000111x011}, 0001xx001x \ {
   00011x0010, 00010x0011, 0001x10010, 0001x0001x, 00011x001x, 00010x001x}, 00x10x0010 \ {
   00x1010010, 00x1000010, 00010x0010, 00110x0010}}

{01x01 \ {01001, 01101}}
{01x0x \ {01101, 0100x}}
{
   01x0101x01 \ {
   01x0101001, 01x0101101, 0110101x01, 0100101x01}}

{xx11x \ {x1111, 1x11x, x0111}, x00x1 \ {x0001, 10011, 00001}, x10xx \ {0100x, x100x, x1010}}
{xx0xx \ {10010, 0x00x, x100x}, 0x00x \ {0x000, 0x001, 01000}, 11xx0 \ {11010, 111x0, 11110}}
{
   xx01xxx11x \ {
   xx011xx110, xx010xx111, xx01xx1111, xx01x1x11x, xx01xx0111, 10010xx11x}, 11x10xx110 \ {
   11x101x110, 11010xx110, 11110xx110, 11110xx110}, xx0x1x00x1 \ {
   xx011x0001, xx001x0011, xx0x1x0001, xx0x110011, xx0x100001, 0x001x00x1, x1001x00x1}, 0x001x0001 \ {
   0x001x0001, 0x00100001, 0x001x0001}, xx0xxx10xx \ {
   xx0x1x10x0, xx0x0x10x1, xx01xx100x, xx00xx101x, xx0xx0100x, xx0xxx100x, xx0xxx1010, 10010x10xx, 0x00xx10xx, x100xx10xx}, 0x00xx100x \ {
   0x001x1000, 0x000x1001, 0x00x0100x, 0x00xx100x, 0x000x100x, 0x001x100x, 01000x100x}, 11xx0x10x0 \ {
   11x10x1000, 11x00x1010, 11xx001000, 11xx0x1000, 11xx0x1010, 11010x10x0, 111x0x10x0, 11110x10x0}}

{}
{100xx \ {10011, 10001, 1001x}}
{}

{10x1x \ {10010, 10x11, 10011}, 010x1 \ {01011, 01001}}
{10x10 \ {10110, 10010}}
{
   10x1010x10 \ {
   10x1010010, 1011010x10, 1001010x10}}

{}
{0x0x0 \ {00010, 01000, 010x0}}
{}

{x1001 \ {01001, 11001, 11001}, xx001 \ {01001, x0001, 1x001}}
{0x01x \ {0x011, 01010}}
{}

{x1x1x \ {1111x, 11110, 01011}}
{0x1x0 \ {01100, 01110, 011x0}, x0xxx \ {x00x1, 10010, 000xx}}
{
   0x110x1x10 \ {
   0x11011110, 0x11011110, 01110x1x10, 01110x1x10}, x0x1xx1x1x \ {
   x0x11x1x10, x0x10x1x11, x0x1x1111x, x0x1x11110, x0x1x01011, x0011x1x1x, 10010x1x1x, 0001xx1x1x}}

{xx0x0 \ {0x0x0, 01000, xx010}}
{1x001 \ {11001, 10001, 10001}}
{}

{x000x \ {x0000, x0001, x0001}, 1x0x1 \ {10001, 11001, 1x001}}
{0xx01 \ {01x01, 00001, 01101}, x1xx0 \ {11x10, 01100, x11x0}, xx10x \ {0x101, 1x10x, 11101}}
{
   0xx01x0001 \ {
   0xx01x0001, 0xx01x0001, 01x01x0001, 00001x0001, 01101x0001}, x1x00x0000 \ {
   x1x00x0000, 01100x0000, x1100x0000}, xx10xx000x \ {
   xx101x0000, xx100x0001, xx10xx0000, xx10xx0001, xx10xx0001, 0x101x000x, 1x10xx000x, 11101x000x}, 0xx011x001 \ {
   0xx0110001, 0xx0111001, 0xx011x001, 01x011x001, 000011x001, 011011x001}, xx1011x001 \ {
   xx10110001, xx10111001, xx1011x001, 0x1011x001, 1x1011x001, 111011x001}}

{00xx0 \ {00110, 00x00}}
{00xx0 \ {001x0, 00100, 000x0}, 1010x \ {10100, 10101}, x10xx \ {x1000, x10x0, 110x0}}
{
   00xx000xx0 \ {
   00x1000x00, 00x0000x10, 00xx000110, 00xx000x00, 001x000xx0, 0010000xx0, 000x000xx0}, 1010000x00 \ {
   1010000x00, 1010000x00}, x10x000xx0 \ {
   x101000x00, x100000x10, x10x000110, x10x000x00, x100000xx0, x10x000xx0, 110x000xx0}}

{x00xx \ {1000x, 100x0, 0001x}, x1xx1 \ {111x1, x1011, 11xx1}, 00xx1 \ {00101, 000x1, 001x1}}
{0x10x \ {0110x, 0010x, 00100}, x0101 \ {10101, 00101}, x10xx \ {11011, 11010, x10x0}}
{
   0x10xx000x \ {
   0x101x0000, 0x100x0001, 0x10x1000x, 0x10x10000, 0110xx000x, 0010xx000x, 00100x000x}, x0101x0001 \ {
   x010110001, 10101x0001, 00101x0001}, x10xxx00xx \ {
   x10x1x00x0, x10x0x00x1, x101xx000x, x100xx001x, x10xx1000x, x10xx100x0, x10xx0001x, 11011x00xx, 11010x00xx, x10x0x00xx}, 0x101x1x01 \ {
   0x10111101, 0x10111x01, 01101x1x01, 00101x1x01}, x0101x1x01 \ {
   x010111101, x010111x01, 10101x1x01, 00101x1x01}, x10x1x1xx1 \ {
   x1011x1x01, x1001x1x11, x10x1111x1, x10x1x1011, x10x111xx1, 11011x1xx1}, 0x10100x01 \ {
   0x10100101, 0x10100001, 0x10100101, 0110100x01, 0010100x01}, x010100x01 \ {
   x010100101, x010100001, x010100101, 1010100x01, 0010100x01}, x10x100xx1 \ {
   x101100x01, x100100x11, x10x100101, x10x1000x1, x10x1001x1, 1101100xx1}}

{}
{x0x10 \ {00110, x0110}, 0xx11 \ {00011, 01x11}}
{}

{}
{x10x1 \ {01001, x1011, 01011}, 0xx01 \ {0x001, 00101, 01101}}
{}

{1x110 \ {10110, 11110, 11110}}
{x11x1 \ {11101, x1101, x1101}}
{}

{1x11x \ {11110, 10111, 11111}}
{1xxx0 \ {1x000, 10x00, 110x0}}
{
   1xx101x110 \ {
   1xx1011110, 110101x110}}

{}
{x0xx1 \ {10101, 100x1, x0101}, 1x0xx \ {1001x, 11010}}
{}

{xxxx1 \ {01101, 01001, xx0x1}, 00x10 \ {00110, 00010, 00010}}
{0xx10 \ {00010, 01x10, 01010}, 1x010 \ {11010, 10010}}
{
   0xx1000x10 \ {
   0xx1000110, 0xx1000010, 0xx1000010, 0001000x10, 01x1000x10, 0101000x10}, 1x01000x10 \ {
   1x01000110, 1x01000010, 1x01000010, 1101000x10, 1001000x10}}

{01x1x \ {01x11, 01011}}
{00xx1 \ {001x1, 00101, 00111}, x101x \ {11010, 11011}}
{
   00x1101x11 \ {
   00x1101x11, 00x1101011, 0011101x11, 0011101x11}, x101x01x1x \ {
   x101101x10, x101001x11, x101x01x11, x101x01011, 1101001x1x, 1101101x1x}}

{}
{}
{}

{}
{x000x \ {10001, 1000x, 10000}}
{}

{00xxx \ {00111, 00011, 00x1x}, 010x1 \ {01001, 01011}}
{xxx11 \ {x1111, x0x11, 0x011}, 1x0x1 \ {100x1, 110x1, 10001}}
{
   xxx1100x11 \ {
   xxx1100111, xxx1100011, xxx1100x11, x111100x11, x0x1100x11, 0x01100x11}, 1x0x100xx1 \ {
   1x01100x01, 1x00100x11, 1x0x100111, 1x0x100011, 1x0x100x11, 100x100xx1, 110x100xx1, 1000100xx1}, xxx1101011 \ {
   xxx1101011, x111101011, x0x1101011, 0x01101011}, 1x0x1010x1 \ {
   1x01101001, 1x00101011, 1x0x101001, 1x0x101011, 100x1010x1, 110x1010x1, 10001010x1}}

{x0x1x \ {00110, 1011x, x0011}}
{}
{}

{01x1x \ {01x10, 01111, 01111}, x0x01 \ {10001, 10101, x0101}}
{x110x \ {11101, 01100}, xxx01 \ {11001, 0x101, 01101}}
{
   x1101x0x01 \ {
   x110110001, x110110101, x1101x0101, 11101x0x01}, xxx01x0x01 \ {
   xxx0110001, xxx0110101, xxx01x0101, 11001x0x01, 0x101x0x01, 01101x0x01}}

{1xx0x \ {1x000, 11100, 10000}, 1x01x \ {10011, 1001x}}
{x11xx \ {111xx, x110x, x11x0}}
{
   x110x1xx0x \ {
   x11011xx00, x11001xx01, x110x1x000, x110x11100, x110x10000, 1110x1xx0x, x110x1xx0x, x11001xx0x}, x111x1x01x \ {
   x11111x010, x11101x011, x111x10011, x111x1001x, 1111x1x01x, x11101x01x}}

{}
{}
{}

{xx010 \ {11010, 0x010}}
{xxx10 \ {10110, 10x10, x1010}, 1x011 \ {11011, 10011}}
{
   xxx10xx010 \ {
   xxx1011010, xxx100x010, 10110xx010, 10x10xx010, x1010xx010}}

{0x0xx \ {0101x, 01011, 010x0}, 1x001 \ {10001, 11001, 11001}}
{xx0x1 \ {x10x1, 010x1, 01001}}
{
   xx0x10x0x1 \ {
   xx0110x001, xx0010x011, xx0x101011, xx0x101011, x10x10x0x1, 010x10x0x1, 010010x0x1}, xx0011x001 \ {
   xx00110001, xx00111001, xx00111001, x10011x001, 010011x001, 010011x001}}

{x0010 \ {10010, 00010}, 10x00 \ {10100, 10000}}
{x1x1x \ {0111x, 01011}, x1xx0 \ {x11x0, 01000, 01110}}
{
   x1x10x0010 \ {
   x1x1010010, x1x1000010, 01110x0010}, x1x0010x00 \ {
   x1x0010100, x1x0010000, x110010x00, 0100010x00}}

{x11x1 \ {111x1, 011x1, 11101}, x0x01 \ {10101, 10x01, x0001}}
{xx10x \ {x010x, x1101, 1x10x}, x11x0 \ {011x0, 11100}}
{
   xx101x1101 \ {
   xx10111101, xx10101101, xx10111101, x0101x1101, x1101x1101, 1x101x1101}, xx101x0x01 \ {
   xx10110101, xx10110x01, xx101x0001, x0101x0x01, x1101x0x01, 1x101x0x01}}

{x1x11 \ {11111, x1111, 11x11}, x1x01 \ {01101, x1101, 01x01}}
{10xx1 \ {10011, 10001, 101x1}}
{
   10x11x1x11 \ {
   10x1111111, 10x11x1111, 10x1111x11, 10011x1x11, 10111x1x11}, 10x01x1x01 \ {
   10x0101101, 10x01x1101, 10x0101x01, 10001x1x01, 10101x1x01}}

{xxxx1 \ {0x1x1, 0xxx1, xx0x1}, 1xxxx \ {11xxx, 1x101, 110xx}, 10xx1 \ {10x11, 101x1, 101x1}}
{1101x \ {11011, 11010, 11010}}
{
   11011xxx11 \ {
   110110x111, 110110xx11, 11011xx011, 11011xxx11}, 1101x1xx1x \ {
   110111xx10, 110101xx11, 1101x11x1x, 1101x1101x, 110111xx1x, 110101xx1x, 110101xx1x}, 1101110x11 \ {
   1101110x11, 1101110111, 1101110111, 1101110x11}}

{xxxx0 \ {xxx00, 00010, 01110}, 0x0x0 \ {01000, 00010, 010x0}}
{x1xx0 \ {x1100, 01100, 11x00}, x1010 \ {11010}}
{
   x1xx0xxxx0 \ {
   x1x10xxx00, x1x00xxx10, x1xx0xxx00, x1xx000010, x1xx001110, x1100xxxx0, 01100xxxx0, 11x00xxxx0}, x1010xxx10 \ {
   x101000010, x101001110, 11010xxx10}, x1xx00x0x0 \ {
   x1x100x000, x1x000x010, x1xx001000, x1xx000010, x1xx0010x0, x11000x0x0, 011000x0x0, 11x000x0x0}, x10100x010 \ {
   x101000010, x101001010, 110100x010}}

{}
{x0100 \ {00100}, 00xxx \ {00011, 0011x, 000x1}}
{}

{x10xx \ {010xx, 11010, x1010}, xx100 \ {x0100, 01100}}
{x000x \ {00001, 1000x}, x10x0 \ {11010, x1010, 01010}, xx11x \ {1x11x, 0x110, 1x110}}
{
   x000xx100x \ {
   x0001x1000, x0000x1001, x000x0100x, 00001x100x, 1000xx100x}, x10x0x10x0 \ {
   x1010x1000, x1000x1010, x10x0010x0, x10x011010, x10x0x1010, 11010x10x0, x1010x10x0, 01010x10x0}, xx11xx101x \ {
   xx111x1010, xx110x1011, xx11x0101x, xx11x11010, xx11xx1010, 1x11xx101x, 0x110x101x, 1x110x101x}, x0000xx100 \ {
   x0000x0100, x000001100, 10000xx100}, x1000xx100 \ {
   x1000x0100, x100001100}}

{10xx1 \ {10101, 10x01, 10001}}
{x0xx0 \ {x0110, x0000, 10100}}
{}

{11xxx \ {1110x, 11111, 11100}, 1011x \ {10111, 10110}}
{0x101 \ {00101, 01101}, 10x1x \ {10110, 10010, 10x10}}
{
   0x10111x01 \ {
   0x10111101, 0010111x01, 0110111x01}, 10x1x11x1x \ {
   10x1111x10, 10x1011x11, 10x1x11111, 1011011x1x, 1001011x1x, 10x1011x1x}, 10x1x1011x \ {
   10x1110110, 10x1010111, 10x1x10111, 10x1x10110, 101101011x, 100101011x, 10x101011x}}

{x0xx0 \ {00010, 10000, 00100}, xx0x0 \ {00000, xx000, 010x0}}
{}
{}

{xx1xx \ {10111, x0110, 111x0}}
{00xxx \ {00xx0, 00010}, xxx01 \ {1x001, 01001, 1xx01}}
{
   00xxxxx1xx \ {
   00xx1xx1x0, 00xx0xx1x1, 00x1xxx10x, 00x0xxx11x, 00xxx10111, 00xxxx0110, 00xxx111x0, 00xx0xx1xx, 00010xx1xx}, xxx01xx101 \ {
   1x001xx101, 01001xx101, 1xx01xx101}}

{x1x11 \ {x1011, 01111, 11011}, xx01x \ {10010, 0001x, 0x01x}}
{0x1x1 \ {0x111, 01111, 011x1}, 0xxxx \ {01x0x, 0x10x, 01x00}}
{
   0x111x1x11 \ {
   0x111x1011, 0x11101111, 0x11111011, 0x111x1x11, 01111x1x11, 01111x1x11}, 0xx11x1x11 \ {
   0xx11x1011, 0xx1101111, 0xx1111011}, 0x111xx011 \ {
   0x11100011, 0x1110x011, 0x111xx011, 01111xx011, 01111xx011}, 0xx1xxx01x \ {
   0xx11xx010, 0xx10xx011, 0xx1x10010, 0xx1x0001x, 0xx1x0x01x}}

{xxx00 \ {0xx00, 00000, 10x00}}
{0010x \ {00101, 00100}}
{
   00100xxx00 \ {
   001000xx00, 0010000000, 0010010x00, 00100xxx00}}

{}
{0xx1x \ {0xx10, 00111, 00x1x}, 10x1x \ {1001x}}
{}

{xx100 \ {00100, 0x100, 01100}, 1x011 \ {10011, 11011}}
{11x1x \ {11011, 1111x}}
{
   11x111x011 \ {
   11x1110011, 11x1111011, 110111x011, 111111x011}}

{1x01x \ {10011, 1101x, 1101x}, 0100x \ {01001, 01000}}
{x0xx1 \ {10001, x0011, x0111}, 0xx00 \ {01x00, 00000, 0x000}}
{
   x0x111x011 \ {
   x0x1110011, x0x1111011, x0x1111011, x00111x011, x01111x011}, x0x0101001 \ {
   x0x0101001, 1000101001}, 0xx0001000 \ {
   0xx0001000, 01x0001000, 0000001000, 0x00001000}}

{xxx11 \ {0x011, 00011, xx011}, 1xxx1 \ {1xx11, 10xx1, 11111}}
{x1000 \ {11000, 01000}}
{}

{00xxx \ {0001x, 00110, 001x1}, 1x010 \ {11010, 10010}}
{0110x \ {01100, 01101, 01101}, x1x00 \ {01x00, 01100, 11000}}
{
   0110x00x0x \ {
   0110100x00, 0110000x01, 0110x00101, 0110000x0x, 0110100x0x, 0110100x0x}, x1x0000x00 \ {
   01x0000x00, 0110000x00, 1100000x00}}

{10x1x \ {10x10, 10010, 1011x}, xx00x \ {0x00x, 11001, 01001}, 010x1 \ {01001, 01011, 01011}}
{x010x \ {x0101, 00101}, 110xx \ {11000, 11011}}
{
   1101x10x1x \ {
   1101110x10, 1101010x11, 1101x10x10, 1101x10010, 1101x1011x, 1101110x1x}, x010xxx00x \ {
   x0101xx000, x0100xx001, x010x0x00x, x010x11001, x010x01001, x0101xx00x, 00101xx00x}, 1100xxx00x \ {
   11001xx000, 11000xx001, 1100x0x00x, 1100x11001, 1100x01001, 11000xx00x}, x010101001 \ {
   x010101001, x010101001, 0010101001}, 110x1010x1 \ {
   1101101001, 1100101011, 110x101001, 110x101011, 110x101011, 11011010x1}}

{0x0x0 \ {01010, 00010, 0x010}, 000xx \ {00011, 00000, 0001x}, 1x100 \ {10100, 11100}}
{x1x11 \ {01x11, x1011, 11011}, x111x \ {11110, x1111, 01111}}
{
   x11100x010 \ {
   x111001010, x111000010, x11100x010, 111100x010}, x1x1100011 \ {
   x1x1100011, x1x1100011, 01x1100011, x101100011, 1101100011}, x111x0001x \ {
   x111100010, x111000011, x111x00011, x111x0001x, 111100001x, x11110001x, 011110001x}}

{x1x1x \ {01110, x1110, x1011}}
{x01x0 \ {10110, x0100, 10100}}
{
   x0110x1x10 \ {
   x011001110, x0110x1110, 10110x1x10}}

{}
{}
{}

{1xxx0 \ {1x000, 10110, 10000}}
{1xx10 \ {10x10, 10010, 10010}, x10x0 \ {01000, 110x0, 01010}, x1xx0 \ {111x0, 01000, x1000}}
{
   1xx101xx10 \ {
   1xx1010110, 10x101xx10, 100101xx10, 100101xx10}, x10x01xxx0 \ {
   x10101xx00, x10001xx10, x10x01x000, x10x010110, x10x010000, 010001xxx0, 110x01xxx0, 010101xxx0}, x1xx01xxx0 \ {
   x1x101xx00, x1x001xx10, x1xx01x000, x1xx010110, x1xx010000, 111x01xxx0, 010001xxx0, x10001xxx0}}

{x10xx \ {0101x, 11000, x1000}, 00xxx \ {000x0, 001x1, 001x1}}
{0x1xx \ {00111, 0110x, 0x101}}
{
   0x1xxx10xx \ {
   0x1x1x10x0, 0x1x0x10x1, 0x11xx100x, 0x10xx101x, 0x1xx0101x, 0x1xx11000, 0x1xxx1000, 00111x10xx, 0110xx10xx, 0x101x10xx}, 0x1xx00xxx \ {
   0x1x100xx0, 0x1x000xx1, 0x11x00x0x, 0x10x00x1x, 0x1xx000x0, 0x1xx001x1, 0x1xx001x1, 0011100xxx, 0110x00xxx, 0x10100xxx}}

{x0000 \ {10000, 00000, 00000}, 0x10x \ {01101, 0110x, 0110x}}
{x1xxx \ {01111, 11x1x, 1110x}}
{
   x1x00x0000 \ {
   x1x0010000, x1x0000000, x1x0000000, 11100x0000}, x1x0x0x10x \ {
   x1x010x100, x1x000x101, x1x0x01101, x1x0x0110x, x1x0x0110x, 1110x0x10x}}

{01x1x \ {01x10, 01110, 01110}}
{0100x \ {01000, 01001, 01001}, 1x000 \ {11000, 10000}, 0x110 \ {00110}}
{
   0x11001x10 \ {
   0x11001x10, 0x11001110, 0x11001110, 0011001x10}}

{x00x0 \ {100x0, 00000, x0010}, 1x110 \ {11110}}
{001xx \ {00110, 001x0}, xxx01 \ {0xx01, 11x01, 11001}}
{
   001x0x00x0 \ {
   00110x0000, 00100x0010, 001x0100x0, 001x000000, 001x0x0010, 00110x00x0, 001x0x00x0}, 001101x110 \ {
   0011011110, 001101x110, 001101x110}}

{xxx1x \ {1x11x, 1xx1x, 01010}, 0x0xx \ {00010, 0x00x, 00011}}
{x1xx0 \ {01xx0, x1000, 111x0}}
{
   x1x10xxx10 \ {
   x1x101x110, x1x101xx10, x1x1001010, 01x10xxx10, 11110xxx10}, x1xx00x0x0 \ {
   x1x100x000, x1x000x010, x1xx000010, x1xx00x000, 01xx00x0x0, x10000x0x0, 111x00x0x0}}

{xxx01 \ {x0001, 0xx01, 1x101}, 00x10 \ {00110, 00010}}
{1x1x1 \ {10101, 101x1, 10111}}
{
   1x101xxx01 \ {
   1x101x0001, 1x1010xx01, 1x1011x101, 10101xxx01, 10101xxx01}}

{1x1x1 \ {10111, 10101, 11111}}
{0xx01 \ {01001, 0x001, 01x01}}
{
   0xx011x101 \ {
   0xx0110101, 010011x101, 0x0011x101, 01x011x101}}

{1x1x1 \ {10101, 10111, 10111}, x0xx1 \ {00101, 00x11, 10111}}
{x11x1 \ {x1111, 01111, 01101}}
{
   x11x11x1x1 \ {
   x11111x101, x11011x111, x11x110101, x11x110111, x11x110111, x11111x1x1, 011111x1x1, 011011x1x1}, x11x1x0xx1 \ {
   x1111x0x01, x1101x0x11, x11x100101, x11x100x11, x11x110111, x1111x0xx1, 01111x0xx1, 01101x0xx1}}

{10x1x \ {10010, 10x11, 10x10}, xxxx1 \ {0xxx1, 10xx1, 1x011}}
{110xx \ {11010, 11001}}
{
   1101x10x1x \ {
   1101110x10, 1101010x11, 1101x10010, 1101x10x11, 1101x10x10, 1101010x1x}, 110x1xxxx1 \ {
   11011xxx01, 11001xxx11, 110x10xxx1, 110x110xx1, 110x11x011, 11001xxxx1}}

{}
{10xx0 \ {10000, 10110}, xxx11 \ {01x11, 01011, x0011}, 0xxx0 \ {01xx0, 0xx10, 0x1x0}}
{}

{00xx1 \ {001x1, 00x01, 000x1}, 0x00x \ {0000x, 01000, 0100x}}
{00x0x \ {00001, 00100}, 01xx1 \ {01101, 01x11, 01x11}}
{
   00x0100x01 \ {
   00x0100101, 00x0100x01, 00x0100001, 0000100x01}, 01xx100xx1 \ {
   01x1100x01, 01x0100x11, 01xx1001x1, 01xx100x01, 01xx1000x1, 0110100xx1, 01x1100xx1, 01x1100xx1}, 00x0x0x00x \ {
   00x010x000, 00x000x001, 00x0x0000x, 00x0x01000, 00x0x0100x, 000010x00x, 001000x00x}, 01x010x001 \ {
   01x0100001, 01x0101001, 011010x001}}

{x1x0x \ {01x01, 11x0x, 11x0x}, x1001 \ {01001}}
{00xx1 \ {00111, 00001, 00011}}
{
   00x01x1x01 \ {
   00x0101x01, 00x0111x01, 00x0111x01, 00001x1x01}, 00x01x1001 \ {
   00x0101001, 00001x1001}}

{x1101 \ {01101, 11101}, 101xx \ {101x0, 10110, 10100}}
{001x0 \ {00100}}
{
   001x0101x0 \ {
   0011010100, 0010010110, 001x0101x0, 001x010110, 001x010100, 00100101x0}}

{xx101 \ {11101, x0101, 00101}}
{1011x \ {10111}, x0x10 \ {x0110, x0010, 10x10}}
{}

{0xx10 \ {01110, 00x10, 01010}}
{100xx \ {1000x, 1001x, 10000}, 0x0x1 \ {00001, 010x1, 00011}, 00xxx \ {0010x, 00xx0, 00001}}
{
   100100xx10 \ {
   1001001110, 1001000x10, 1001001010, 100100xx10}, 00x100xx10 \ {
   00x1001110, 00x1000x10, 00x1001010, 00x100xx10}}

{x01x1 \ {101x1, 001x1, 001x1}}
{xx01x \ {x101x, 1x011, 10011}, 0001x \ {00010, 00011, 00011}}
{
   xx011x0111 \ {
   xx01110111, xx01100111, xx01100111, x1011x0111, 1x011x0111, 10011x0111}, 00011x0111 \ {
   0001110111, 0001100111, 0001100111, 00011x0111, 00011x0111}}

{xx011 \ {11011, 0x011, 01011}}
{x10xx \ {110x1, 01010}}
{
   x1011xx011 \ {
   x101111011, x10110x011, x101101011, 11011xx011}}

{x0x01 \ {00001, 00101, 10101}, 1x011 \ {11011, 10011, 10011}, 11xxx \ {11x1x, 11100, 11011}}
{}
{}

{11x0x \ {1110x, 11x00, 11x01}}
{11x00 \ {11100}}
{
   11x0011x00 \ {
   11x0011100, 11x0011x00, 1110011x00}}

{x0xx0 \ {x00x0, x0010, 00000}}
{xx111 \ {01111, 10111, 00111}}
{}

{xxx10 \ {11110, 1x110, 01010}}
{}
{}

{010xx \ {01010, 0101x}, xxxx0 \ {x1010, 10x10, 01x10}}
{}
{}

{1x1x0 \ {11110, 111x0, 10110}, 000xx \ {000x0, 00001}, x0xx0 \ {10110, 10x10, 101x0}}
{1xxx0 \ {11000, 100x0, 11110}}
{
   1xxx01x1x0 \ {
   1xx101x100, 1xx001x110, 1xxx011110, 1xxx0111x0, 1xxx010110, 110001x1x0, 100x01x1x0, 111101x1x0}, 1xxx0000x0 \ {
   1xx1000000, 1xx0000010, 1xxx0000x0, 11000000x0, 100x0000x0, 11110000x0}, 1xxx0x0xx0 \ {
   1xx10x0x00, 1xx00x0x10, 1xxx010110, 1xxx010x10, 1xxx0101x0, 11000x0xx0, 100x0x0xx0, 11110x0xx0}}

{}
{x10xx \ {x10x1, 110x0, 010x1}, x001x \ {x0011, 10010, 10010}}
{}

{xxx1x \ {x111x, 10111, 1x11x}, 01x11 \ {01011}}
{xxx10 \ {0x010, xx110, xx010}, 010x0 \ {01000, 01010}}
{
   xxx10xxx10 \ {
   xxx10x1110, xxx101x110, 0x010xxx10, xx110xxx10, xx010xxx10}, 01010xxx10 \ {
   01010x1110, 010101x110, 01010xxx10}}

{1xx01 \ {10x01, 10101}}
{1011x \ {10110, 10111, 10111}, x1x1x \ {1101x, x111x, 01x10}}
{}

{}
{0x1x0 \ {001x0, 01110, 0x100}, 0xx11 \ {00x11, 00111, 0x011}}
{}

{xxx1x \ {1011x, 1xx1x, 0x110}, x0x11 \ {x0111, 10x11, 00111}}
{0x10x \ {0010x, 01100, 00101}}
{}

{1xx00 \ {10100, 1x100, 11100}}
{1x0xx \ {10010, 100xx, 110xx}, x00x1 \ {x0011, 00001, 00011}}
{
   1x0001xx00 \ {
   1x00010100, 1x0001x100, 1x00011100, 100001xx00, 110001xx00}}

{001x0 \ {00110, 00100, 00100}}
{0xx11 \ {00x11, 01111, 00111}, xx01x \ {x101x, 10011, 1001x}}
{
   xx01000110 \ {
   xx01000110, x101000110, 1001000110}}

{xxx00 \ {1xx00, 00x00, 00100}}
{111xx \ {111x0, 11101, 11101}, 01x0x \ {01000, 0110x, 0100x}}
{
   11100xxx00 \ {
   111001xx00, 1110000x00, 1110000100, 11100xxx00}, 01x00xxx00 \ {
   01x001xx00, 01x0000x00, 01x0000100, 01000xxx00, 01100xxx00, 01000xxx00}}

{xx10x \ {x010x, x0101, 0010x}}
{1x0xx \ {1101x, 10001, 10010}, x1xx1 \ {01x11, 01xx1, 11101}}
{
   1x00xxx10x \ {
   1x001xx100, 1x000xx101, 1x00xx010x, 1x00xx0101, 1x00x0010x, 10001xx10x}, x1x01xx101 \ {
   x1x01x0101, x1x01x0101, x1x0100101, 01x01xx101, 11101xx101}}

{1x11x \ {10111, 11111, 1x110}}
{1x011 \ {10011, 11011}, 1xxxx \ {10xx0, 101x0, 10011}}
{
   1x0111x111 \ {
   1x01110111, 1x01111111, 100111x111, 110111x111}, 1xx1x1x11x \ {
   1xx111x110, 1xx101x111, 1xx1x10111, 1xx1x11111, 1xx1x1x110, 10x101x11x, 101101x11x, 100111x11x}}

{01xx0 \ {011x0, 01x00, 01100}, x00x1 \ {00001, 10011}}
{0x10x \ {0010x, 0x100, 00100}, 1000x \ {10000, 10001, 10001}}
{
   0x10001x00 \ {
   0x10001100, 0x10001x00, 0x10001100, 0010001x00, 0x10001x00, 0010001x00}, 1000001x00 \ {
   1000001100, 1000001x00, 1000001100, 1000001x00}, 0x101x0001 \ {
   0x10100001, 00101x0001}, 10001x0001 \ {
   1000100001, 10001x0001, 10001x0001}}

{00x0x \ {00101, 00x00, 0000x}, 10x01 \ {10101, 10001}}
{1xx01 \ {11101, 1x001}}
{
   1xx0100x01 \ {
   1xx0100101, 1xx0100001, 1110100x01, 1x00100x01}, 1xx0110x01 \ {
   1xx0110101, 1xx0110001, 1110110x01, 1x00110x01}}

{}
{xx00x \ {xx001, x000x, 1000x}}
{}

{111x1 \ {11111}, 1x010 \ {11010, 10010}}
{x1x00 \ {01000, 11100, x1000}, 100xx \ {1001x, 10001, 10001}}
{
   100x1111x1 \ {
   1001111101, 1000111111, 100x111111, 10011111x1, 10001111x1, 10001111x1}, 100101x010 \ {
   1001011010, 1001010010, 100101x010}}

{111xx \ {1110x, 11110, 111x1}, 0xx11 \ {00111, 01011, 00011}, xx00x \ {0x001, x0001, 0100x}}
{x10xx \ {0101x, 1100x}}
{
   x10xx111xx \ {
   x10x1111x0, x10x0111x1, x101x1110x, x100x1111x, x10xx1110x, x10xx11110, x10xx111x1, 0101x111xx, 1100x111xx}, x10110xx11 \ {
   x101100111, x101101011, x101100011, 010110xx11}, x100xxx00x \ {
   x1001xx000, x1000xx001, x100x0x001, x100xx0001, x100x0100x, 1100xxx00x}}

{xxx10 \ {10x10, 0xx10, 00010}}
{x1101 \ {01101, 11101}}
{}

{
   11000110000000000001}

{
   00000000000100011011}

{
   00000000000100011011}

{
   11000110000000000001}

{
   00000000000100011011}

{
   11000000000001000110}

empty
{
   }

false
full
{
   xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}

true
{
   xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx \ {
   xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxx, 
   xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxx, 
   xxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxx, 
   xxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxx, 
   xxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx, 
   xxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx, 
   xxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxx, 
   xxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxx, 
   xxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxx, 
   xxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxx, 
   xxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxx, 
   xxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxx}}

{
   }

{
   }

project
{
   xxxxxxxxxxxxxxxxxx}

{
   }

{
   000000111000000110000000000001, 
   000000100000010000000000001000, 
   000000000100010000000000100000}

{
   000000111000000110, 
   000000100000010000, 
   000000000100010000}

t1 before:{
   000000000100010000000000100000}

t1 after:{
   000000000100010000000000100000, 
   000000111000000110000000000001, 
   000000100000010000000000001000}

delta:{
   xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}

{
   001001001000001001, 
   010001001000001001}

{
   001001001000001001}

filter: (= (:var 0) (:var 1)) {xxx \ {x01, x10}}

filter: (or (= (:var 0) (:var 1)) (= (:var 0) (:var 2))) {xxx \ {001, 110}}

filter: (or (= (:var 0) (:var 1)) (= (:var 0) (:var 2))) {xxx \ {001, 110}}

filter interpreted
filter: true {
   xxxxxxxxxxxxxxxxxx}

filter: false {
   }

filter: (= (:var 0) (:var 2)) {
   xxxxxxxxxxxxxxxxxx \ {
   xxxxxxxx0xxxxxxxx1, 
   xxxxxxxx1xxxxxxxx0, 
   xxxxxxx0xxxxxxxx1x, 
   xxxxxxx1xxxxxxxx0x, 
   xxxxxx0xxxxxxxx1xx, 
   xxxxxx1xxxxxxxx0xx}}

filter: (not (= (:var 0) (:var 2))) {
   xxxxxxxx0xxxxxxxx1, 
   xxxxxxxx1xxxxxxxx0, 
   xxxxxxx0xxxxxxxx1x, 
   xxxxxxx1xxxxxxxx0x, 
   xxxxxx0xxxxxxxx1xx, 
   xxxxxx1xxxxxxxx0xx}

filter: (= (:var 0) #b010) {
   xxxxxxxxxxxxxxx010}

filter: (= ((_ extract 2 1) (:var 0)) #b11) {
   xxxxxxxxxxxxxxx11x}

filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= (:var 3) (:var 4))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0xx1xxxxxxxxxxxx, 
   xx1xx0xxxxxxxxxxxx, 
   x0xx1xxxxxxxxxxxxx, 
   x1xx0xxxxxxxxxxxxx, 
   0xx1xxxxxxxxxxxxxx, 
   1xx0xxxxxxxxxxxxxx}, 
   1xx0xxxxxxxxxxx11x \ {
   1x00x1xxxxxxxxx11x, 
   1x10x0xxxxxxxxx11x, 
   10x01xxxxxxxxxx11x, 
   11x00xxxxxxxxxx11x}, 
   0xx1xxxxxxxxxxx11x \ {
   0x01x1xxxxxxxxx11x, 
   0x11x0xxxxxxxxx11x, 
   00x11xxxxxxxxxx11x, 
   01x10xxxxxxxxxx11x}, 
   x1xx0xxxxxxxxxx11x \ {
   x10x01xxxxxxxxx11x, 
   x11x00xxxxxxxxx11x, 
   01x10xxxxxxxxxx11x, 
   11x00xxxxxxxxxx11x}, 
   11x00xxxxxxxxxx11x \ {
   110001xxxxxxxxx11x, 
   111000xxxxxxxxx11x}, 
   01x10xxxxxxxxxx11x \ {
   010101xxxxxxxxx11x, 
   011100xxxxxxxxx11x}, 
   x0xx1xxxxxxxxxx11x \ {
   x00x11xxxxxxxxx11x, 
   x01x10xxxxxxxxx11x, 
   00x11xxxxxxxxxx11x, 
   10x01xxxxxxxxxx11x}, 
   10x01xxxxxxxxxx11x \ {
   100011xxxxxxxxx11x, 
   101010xxxxxxxxx11x}, 
   00x11xxxxxxxxxx11x \ {
   000111xxxxxxxxx11x, 
   001110xxxxxxxxx11x}, 
   xx1xx0xxxxxxxxx11x \ {
   x01x10xxxxxxxxx11x, 
   x11x00xxxxxxxxx11x, 
   0x11x0xxxxxxxxx11x, 
   1x10x0xxxxxxxxx11x}, 
   1x10x0xxxxxxxxx11x \ {
   101010xxxxxxxxx11x, 
   111000xxxxxxxxx11x}, 
   0x11x0xxxxxxxxx11x \ {
   001110xxxxxxxxx11x, 
   011100xxxxxxxxx11x}, 
   x11x00xxxxxxxxx11x \ {
   011100xxxxxxxxx11x, 
   111000xxxxxxxxx11x}, 
   111000xxxxxxxxx11x, 
   011100xxxxxxxxx11x, 
   x01x10xxxxxxxxx11x \ {
   001110xxxxxxxxx11x, 
   101010xxxxxxxxx11x}, 
   101010xxxxxxxxx11x, 
   001110xxxxxxxxx11x, 
   xx0xx1xxxxxxxxx11x \ {
   x00x11xxxxxxxxx11x, 
   x10x01xxxxxxxxx11x, 
   0x01x1xxxxxxxxx11x, 
   1x00x1xxxxxxxxx11x}, 
   1x00x1xxxxxxxxx11x \ {
   100011xxxxxxxxx11x, 
   110001xxxxxxxxx11x}, 
   0x01x1xxxxxxxxx11x \ {
   000111xxxxxxxxx11x, 
   010101xxxxxxxxx11x}, 
   x10x01xxxxxxxxx11x \ {
   010101xxxxxxxxx11x, 
   110001xxxxxxxxx11x}, 
   110001xxxxxxxxx11x, 
   010101xxxxxxxxx11x, 
   x00x11xxxxxxxxx11x \ {
   000111xxxxxxxxx11x, 
   100011xxxxxxxxx11x}, 
   100011xxxxxxxxx11x, 
   000111xxxxxxxxx11x}

filter: (= ((_ extract 2 1) (:var 3)) ((_ extract 1 0) (:var 4))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0x1xxxxxxxxxxxxx, 
   xx1x0xxxxxxxxxxxxx, 
   x0x1xxxxxxxxxxxxxx, 
   x1x0xxxxxxxxxxxxxx}}

filter: (or (= ((_ extract 2 1) (:var 0)) #b11)
    (= ((_ extract 2 1) (:var 3)) ((_ extract 1 0) (:var 4)))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0x1xxxxxxxxxxxxx, 
   xx1x0xxxxxxxxxxxxx, 
   x0x1xxxxxxxxxxxxxx, 
   x1x0xxxxxxxxxxxxxx}, 
   x1x0xxxxxxxxxxx11x \ {
   x1001xxxxxxxxxx11x, 
   x1100xxxxxxxxxx11x}, 
   x0x1xxxxxxxxxxx11x \ {
   x0011xxxxxxxxxx11x, 
   x0110xxxxxxxxxx11x}, 
   xx1x0xxxxxxxxxx11x \ {
   x0110xxxxxxxxxx11x, 
   x1100xxxxxxxxxx11x}, 
   x1100xxxxxxxxxx11x, 
   x0110xxxxxxxxxx11x, 
   xx0x1xxxxxxxxxx11x \ {
   x0011xxxxxxxxxx11x, 
   x1001xxxxxxxxxx11x}, 
   x1001xxxxxxxxxx11x, 
   x0011xxxxxxxxxx11x}

filter: (or (= (:var 0) (:var 2)) (= (:var 0) (:var 4))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0xxxxx0xxxxxxxx1, 
   x0xxxxxx0xxxxxxx11, 
   x1xxxxxx0xxxxxxx01, 
   0xxxxxxx0xxxxxx1x1, 
   1xxxxxxx0xxxxxx0x1, 
   xx1xxxxx1xxxxxxxx0, 
   x0xxxxxx1xxxxxxx10, 
   x1xxxxxx1xxxxxxx00, 
   0xxxxxxx1xxxxxx1x0, 
   1xxxxxxx1xxxxxx0x0, 
   xx0xxxx0xxxxxxxx11, 
   xx1xxxx0xxxxxxxx10, 
   x0xxxxx0xxxxxxxx1x, 
   0xxxxxx0xxxxxxx11x, 
   1xxxxxx0xxxxxxx01x, 
   xx0xxxx1xxxxxxxx01, 
   xx1xxxx1xxxxxxxx00, 
   x1xxxxx1xxxxxxxx0x, 
   0xxxxxx1xxxxxxx10x, 
   1xxxxxx1xxxxxxx00x, 
   xx0xxx0xxxxxxxx1x1, 
   xx1xxx0xxxxxxxx1x0, 
   x0xxxx0xxxxxxxx11x, 
   x1xxxx0xxxxxxxx10x, 
   0xxxxx0xxxxxxxx1xx, 
   xx0xxx1xxxxxxxx0x1, 
   xx1xxx1xxxxxxxx0x0, 
   x0xxxx1xxxxxxxx01x, 
   x1xxxx1xxxxxxxx00x, 
   1xxxxx1xxxxxxxx0xx}}

filter: (or (= (:var 0) (:var 2)) (= (:var 3) (:var 4))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0xx1xx0xxxxxxxx1, 
   xx1xx0xx0xxxxxxxx1, 
   x0xx1xxx0xxxxxxxx1, 
   x1xx0xxx0xxxxxxxx1, 
   0xx1xxxx0xxxxxxxx1, 
   1xx0xxxx0xxxxxxxx1, 
   xx0xx1xx1xxxxxxxx0, 
   xx1xx0xx1xxxxxxxx0, 
   x0xx1xxx1xxxxxxxx0, 
   x1xx0xxx1xxxxxxxx0, 
   0xx1xxxx1xxxxxxxx0, 
   1xx0xxxx1xxxxxxxx0, 
   xx0xx1x0xxxxxxxx1x, 
   xx1xx0x0xxxxxxxx1x, 
   x0xx1xx0xxxxxxxx1x, 
   x1xx0xx0xxxxxxxx1x, 
   0xx1xxx0xxxxxxxx1x, 
   1xx0xxx0xxxxxxxx1x, 
   xx0xx1x1xxxxxxxx0x, 
   xx1xx0x1xxxxxxxx0x, 
   x0xx1xx1xxxxxxxx0x, 
   x1xx0xx1xxxxxxxx0x, 
   0xx1xxx1xxxxxxxx0x, 
   1xx0xxx1xxxxxxxx0x, 
   xx0xx10xxxxxxxx1xx, 
   xx1xx00xxxxxxxx1xx, 
   x0xx1x0xxxxxxxx1xx, 
   x1xx0x0xxxxxxxx1xx, 
   0xx1xx0xxxxxxxx1xx, 
   1xx0xx0xxxxxxxx1xx, 
   xx0xx11xxxxxxxx0xx, 
   xx1xx01xxxxxxxx0xx, 
   x0xx1x1xxxxxxxx0xx, 
   x1xx0x1xxxxxxxx0xx, 
   0xx1xx1xxxxxxxx0xx, 
   1xx0xx1xxxxxxxx0xx}}

filter: (or (= ((_ extract 2 1) (:var 0)) ((_ extract 1 0) (:var 2)))
    (= (:var 3) (:var 4))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0xx1xx0xxxxxxx1x, 
   xx1xx0xx0xxxxxxx1x, 
   x0xx1xxx0xxxxxxx1x, 
   x1xx0xxx0xxxxxxx1x, 
   0xx1xxxx0xxxxxxx1x, 
   1xx0xxxx0xxxxxxx1x, 
   xx0xx1xx1xxxxxxx0x, 
   xx1xx0xx1xxxxxxx0x, 
   x0xx1xxx1xxxxxxx0x, 
   x1xx0xxx1xxxxxxx0x, 
   0xx1xxxx1xxxxxxx0x, 
   1xx0xxxx1xxxxxxx0x, 
   xx0xx1x0xxxxxxx1xx, 
   xx1xx0x0xxxxxxx1xx, 
   x0xx1xx0xxxxxxx1xx, 
   x1xx0xx0xxxxxxx1xx, 
   0xx1xxx0xxxxxxx1xx, 
   1xx0xxx0xxxxxxx1xx, 
   xx0xx1x1xxxxxxx0xx, 
   xx1xx0x1xxxxxxx0xx, 
   x0xx1xx1xxxxxxx0xx, 
   x1xx0xx1xxxxxxx0xx, 
   0xx1xxx1xxxxxxx0xx, 
   1xx0xxx1xxxxxxx0xx}}

filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= (:var 3) (:var 4))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0xx1xxxxxxxxxxxx, 
   xx1xx0xxxxxxxxxxxx, 
   x0xx1xxxxxxxxxxxxx, 
   x1xx0xxxxxxxxxxxxx, 
   0xx1xxxxxxxxxxxxxx, 
   1xx0xxxxxxxxxxxxxx}, 
   1xx0xxxxxxxxxxx11x \ {
   1x00x1xxxxxxxxx11x, 
   1x10x0xxxxxxxxx11x, 
   10x01xxxxxxxxxx11x, 
   11x00xxxxxxxxxx11x}, 
   0xx1xxxxxxxxxxx11x \ {
   0x01x1xxxxxxxxx11x, 
   0x11x0xxxxxxxxx11x, 
   00x11xxxxxxxxxx11x, 
   01x10xxxxxxxxxx11x}, 
   x1xx0xxxxxxxxxx11x \ {
   x10x01xxxxxxxxx11x, 
   x11x00xxxxxxxxx11x, 
   01x10xxxxxxxxxx11x, 
   11x00xxxxxxxxxx11x}, 
   11x00xxxxxxxxxx11x \ {
   110001xxxxxxxxx11x, 
   111000xxxxxxxxx11x}, 
   01x10xxxxxxxxxx11x \ {
   010101xxxxxxxxx11x, 
   011100xxxxxxxxx11x}, 
   x0xx1xxxxxxxxxx11x \ {
   x00x11xxxxxxxxx11x, 
   x01x10xxxxxxxxx11x, 
   00x11xxxxxxxxxx11x, 
   10x01xxxxxxxxxx11x}, 
   10x01xxxxxxxxxx11x \ {
   100011xxxxxxxxx11x, 
   101010xxxxxxxxx11x}, 
   00x11xxxxxxxxxx11x \ {
   000111xxxxxxxxx11x, 
   001110xxxxxxxxx11x}, 
   xx1xx0xxxxxxxxx11x \ {
   x01x10xxxxxxxxx11x, 
   x11x00xxxxxxxxx11x, 
   0x11x0xxxxxxxxx11x, 
   1x10x0xxxxxxxxx11x}, 
   1x10x0xxxxxxxxx11x \ {
   101010xxxxxxxxx11x, 
   111000xxxxxxxxx11x}, 
   0x11x0xxxxxxxxx11x \ {
   001110xxxxxxxxx11x, 
   011100xxxxxxxxx11x}, 
   x11x00xxxxxxxxx11x \ {
   011100xxxxxxxxx11x, 
   111000xxxxxxxxx11x}, 
   111000xxxxxxxxx11x, 
   011100xxxxxxxxx11x, 
   x01x10xxxxxxxxx11x \ {
   001110xxxxxxxxx11x, 
   101010xxxxxxxxx11x}, 
   101010xxxxxxxxx11x, 
   001110xxxxxxxxx11x, 
   xx0xx1xxxxxxxxx11x \ {
   x00x11xxxxxxxxx11x, 
   x10x01xxxxxxxxx11x, 
   0x01x1xxxxxxxxx11x, 
   1x00x1xxxxxxxxx11x}, 
   1x00x1xxxxxxxxx11x \ {
   100011xxxxxxxxx11x, 
   110001xxxxxxxxx11x}, 
   0x01x1xxxxxxxxx11x \ {
   000111xxxxxxxxx11x, 
   010101xxxxxxxxx11x}, 
   x10x01xxxxxxxxx11x \ {
   010101xxxxxxxxx11x, 
   110001xxxxxxxxx11x}, 
   110001xxxxxxxxx11x, 
   010101xxxxxxxxx11x, 
   x00x11xxxxxxxxx11x \ {
   000111xxxxxxxxx11x, 
   100011xxxxxxxxx11x}, 
   100011xxxxxxxxx11x, 
   000111xxxxxxxxx11x}

filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= (:var 3) #b011)) {
   xxxxxxxxxxxxxxx11x, 
   xxx011xxxxxxxxxxxx}

filter: (or (= (:var 0) #b101) (= (:var 3) #b101)) {
   xxxxxxxxxxxxxxx101, 
   xxx101xxxxxxxxxxxx}

filter: (or (= (:var 0) #b111) (= (:var 3) #b111)) {
   xxxxxxxxxxxxxxx111, 
   xxx111xxxxxxxxxxxx}

filter: (not (or (= (:var 0) (:var 2)) (= (:var 3) (:var 4)))) {
   xx0xx1xx0xxxxxxxx1, 
   xx0xx1xx1xxxxxxxx0, 
   xx0xx1x0xxxxxxxx1x, 
   xx0xx1x1xxxxxxxx0x, 
   xx0xx10xxxxxxxx1xx, 
   xx0xx11xxxxxxxx0xx, 
   xx1xx0xx0xxxxxxxx1, 
   xx1xx0xx1xxxxxxxx0, 
   xx1xx0x0xxxxxxxx1x, 
   xx1xx0x1xxxxxxxx0x, 
   xx1xx00xxxxxxxx1xx, 
   xx1xx01xxxxxxxx0xx, 
   x0xx1xxx0xxxxxxxx1, 
   x0xx1xxx1xxxxxxxx0, 
   x0xx1xx0xxxxxxxx1x, 
   x0xx1xx1xxxxxxxx0x, 
   x0xx1x0xxxxxxxx1xx, 
   x0xx1x1xxxxxxxx0xx, 
   x1xx0xxx0xxxxxxxx1, 
   x1xx0xxx1xxxxxxxx0, 
   x1xx0xx0xxxxxxxx1x, 
   x1xx0xx1xxxxxxxx0x, 
   x1xx0x0xxxxxxxx1xx, 
   x1xx0x1xxxxxxxx0xx, 
   0xx1xxxx0xxxxxxxx1, 
   0xx1xxxx1xxxxxxxx0, 
   0xx1xxx0xxxxxxxx1x, 
   0xx1xxx1xxxxxxxx0x, 
   0xx1xx0xxxxxxxx1xx, 
   0xx1xx1xxxxxxxx0xx, 
   1xx0xxxx0xxxxxxxx1, 
   1xx0xxxx1xxxxxxxx0, 
   1xx0xxx0xxxxxxxx1x, 
   1xx0xxx1xxxxxxxx0x, 
   1xx0xx0xxxxxxxx1xx, 
   1xx0xx1xxxxxxxx0xx}

filter: (= (:var 0) (:var 2)) {
   xxxxxxxxxxxxxxxxxx \ {
   xxxxxxxx0xxxxxxxx1, 
   xxxxxxxx1xxxxxxxx0, 
   xxxxxxx0xxxxxxxx1x, 
   xxxxxxx1xxxxxxxx0x, 
   xxxxxx0xxxxxxxx1xx, 
   xxxxxx1xxxxxxxx0xx}}

filter: (not (= (:var 0) (:var 2))) {
   xxxxxxxx0xxxxxxxx1, 
   xxxxxxxx1xxxxxxxx0, 
   xxxxxxx0xxxxxxxx1x, 
   xxxxxxx1xxxxxxxx0x, 
   xxxxxx0xxxxxxxx1xx, 
   xxxxxx1xxxxxxxx0xx}

PASS
(test udoc_relation :time 21.39 :before-memory 4.65 :after-memory 4.68)
{xxx \ {0x1}}
{xxx \ {0x0, 1x1}}
{0xxx \ {00xx, 0101, 0111}}
{}
{}
{0x01 \ {0001, 0101, 0101}}
{}
{}
{x1xx \ {01xx, 0101, x100}, x1x1 \ {x111, 1101}}
{}
{}
{}
{}
{}
{}
{x1xx \ {x10x, 11x1, 0100}}
{}
{1xx1 \ {1001, 1x11, 1011}}
{1xx0 \ {1000, 1x00, 1100}, 1xxx \ {11x1, 1x11, 1111}}
{x1x1 \ {1101, 0111, x111, 11x1}}
{xxx0 \ {x110, 0010, x000}}
{}
{}
{xx00 \ {0000, x000}, 0x00 \ {0000, 0100, 0100}}
{10xx \ {1001, 1000, 1010}}
{0000 \ {0000}}
{1x1x \ {1x10, 1x11}}
{x11x \ {0111, x111}}
{1x1x \ {1110, 1011, 1x10, 1x11, 111x}}
{}
{1x0x \ {1x01, 1000, 1000}}
{}
{0xx0 \ {0000, 00x0, 0100}}
{}
{}
{x1x1 \ {0101, 11x1, 1111}, 0x11 \ {0011}}
{10x0 \ {1000, 1010}}
{}
{xxxx \ {011x, 1x01}, 0xx1 \ {0x01, 00x1, 0011}, 1xxx \ {11xx, 11x0, 100x}}
{x10x \ {110x, 0101, 0100}, 1x01 \ {1101}}
{0x0x \ {0100, 0001, 010x, 000x}, 0101}
{0xx0 \ {0000, 0110, 0x00}}
{}
{}
{10xx \ {10x1, 10x0, 1000}}
{1xx0 \ {1x10, 11x0, 1010}, xxx1 \ {x1x1, 0011, x101}}
{x0x0 \ {x0x0}, x1x1 \ {x1x1}}
{x1x1 \ {1101, x101}, 0x0x \ {0001, 0101, 010x}}
{}
{}
{01xx \ {011x, 010x, 0110}, x000 \ {1000, 0000}}
{xx1x \ {xx10, 101x, 101x}, 0x10 \ {0010, 0110, 0110}}
{1x1x \ {1x1x}, 1010 \ {1010}}
{x0x0 \ {x010, x000, 10x0}}
{0xx1 \ {0101, 0111, 0011}, 0x00 \ {0000}}
{0000 \ {0000}}
{x1x0 \ {1100, 1110, 0110}}
{100x \ {1001, 1000}}
{0000 \ {0000}}
{1xx1 \ {1111, 11x1, 1101}, x0xx \ {x001, x000, x0x0}}
{0x00 \ {0000}, xx1x \ {001x, 1x11, 1x11}}
{1111, 0000 \ {0000}, 1x1x \ {1110, 1011, 1x10}}
{1x1x \ {1111, 101x, 1010}}
{xx1x \ {111x, 001x, xx10}}
{1x1x \ {1110, 1011, 101x, 1x11}}
{}
{0xx0 \ {0x00, 0110, 0100}}
{}
{0x1x \ {0111, 001x, 0x11}}
{00x0 \ {0010, 0000}}
{1010 \ {1010}}
{100x \ {1000}, xx10 \ {0110, x010, 0x10}, xx0x \ {1101, 1100, 100x}}
{0x0x \ {000x, 0001, 0100}}
{0x0x \ {0100, 0001, 000x}}
{x0xx \ {x001, 10x1, x01x}}
{x0xx \ {1011, 0000}, 110x \ {1101, 1100, 1100}}
{xxxx \ {x1x0, x0x1, 1x0x, 0x1x, xx01, xx1x}, 0x0x \ {0100, 0001, 0x01, 010x, 000x, 000x}}
{x001 \ {1001, 0001}}
{xx0x \ {1100, 0x0x, x10x}, 000x \ {0001}}
{0101 \ {0101}}
{x001 \ {1001, 0001, 0001}}
{10xx \ {1011, 1001, 10x0}}
{0101 \ {0101}}
{}
{0x00 \ {0000, 0100}}
{}
{x1xx \ {01x1, 010x, x1x0}}
{011x \ {0111, 0110}, x00x \ {x001, 1000}, xxxx \ {0000, 00xx, 0111}}
{1x1x \ {1110, 1011, 1x10, 111x, 101x}, 0x0x \ {0100, 0001, 0x00, 010x}, xxxx \ {x1x0, x0x1, 1x0x, 0x1x, xxx0}}
{01xx \ {01x1, 0110}}
{}
{}
{x111 \ {0111, 1111}, 101x \ {1010, 1011}}
{}
{}
{x101 \ {1101}}
{x1xx \ {1101, 01xx, x101}, 1x0x \ {1x01, 1x00}}
{0101 \ {0101}}
{001x \ {0010}, 1x1x \ {1111, 1010, 1x10}}
{0x0x \ {0000, 0x01, 000x}, 10xx \ {100x, 10x0, 1011}}
{1x1x \ {1110, 1011, 1x10, 101x, 111x}}
{}
{1x00 \ {1000}}
{}
{xx11 \ {0011, 1111, 1111}}
{xxx1 \ {1101, 1111, 0111}}
{1111}
{00xx \ {00x0, 00x1, 0001}}
{10x0 \ {1000}, x10x \ {0100, x101, x100}}
{x0x0 \ {x0x0}, 0x0x \ {
   0100, 0001, 0x00, 0x01, 0x01, 010x, 000x}}
{xx01 \ {1001, 0x01, 0101}}
{011x \ {0111, 0110}}
{}
{}
{x1xx \ {x10x, 1101, 0111}, xx11 \ {0111, 1111, 1x11}}
{}
{xx00 \ {0000, 0x00, 0100}}
{x11x \ {0111, 111x, x111}, x01x \ {x011, x010, x010}}
{}
{11x1 \ {1101}}
{1x1x \ {1011, 1110, 1x10}}
{1111}
{0x00 \ {0000, 0100}}
{0xxx \ {0x00, 0101, 0001}}
{0000 \ {0000}}
{x0x0 \ {10x0, 1000}, 0x0x \ {0x00, 0000, 010x}}
{xxx1 \ {xx11, xx01, x0x1}, 0xx0 \ {0100, 01x0}}
{x0x0 \ {1000, 0010}, 0101 \ {0101}, 0000 \ {0000}}
{x1x0 \ {01x0, 0110}}
{x010 \ {1010, 0010}}
{1010 \ {1010}}
{x1x0 \ {1110, 1100, x100}}
{1xx1 \ {1011, 1111}}
{}
{0xx0 \ {0000, 0x00, 01x0}}
{x0x1 \ {x001, 1001, 0011}, 01xx \ {0111, 0110, 010x}, 0xx1 \ {0101, 0111, 0111}}
{x0x0 \ {1000, 0010, x000, 10x0, 00x0, x000}}
{1x0x \ {1x00, 1100}, x0xx \ {x00x, 1000, x001}, 100x \ {1001, 1000}}
{xx0x \ {xx01, 1100, 010x}}
{0x0x \ {0100, 0001, 0x00, 010x}}
{1x1x \ {111x, 1010}, x001 \ {1001, 0001}}
{xx0x \ {0000, x000, 1101}}
{0101 \ {0101}}
{xx11 \ {0111, 0011, 0011}, 00x0 \ {0010, 0000}}
{0xxx \ {0x1x, 011x, 011x}}
{1111 \ {1111}, x0x0 \ {1000, 0010, x010, x000, 10x0}}
{}
{11x1 \ {1101, 1111}, xxx1 \ {0x11, xx11, 1x01}}
{}
{0xx1 \ {0x01, 00x1, 0111}, xx01 \ {1001, x001, x101}, 1xx0 \ {1x10, 1000, 1100}}
{01xx \ {011x, 01x0, 01x1}}
{x1x1 \ {x1x1}, 0101 \ {0101}, x0x0 \ {x0x0}}
{x0xx \ {0000, 10x1, 10x1}}
{x010 \ {1010, 0010}}
{1010 \ {1010}}
{xx00 \ {1000, 0x00, x000}, 00x0 \ {0000, 0010}}
{x100 \ {0100, 1100, 1100}, xx00 \ {x100, x000, 1000}}
{0000 \ {0000}}
{x010 \ {1010, 0010, 0010}, 000x \ {0001}}
{10xx \ {10x1, 101x}}
{1010 \ {1010}, 0x0x \ {0100, 0001, 0x01, 010x}}
{x1xx \ {11x1, x10x, 1100}, 0x11 \ {0111, 0011}}
{}
{}
{0x10 \ {0110}}
{}
{}
{}
{xx11 \ {1x11, x011}, 111x \ {1110}}
{}
{xx1x \ {0x10, x011, 111x}}
{0xx0 \ {0100, 01x0, 00x0}, 10xx \ {10x1, 1010}}
{1010 \ {1010}, 1x1x \ {1110, 1011, 111x, 101x}}
{}
{011x \ {0111, 0110}, 01x1 \ {0111, 0101}}
{}
{x1x0 \ {1100, 01x0, 1110}, 1x0x \ {1000, 110x}}
{10xx \ {1000, 100x, 1011}, 0xx0 \ {0100, 0x10, 0x00}, 00xx \ {001x, 00x1, 0011}}
{x0x0 \ {1000, 0010, 00x0, 00x0, x000, x010}, x0x0 \ {1000, 0010, 10x0, x000, x010}, 0000 \ {0000}, 0x0x \ {0100, 0001, 010x, 0x00}}
{11x0 \ {1110, 1100, 1100}}
{1x1x \ {111x, 1x11, 1111}, x110 \ {0110, 1110, 1110}, 00xx \ {00x0, 000x, 0011}}
{1010 \ {1010}, x0x0 \ {x0x0}}
{0x11 \ {0111, 0011, 0011}, x1xx \ {110x, 111x, 0100}}
{xxxx \ {110x, xx10, 11x0}}
{1111 \ {1111}, xxxx \ {x1x0, x0x1, 1x0x, 0x1x, 10xx, xx00}}
{}
{xx0x \ {xx00, 0000, x001}, 0x01 \ {0101}, xx0x \ {xx01, 1001, x100}}
{}
{0xxx \ {0010, 0x00, 0xx0}}
{xx00 \ {x100, 1x00, 1000}}
{0000 \ {0000}}
{xxx0 \ {1100, 0010, 1x10}, xx01 \ {1001, 0101}}
{x010 \ {0010, 1010}}
{1010 \ {1010}}
{x111 \ {1111, 0111}, x00x \ {1001, 0001, 0001}}
{010x \ {0100}}
{0x0x \ {0100, 0001, 000x, 0x01, 0x01}}
{xx11 \ {0011, x111, 0x11}, 1x00 \ {1000, 1100}}
{1xx1 \ {1x01, 1101, 1101}, 010x \ {0101, 0100}}
{1111, 0000 \ {0000}}
{00xx \ {00x1, 001x, 0001}}
{x11x \ {0111, 0110, 011x}}
{1x1x \ {1x1x}}
{0xxx \ {010x, 0x01}}
{1x11 \ {1111, 1011, 1011}}
{1111 \ {1111}}
{x1x0 \ {0110, 0100}, x01x \ {x010, 001x, 0010}}
{}
{}
{1xxx \ {1101, 10x0, 1x11}, x1x1 \ {01x1, 1111}}
{00x1 \ {0001, 0011}}
{x1x1 \ {1101, 0111, x111, 01x1, 11x1}}
{0x01 \ {0001}, xxx1 \ {1x01, 0001, 10x1}}
{1x1x \ {1x11, 1011, 1011}, 00xx \ {000x, 001x, 00x1}}
{0101 \ {0101}, 1111 \ {1111}, x1x1 \ {x1x1}}
{1xxx \ {1xx0, 111x, 1x1x}, x0x1 \ {0011, 10x1}, x01x \ {101x, 001x}}
{10x0 \ {1010, 1000}, 11x1 \ {1111, 1101, 1101}}
{x0x0 \ {x0x0}, x1x1 \ {1101, 0111, x111, 11x1, 01x1, 01x1}, 1010 \ {1010}, 1111 \ {1111}}
{x01x \ {1010, x010, 0011}}
{1x11 \ {1111, 1011}}
{1111 \ {1111}}
{}
{010x \ {0100, 0101}, xx00 \ {x000, 0100}}
{}
{xxx0 \ {x100, x010, 1x00}, xxx1 \ {0001, 1011, 1x01}}
{x010 \ {1010, 0010}, xx0x \ {x101, x10x, 1000}}
{1010 \ {1010}, 0000, 0101}
{x0xx \ {1000, 1010, 00x0}, xx00 \ {0100, 1x00, 0x00}}
{01xx \ {0101, 01x0, 0100}}
{xxxx \ {
   x1x0, x0x1, 1x0x, 0x1x, 01xx, x0xx, 00xx, xx00, xx10}, 0000 \ {0000}}
{x0x1 \ {0001, 1011}, 010x \ {0101}}
{x110 \ {1110, 0110, 0110}, 0x00 \ {0000}, 10xx \ {1001, 101x, 1010}}
{x1x1 \ {1101, 0111, 01x1, 11x1}, 0000, 0x0x \ {0100, 0001, 0x01, 010x}}
{00xx \ {00x0, 000x, 0001}}
{101x \ {1011, 1010, 1010}}
{1x1x \ {1110, 1011, 1x10, 111x, 101x, 101x}}
{01xx \ {0100, 0101}, 10xx \ {10x1, 1001, 1011}}
{xx01 \ {1001, x001, 0001}, 0xx1 \ {0111, 0001, 0101}}
{0101 \ {0101}, x1x1 \ {1101, 0111, x101, 01x1}}
{11x1 \ {1111, 1101, 1101}, x0x1 \ {10x1, 00x1}}
{xxxx \ {0x11, 0x1x, 00x0}, x111 \ {0111, 1111}, x10x \ {0101, 110x, 1101}}
{x1x1 \ {1101, 0111, x111, x101, x101}, 1111 \ {1111}, 0101 \ {0101}}
{000x \ {0001, 0000, 0000}, xx10 \ {0110, x010, 1x10}}
{01xx \ {01x1, 011x, 0101}}
{0x0x \ {
   0100, 0001, 0x01, 0x00, 0x00, 010x, 010x}, 1010 \ {1010}}
{10xx \ {101x, 10x0, 10x0}, 1x0x \ {1x01, 1000, 110x}}
{x011 \ {0011, 1011}, xxx1 \ {1011, 0x01, 1x11}}
{1111 \ {1111}, x1x1 \ {1101, 0111, x111}, 0101 \ {0101}}
{xx01 \ {x001, 0001, 0001}, xxxx \ {x10x, 1011, 10x1}, xx00 \ {0x00, 1x00, x000}}
{0xx0 \ {0x00, 0110, 0000}, x1x0 \ {x110, 0100, x100}}
{x0x0 \ {1000, 0010, 00x0}, 0000 \ {0000}}
{0xx0 \ {01x0, 0010, 0110}, 111x \ {1111, 1110, 1110}}
{xx1x \ {001x, 0010, 011x}}
{1010 \ {1010}, 1x1x \ {1110, 1011, 1x11, 1x10, 1x10}}
{11xx \ {111x, 110x}}
{x10x \ {x100, 1101, 0101}}
{0x0x \ {0x0x}}
{x10x \ {010x, 1100}}
{}
{}
{10x1 \ {1001, 1011}, xx0x \ {0100, 000x, 1x0x}}
{x00x \ {1001, 000x, 0000}}
{0101 \ {0101}, 0x0x \ {0100, 0001, 010x, 0x00}}
{x1x1 \ {1101, x101}}
{001x \ {0011, 0010}}
{1111 \ {1111}}
{xx00 \ {0100, 1000, x000}}
{0x10 \ {0010, 0110}, xx1x \ {0x10, x111, x110}}
{}
{x1x0 \ {0100, x100, 0110}, x0x1 \ {1011, 10x1, x011}}
{0x1x \ {011x, 001x, 0x10}}
{1010 \ {1010}, 1111 \ {1111}}
{000x \ {0001, 0000, 0000}, 0x1x \ {001x, 0x10, 011x}}
{01xx \ {01x1, 010x, 0110}}
{0x0x \ {0x0x}, 1x1x \ {1x1x}}
{0x0x \ {0100, 010x, 000x}}
{x101 \ {0101}}
{0101 \ {0101}}
{x10x \ {x100, 0101, 1100}, 1x0x \ {1x01, 1100}, xx1x \ {111x, 1011, 0010}}
{}
{}
{1xxx \ {101x, 10x1, 1110}}
{1x00 \ {1100, 1000}}
{0000 \ {0000}}
{01xx \ {011x, 01x1}, x11x \ {0110, x110, 0111}}
{x1xx \ {11xx, 01x1, 1101}, 01xx \ {01x0, 0100, 010x}}
{xxxx \ {
   x1x0, x0x1, 1x0x, 0x1x, xx1x, xxx1, x1xx, 01xx}, xxxx \ {
   x1x0, x0x1, 1x0x, 0x1x, xx1x, xxx1, x0xx, 00xx, 0xxx}, 1x1x \ {1110, 1011, 1x10, 111x}, 1x1x \ {1110, 1011, 1x10, 101x}}
{011x \ {0111, 0110}}
{x110 \ {1110, 0110}, xx00 \ {0x00, 1x00, x100}}
{1010 \ {1010}}
{10xx \ {1001, 1011, 101x}}
{xxxx \ {x10x, 1000, 00xx}, 0x0x \ {0100, 0x01, 0000}}
{xxxx \ {
   x1x0, x0x1, 1x0x, 0x1x, xx01, xx11, xx1x, 00xx}, 0x0x \ {0100, 0001, 0x01, 010x, 000x}}
{x10x \ {010x, x101, 0101}, 0x0x \ {000x, 0100, 0x01}, x0x0 \ {10x0}}
{11xx \ {11x0}}
{0x0x \ {0100, 0001, 0x01, 000x}, x0x0 \ {x0x0}}
{}
{00xx \ {000x, 00x1, 0011}, 0x1x \ {0110, 001x, 011x}}
{}
{xx01 \ {1x01, 1101, 1101}}
{x11x \ {0111, 1111, 011x}, xx00 \ {x000, 1000, x100}, 0x10 \ {0110, 0010, 0010}}
{}
{0x0x \ {0100, 000x, 010x}, 1x0x \ {1101, 1x01, 1001}}
{}
{}
{}
{x001 \ {1001, 0001}}
{}
{xxx1 \ {0xx1, 0x11, x1x1}, x00x \ {1001, 000x, 000x}}
{xx01 \ {0101, 1001, x101}, x01x \ {0010, 1010, 001x}}
{0101, 1111}
{xx01 \ {0x01, 1101}}
{x11x \ {x111, 0110, x110}}
{}
{001x \ {0010}, 0xxx \ {011x, 0x00}}
{}
{}
{x01x \ {x010, 101x, 101x}, 100x \ {1001, 1000, 1000}}
{}
{}
{1x0x \ {1101, 110x, 110x}, x100 \ {0100}}
{111x \ {1111, 1110}}
{}
{x1xx \ {01x0, 11x1, x11x}, 100x \ {1001, 1000}, x011 \ {1011, 0011}}
{x1x0 \ {1100, 0100}}
{x0x0 \ {1000, 0010, x010, 00x0}, 0000 \ {0000}}
{x1x1 \ {1111, 0111, 01x1}, xxxx \ {0010, 00x1, 1010}}
{}
{}
{xx00 \ {1000, 0000, 0100}}
{}
{}
{11xx \ {1101, 11x1, 11x0}}
{10x1 \ {1011, 1001, 1001}}
{x1x1 \ {x1x1}}
{01xx \ {01x0, 0100, 011x}}
{1xx0 \ {1010, 1100, 11x0}, 01xx \ {0110, 010x, 0100}}
{x0x0 \ {x0x0}, xxxx \ {
   x1x0, x0x1, 1x0x, 0x1x, xxx0, xx00, xx1x, 10xx, 0xxx, 00xx}}
{00x0 \ {0010, 0000, 0000}, 10x0 \ {1010}}
{x110 \ {1110}, x010 \ {1010, 0010}}
{1010 \ {1010}}
{}
{xxxx \ {000x, 010x, x11x}}
{}
{}
{xxx0 \ {x010, x100, x0x0}}
{}
{x100 \ {0100}, x0xx \ {x000, 00x0}}
{xxx0 \ {0110, x100, x0x0}}
{0000 \ {0000}, x0x0 \ {1000, 0010, x000, 00x0}}
{}
{x0xx \ {1001, 0001, 0011}, x0xx \ {x000, 0000, x001}}
{}
{0xx0 \ {00x0, 0000, 01x0}, 1x01 \ {1001, 1101, 1101}}
{1xxx \ {101x, 10x1, 1100}, 000x \ {0001, 0000, 0000}, 1x0x \ {1x01, 100x, 1001}}
{x0x0 \ {x0x0}, 0000 \ {0000}, 0101 \ {0101}}
{1xxx \ {1xx0, 10x0, 1001}, 0x10 \ {0110, 0010}}
{x00x \ {1001, x001}}
{0x0x \ {0100, 0001, 0x00, 010x}}
{001x \ {0011, 0010, 0010}}
{xxx0 \ {x000, 1010, 0000}, x0xx \ {000x, 00x0, 10x1}}
{1010 \ {1010}, 1x1x \ {1110, 1011, 1x11, 1x10, 1x10}}
{0x00 \ {0000, 0100}}
{11x0 \ {1110, 1100, 1100}, 11x0 \ {1100, 1110, 1110}, 101x \ {1010, 1011, 1011}}
{0000 \ {0000}}
{}
{}
{}
{00xx \ {000x, 001x, 00x1}}
{}
{}
{x011 \ {1011, 0011}, x01x \ {0010, 001x, x010}}
{}
{}
{010x \ {0101, 0100, 0100}, xxx0 \ {0110, 1xx0, 1100}, x00x \ {000x, 1001}}
{01xx \ {0110, 0111, 0100}}
{x0x0 \ {1000, 0010, 10x0, 00x0}, 0x0x \ {0100, 0001, 000x, 0x01}}
{x0x0 \ {1000, 0010, x000}}
{100x \ {1001}, 1xx0 \ {1000, 11x0, 1x10}}
{0000 \ {0000}, x0x0 \ {1000, 0010, x000, 10x0, 00x0}}
{1x10 \ {1010, 1110}}
{}
{}
{x1xx \ {x10x, 11x1, 11x0}, 00x0 \ {0000}}
{x1xx \ {0100, 0101, 111x}, 0xxx \ {0001, 0110, 0010}}
{xxxx \ {x1x0, x0x1, 1x0x, 0x1x, xx0x}, x0x0 \ {1000, 0010, x000}}
{x0x1 \ {x001, 0001, 0011}}
{101x \ {1010, 1011}}
{1111 \ {1111}}
{}
{}
{}
{x1x0 \ {0110, 0100}}
{x1x1 \ {0101, 1101, 1111}}
{}
{}
{01xx \ {01x1, 011x, 0110}}
{}
{0xxx \ {0011, 0xx1, 0111}, xx11 \ {0011, x011}, x1xx \ {111x, x10x}}
{000x \ {0000, 0001, 0001}, 0x10 \ {0110, 0010, 0010}}
{0x0x \ {0100, 0001, 0x01, 000x, 010x, 010x}, 1010 \ {1010}}
{x1x0 \ {0110, x100, 01x0}}
{1x0x \ {1x01, 1001, 1x00}, x00x \ {0000, 0001, 100x}}
{0000 \ {0000}}
{}
{x0x1 \ {10x1, 00x1, 00x1}}
{}
{}
{x0x1 \ {0001, x011, 1011}, xxx1 \ {x011, 1xx1, 10x1}}
{}
{xx11 \ {1111, 1x11}}
{11x1 \ {1111, 1101}}
{1111 \ {1111}}
{0xx1 \ {00x1, 01x1, 0x01}}
{x1x0 \ {1110, 01x0, 1100}, xx0x \ {100x, 1000, 1100}}
{0101 \ {0101}}
{xx0x \ {110x, 000x, x001}, x11x \ {111x, x111, 0110}}
{01x0 \ {0100, 0110}}
{0000 \ {0000}, 1010 \ {1010}}
{10xx \ {1001, 1010, 100x}}
{x001 \ {1001, 0001}}
{0101 \ {0101}}
{0x00 \ {0100}}
{xx0x \ {0000, 1x0x, xx01}}
{0000}
{1x0x \ {1100, 110x, 1x01}, x00x \ {1001, 0001, 0001}}
{1x1x \ {1110, 101x, 1010}, xx01 \ {x001, 1101, 0x01}}
{0101 \ {0101}}
{}
{}
{}
{x110 \ {0110, 1110}}
{xx00 \ {0000, x100, x000}, xx00 \ {0000, x100}}
{}
{}
{xx10 \ {0110, x110, x110}}
{}
{xx01 \ {0001, 1001}, 0xxx \ {0101, 0110, 0x1x}}
{x01x \ {0011, 1011, x011}}
{1x1x \ {1x1x}}
{xxx1 \ {01x1, x011, 1011}, 1xx1 \ {1101, 1111, 1011}, 11xx \ {110x, 1110, 11x1}}
{0x1x \ {011x, 0x11}}
{1111 \ {1111}, 1x1x \ {1110, 1011, 1x10, 1x11, 111x}}
{xxxx \ {x101, 0010, 110x}, 111x \ {1111, 1110}}
{x0x0 \ {1000, 0010, 10x0}, x0x1 \ {1001, 0011}}
{x0x0 \ {1000, 0010, 10x0}, x1x1 \ {1101, 0111}, 1010 \ {1010}, 1111 \ {1111}}
{}
{11x0 \ {1110, 1100}}
{}
{10xx \ {1001, 1011, 100x}}
{00x1 \ {0001}, 11x1 \ {1111, 1101}}
{x1x1 \ {1101, 0111, x101, x111, x101, 01x1}}
{}
{0xx1 \ {0011, 0111}}
{}
{11xx \ {1101, 11x0, 1110}}
{x1xx \ {01x0, x10x, 110x}}
{xxxx \ {
   x1x0, x0x1, 1x0x, 0x1x, xx01, xxx0, xx10, 0xxx, 00xx}}
{1xx1 \ {1101, 1111}}
{}
{}
{x101 \ {0101, 1101}}
{0xx1 \ {0x01, 0001, 0111}, xxxx \ {0111, 1xx1, 001x}, x10x \ {1100, 110x, 0101}}
{0101 \ {0101}}
{01xx \ {0101, 011x, 0100}, x0x0 \ {00x0, x000, x010}, 0xxx \ {010x, 00x0, 00x1}}
{10x1 \ {1001, 1011}, xx10 \ {1x10, x110, 1110}}
{x1x1 \ {1101, 0111, 01x1, 11x1, x101}, 1010}
{010x \ {0101, 0100}}
{x11x \ {1111, 0111, 111x}, 0x00 \ {0100}}
{0000 \ {0000}}
{x0x0 \ {x010}}
{1x0x \ {100x, 110x}}
{0000 \ {0000}}
{xx10 \ {0x10, x110, 0010}, 01x0 \ {0100, 0110, 0110}}
{1x0x \ {1101, 100x, 1001}, 0xxx \ {0100, 0x10, 0010}}
{1010 \ {1010}, 0000 \ {0000}, x0x0 \ {1000, 0010, x000, x010, x010, 10x0}}
{1x0x \ {1100, 110x, 1000}, 1xx0 \ {1x10, 1x00, 10x0}, 1x1x \ {101x, 1111, 1x10}}
{1x10 \ {1010, 1110, 1110}}
{1010 \ {1010}}
{}
{0x0x \ {0x01, 0001, 0x00}}
{}
{}
{x11x \ {1110, 0110, x111}}
{}
{0x00 \ {0000, 0100, 0100}}
{xxx1 \ {x011, 0101, 1x01}}
{}
{x1x1 \ {01x1, 0111, 1111}}
{01xx \ {0110, 0101, 01x1}}
{x1x1 \ {x1x1}}
{1x1x \ {1010, 111x, 1x10}}
{}
{}
{}
{10x0 \ {1000, 1010, 1010}}
{}
{}
{x0x1 \ {1001, x001}, x01x \ {x010, 1011}}
{}
{0x1x \ {011x, 001x}, x0xx \ {x00x, 0011, 1001}}
{xx00 \ {1100, x100}}
{0000 \ {0000}}
{xx00 \ {0100, 1100, 1100}, x11x \ {x110, x111, 0111}}
{0xx1 \ {00x1, 0011, 0x01}}
{1111 \ {1111}}
{x0x1 \ {0011, 1001, 00x1}, 0x0x \ {0000, 0101, 000x}}
{x100 \ {0100}}
{0000}
{}
{}
{}
{xx10 \ {0110, 0x10}}
{x0xx \ {x000, 10x1, 0001}}
{1010}
{}
{x0x1 \ {00x1, 1011, 1011}}
{}
{}
{01xx \ {010x, 011x}}
{}
{}
{x1xx \ {11xx, 01xx, 010x}, xxx1 \ {00x1, 1101, 0001}}
{}
{xxxx \ {00x1, 010x, x111}, x101 \ {0101, 1101}}
{0xx0 \ {0110, 0000, 0010}, 1x01 \ {1101, 1001}, 0x0x \ {0101, 0100, 0000}}
{x0x0 \ {1000, 0010, 10x0}, 0101 \ {0101}, 0x0x \ {0100, 0001, 000x}}
{x01x \ {0011, 101x, 101x}}
{x101 \ {1101, 0101, 0101}}
{}
{xx10 \ {1x10, x110, 0x10}}
{1x01 \ {1001, 1101, 1101}, 1xx1 \ {11x1, 1x01, 1111}}
{}
{0xx0 \ {0x00, 0010, 0010}}
{x0xx \ {00x1, 10x0, 00x0}}
{x0x0 \ {x0x0}}
{x001 \ {0001, 1001}, 1x00 \ {1000, 1100, 1100}}
{10xx \ {101x, 1011, 100x}, 1xxx \ {1011, 1xx0, 1111}}
{0101 \ {0101}, 0000 \ {0000}}
{x0x0 \ {0000, x010, 1000}, xx0x \ {1x0x, 0001, 1101}, xxx0 \ {11x0, 0xx0, 1xx0}}
{001x \ {0010, 0011}}
{1010 \ {1010}}
{xx1x \ {x110, 1x10, 101x}, xx01 \ {0001, 0101, 1x01}, 0xx0 \ {0x00, 0010, 0100}}
{xxxx \ {1010, xxx1, 100x}, xxx1 \ {01x1, 0011, 00x1}}
{1x1x \ {1110, 1011, 111x}, 1111, 0101 \ {0101}, x0x0 \ {1000, 0010, x000}}
{xx1x \ {001x, 1x10, 111x}}
{x101 \ {0101}, x1xx \ {11x1, 0101, x1x0}}
{1x1x \ {1110, 1011, 101x}}
{01xx \ {01x0, 01x1, 0110}}
{}
{}
{xxxx \ {101x, 0xx1, xx0x}, xx0x \ {0001, 1101}}
{0xx0 \ {0110, 00x0}, 1xx0 \ {11x0, 1010, 1100}}
{x0x0 \ {1000, 0010, x000, 10x0}, 0000}
{0xxx \ {01xx, 00x1, 00x0}, xxx1 \ {1101, 0101, 0x01}}
{0xx1 \ {01x1, 0011, 0011}, x00x \ {100x, 1001, x000}, xxx0 \ {x0x0, 1100, 1110}}
{0x0x \ {0100, 0001, 000x, 0x01, 0x00}, x0x0 \ {x0x0}, x1x1 \ {1101, 0111, 11x1, 11x1}, 0101}
{xxxx \ {01xx, 0xx0, 1xxx}}
{}
{}
{xxx0 \ {x010, 0100}}
{11xx \ {1100, 11x1, 11x1}}
{x0x0 \ {1000, 0010, 00x0}}
{00x0 \ {0010, 0000}}
{1x0x \ {110x, 1100, 1001}}
{0000 \ {0000}}
{xxx1 \ {xx11, 00x1, 1x01}}
{}
{}
{xx10 \ {x010, x110, 0110}}
{00x1 \ {0011, 0001}, xx0x \ {x101, 0x01, 0x0x}, x11x \ {0111, 111x}}
{1010 \ {1010}}
{}
{xx0x \ {100x, 0x00, x000}}
{}
{}
{}
{}
{x011 \ {1011, 0011, 0011}, x0x0 \ {00x0, 1000, 1010}}
{}
{}
{}
{0xx1 \ {0x01, 0011, 0x11}}
{}
{x010 \ {0010, 1010}, xxx0 \ {1010, xx00, 00x0}}
{xx10 \ {0x10, x110, x010}}
{1010 \ {1010}}
{x01x \ {x010, 001x}}
{xxx0 \ {0000, 01x0, 1x00}, xxx1 \ {0x11, 0111, 1xx1}}
{1010 \ {1010}, 1111 \ {1111}}
{100x \ {1001, 1000, 1000}}
{0x1x \ {0111, 0010, 0011}, xxx1 \ {11x1, 1011, 0011}}
{0101 \ {0101}}
{1x0x \ {1101, 1x00, 1001}}
{0xx0 \ {0010, 00x0, 0x00}, 1x00 \ {1100, 1000}}
{0000 \ {0000}}
{0xxx \ {01x0, 000x, 00x1}, xx1x \ {0111, 1011, 0x11}}
{}
{}
{xx1x \ {1110, 1111}}
{xx1x \ {111x, x010, x011}, xx1x \ {0x1x, 1010, 011x}}
{1x1x \ {1110, 1011}}
t1:{0111}
t2:{1100, 1101}
t:{1101}
{x0000 \ {10000, 00000}}
{0x01x \ {00010, 0x011, 0101x}}
{}

{00xx1 \ {00101, 000x1, 00111}, 1xx10 \ {10010, 11010}}
{x0111 \ {10111}, 0101x \ {01011}}
{
   x011100x11 \ {
   x011100011, x011100111, 1011100x11}, 0101100x11 \ {
   0101100011, 0101100111, 0101100x11}, 010101xx10 \ {
   0101010010, 0101011010}}

{01x11 \ {01011, 01111}, 1x0xx \ {10011, 11011, 110x1}}
{}
{}

{1x110 \ {10110}, 10x10 \ {10110, 10010}}
{110xx \ {1101x, 110x1, 110x0}}
{
   110101x110 \ {
   1101010110, 110101x110, 110101x110}, 1101010x10 \ {
   1101010110, 1101010010, 1101010x10, 1101010x10}}

{xx01x \ {01010, x101x, 0101x}, 0xx01 \ {01001, 01101}, xx110 \ {11110, 01110, 00110}}
{0xx0x \ {0000x, 00x01, 0100x}}
{
   0xx010xx01 \ {
   0xx0101001, 0xx0101101, 000010xx01, 00x010xx01, 010010xx01}}

{x0100 \ {00100}, 0x11x \ {0011x, 0x110, 00111}, xx001 \ {11001, 01001}}
{0x1x1 \ {001x1, 01111, 0x101}, x1xxx \ {11x1x, 01011, 11001}, 00xxx \ {000x0, 00xx0, 001x1}}
{
   x1x00x0100 \ {
   x1x0000100}, 00x00x0100 \ {
   00x0000100, 00000x0100, 00x00x0100}, 0x1110x111 \ {
   0x11100111, 0x11100111, 001110x111, 011110x111}, x1x1x0x11x \ {
   x1x110x110, x1x100x111, x1x1x0011x, x1x1x0x110, x1x1x00111, 11x1x0x11x, 010110x11x}, 00x1x0x11x \ {
   00x110x110, 00x100x111, 00x1x0011x, 00x1x0x110, 00x1x00111, 000100x11x, 00x100x11x, 001110x11x}, 0x101xx001 \ {
   0x10111001, 0x10101001, 00101xx001, 0x101xx001}, x1x01xx001 \ {
   x1x0111001, x1x0101001, 11001xx001}, 00x01xx001 \ {
   00x0111001, 00x0101001, 00101xx001}}

{xxxx0 \ {x11x0, 0xx00, 111x0}}
{xx00x \ {11001, x0000}}
{
   xx000xxx00 \ {
   xx000x1100, xx0000xx00, xx00011100, x0000xxx00}}

{xxx01 \ {00001, 01001, 11x01}}
{xxxx1 \ {x1101, 10x01, 0x011}}
{
   xxx01xxx01 \ {
   xxx0100001, xxx0101001, xxx0111x01, x1101xxx01, 10x01xxx01}}

{}
{xx001 \ {x1001, 0x001}}
{}

{xx1xx \ {xx101, 1x10x, 0111x}}
{00xx1 \ {00001, 00111, 00011}}
{
   00xx1xx1x1 \ {
   00x11xx101, 00x01xx111, 00xx1xx101, 00xx11x101, 00xx101111, 00001xx1x1, 00111xx1x1, 00011xx1x1}}

{01x0x \ {01100, 01001, 01x01}, 0xxxx \ {00xx0, 0x0xx, 0xx00}}
{xx00x \ {xx001, x000x, 0000x}}
{
   xx00x01x0x \ {
   xx00101x00, xx00001x01, xx00x01100, xx00x01001, xx00x01x01, xx00101x0x, x000x01x0x, 0000x01x0x}, xx00x0xx0x \ {
   xx0010xx00, xx0000xx01, xx00x00x00, xx00x0x00x, xx00x0xx00, xx0010xx0x, x000x0xx0x, 0000x0xx0x}}

{11x1x \ {11010, 11011, 11011}, 01xxx \ {01010, 010xx, 01x1x}}
{}
{}

{1xx0x \ {1000x, 10x0x, 11101}, 1x1x1 \ {10111, 111x1, 11111}}
{0xxxx \ {00111, 0x100, 01xx1}, xx01x \ {0x011, 11010, x101x}}
{
   0xx0x1xx0x \ {
   0xx011xx00, 0xx001xx01, 0xx0x1000x, 0xx0x10x0x, 0xx0x11101, 0x1001xx0x, 01x011xx0x}, 0xxx11x1x1 \ {
   0xx111x101, 0xx011x111, 0xxx110111, 0xxx1111x1, 0xxx111111, 001111x1x1, 01xx11x1x1}, xx0111x111 \ {
   xx01110111, xx01111111, xx01111111, 0x0111x111, x10111x111}}

{110xx \ {11000, 110x1, 11010}}
{x0111 \ {10111}, 11xxx \ {11110, 11x1x, 110x0}}
{
   x011111011 \ {
   x011111011, 1011111011}, 11xxx110xx \ {
   11xx1110x0, 11xx0110x1, 11x1x1100x, 11x0x1101x, 11xxx11000, 11xxx110x1, 11xxx11010, 11110110xx, 11x1x110xx, 110x0110xx}}

{x0110 \ {10110, 00110, 00110}}
{xx00x \ {x0000, 1x000, 0000x}, 1x0x1 \ {10011, 1x001, 1x001}}
{}

{0x11x \ {00110, 01111, 0x110}}
{x01x0 \ {00100, 10100, x0100}}
{
   x01100x110 \ {
   x011000110, x01100x110}}

{0xxxx \ {00111, 00xxx, 0x1x1}, 00x10 \ {00110, 00010}}
{x10xx \ {x10x0, 11000, 010x1}, x1xx0 \ {x11x0, x10x0, 011x0}}
{
   x10xx0xxxx \ {
   x10x10xxx0, x10x00xxx1, x101x0xx0x, x100x0xx1x, x10xx00111, x10xx00xxx, x10xx0x1x1, x10x00xxxx, 110000xxxx, 010x10xxxx}, x1xx00xxx0 \ {
   x1x100xx00, x1x000xx10, x1xx000xx0, x11x00xxx0, x10x00xxx0, 011x00xxx0}, x101000x10 \ {
   x101000110, x101000010, x101000x10}, x1x1000x10 \ {
   x1x1000110, x1x1000010, x111000x10, x101000x10, 0111000x10}}

{0xxx0 \ {01010, 00110, 01100}, xxx10 \ {01110, x0010, x1110}}
{00xxx \ {00010, 0010x, 00111}, x11xx \ {1111x, x110x, 11100}}
{
   00xx00xxx0 \ {
   00x100xx00, 00x000xx10, 00xx001010, 00xx000110, 00xx001100, 000100xxx0, 001000xxx0}, x11x00xxx0 \ {
   x11100xx00, x11000xx10, x11x001010, x11x000110, x11x001100, 111100xxx0, x11000xxx0, 111000xxx0}, 00x10xxx10 \ {
   00x1001110, 00x10x0010, 00x10x1110, 00010xxx10}, x1110xxx10 \ {
   x111001110, x1110x0010, x1110x1110, 11110xxx10}}

{0x0x0 \ {000x0, 01010, 01000}}
{xx1xx \ {x1100, xx101, 0x1x1}, 0x01x \ {00011, 0x010}}
{
   xx1x00x0x0 \ {
   xx1100x000, xx1000x010, xx1x0000x0, xx1x001010, xx1x001000, x11000x0x0}, 0x0100x010 \ {
   0x01000010, 0x01001010, 0x0100x010}}

{xx110 \ {01110, x0110, x0110}, 10x11 \ {10111, 10011}, 0x1xx \ {01111, 011xx, 01100}}
{x100x \ {0100x, x1000, 11000}, x100x \ {0100x, 01000, x1000}}
{
   x100x0x10x \ {
   x10010x100, x10000x101, x100x0110x, x100x01100, 0100x0x10x, x10000x10x, 110000x10x}}

{100x1 \ {10011}, xx111 \ {00111, 01111, x1111}}
{xxx0x \ {0xx0x, xx001, x000x}}
{
   xxx0110001 \ {
   0xx0110001, xx00110001, x000110001}}

{000xx \ {00000, 000x0, 0000x}}
{1100x \ {11001, 11000}, x011x \ {0011x, x0110, 00110}, xxx00 \ {1x000, x1100, 01x00}}
{
   1100x0000x \ {
   1100100000, 1100000001, 1100x00000, 1100x00000, 1100x0000x, 110010000x, 110000000x}, x011x0001x \ {
   x011100010, x011000011, x011x00010, 0011x0001x, x01100001x, 001100001x}, xxx0000000 \ {
   xxx0000000, xxx0000000, xxx0000000, 1x00000000, x110000000, 01x0000000}}

{0xxx1 \ {00x01, 0x1x1, 01x01}, x1x01 \ {01x01, 11101}}
{xx110 \ {x1110, 11110, 1x110}, 01x00 \ {01100, 01000}}
{}

{}
{x100x \ {1100x, x1001, 01001}, 00xx1 \ {00x01, 00001}, 111x0 \ {11100, 11110}}
{}

{1111x \ {11111}, x11x1 \ {11111, 011x1, 011x1}, 0x1xx \ {0x10x, 0x1x0, 001x0}}
{0x111 \ {01111, 00111}, 0111x \ {01110}}
{
   0x11111111 \ {
   0x11111111, 0111111111, 0011111111}, 0111x1111x \ {
   0111111110, 0111011111, 0111x11111, 011101111x}, 0x111x1111 \ {
   0x11111111, 0x11101111, 0x11101111, 01111x1111, 00111x1111}, 01111x1111 \ {
   0111111111, 0111101111, 0111101111}, 0x1110x111 \ {
   011110x111, 001110x111}, 0111x0x11x \ {
   011110x110, 011100x111, 0111x0x110, 0111x00110, 011100x11x}}

{11xxx \ {11xx1, 11111, 110x1}, 00x10 \ {00110, 00010}}
{x0011 \ {00011, 10011}, 0001x \ {00010, 00011}}
{
   x001111x11 \ {
   x001111x11, x001111111, x001111011, 0001111x11, 1001111x11}, 0001x11x1x \ {
   0001111x10, 0001011x11, 0001x11x11, 0001x11111, 0001x11011, 0001011x1x, 0001111x1x}, 0001000x10 \ {
   0001000110, 0001000010, 0001000x10}}

{1xx00 \ {11x00, 11100, 1x100}, 0x10x \ {00100, 01101, 01100}}
{1010x \ {10101, 10100}}
{
   101001xx00 \ {
   1010011x00, 1010011100, 101001x100, 101001xx00}, 1010x0x10x \ {
   101010x100, 101000x101, 1010x00100, 1010x01101, 1010x01100, 101010x10x, 101000x10x}}

{0x0xx \ {010xx, 000xx, 01011}}
{0110x \ {01100, 01101}}
{
   0110x0x00x \ {
   011010x000, 011000x001, 0110x0100x, 0110x0000x, 011000x00x, 011010x00x}}

{1x00x \ {1x001, 1100x, 10000}, 111xx \ {11110, 11101, 111x0}}
{01xx0 \ {01x10, 01000, 01010}, x1x10 \ {11010, 01110, 11110}, x11x0 \ {01100, x1110, 011x0}}
{
   01x001x000 \ {
   01x0011000, 01x0010000, 010001x000}, x11001x000 \ {
   x110011000, x110010000, 011001x000, 011001x000}, 01xx0111x0 \ {
   01x1011100, 01x0011110, 01xx011110, 01xx0111x0, 01x10111x0, 01000111x0, 01010111x0}, x1x1011110 \ {
   x1x1011110, x1x1011110, 1101011110, 0111011110, 1111011110}, x11x0111x0 \ {
   x111011100, x110011110, x11x011110, x11x0111x0, 01100111x0, x1110111x0, 011x0111x0}}

{xx1x0 \ {01110, x01x0, 101x0}, xx01x \ {1001x, 11010, x1010}}
{0xxx1 \ {01001, 00x11, 00001}, x00x0 \ {000x0, x0010, x0010}}
{
   x00x0xx1x0 \ {
   x0010xx100, x0000xx110, x00x001110, x00x0x01x0, x00x0101x0, 000x0xx1x0, x0010xx1x0, x0010xx1x0}, 0xx11xx011 \ {
   0xx1110011, 00x11xx011}, x0010xx010 \ {
   x001010010, x001011010, x0010x1010, 00010xx010, x0010xx010, x0010xx010}}

{}
{x0x1x \ {1001x, 10011, 10111}}
{}

{00x11 \ {00111, 00011, 00011}, 1xx0x \ {10x0x, 10001, 1x10x}}
{1xx01 \ {1x001, 10101, 11x01}, x1001 \ {11001, 01001}}
{
   1xx011xx01 \ {
   1xx0110x01, 1xx0110001, 1xx011x101, 1x0011xx01, 101011xx01, 11x011xx01}, x10011xx01 \ {
   x100110x01, x100110001, x10011x101, 110011xx01, 010011xx01}}

{xxxxx \ {1x001, xx011, 1x10x}, 000x1 \ {00011, 00001, 00001}, xx100 \ {10100, 1x100}}
{1100x \ {11001, 11000, 11000}, 0x10x \ {01100, 01101}}
{
   1100xxxx0x \ {
   11001xxx00, 11000xxx01, 1100x1x001, 1100x1x10x, 11001xxx0x, 11000xxx0x, 11000xxx0x}, 0x10xxxx0x \ {
   0x101xxx00, 0x100xxx01, 0x10x1x001, 0x10x1x10x, 01100xxx0x, 01101xxx0x}, 1100100001 \ {
   1100100001, 1100100001, 1100100001}, 0x10100001 \ {
   0x10100001, 0x10100001, 0110100001}, 11000xx100 \ {
   1100010100, 110001x100, 11000xx100, 11000xx100}, 0x100xx100 \ {
   0x10010100, 0x1001x100, 01100xx100}}

{xxx01 \ {10101, 1x001, 0x101}}
{1xx10 \ {11110, 10x10}}
{}

{xxx0x \ {x1x00, 1x001, 01000}}
{01xx0 \ {01000, 01110, 010x0}, 000xx \ {000x1, 00010, 00010}, 0x11x \ {0x111, 00111, 00111}}
{
   01x00xxx00 \ {
   01x00x1x00, 01x0001000, 01000xxx00, 01000xxx00}, 0000xxxx0x \ {
   00001xxx00, 00000xxx01, 0000xx1x00, 0000x1x001, 0000x01000, 00001xxx0x}}

{}
{xxxx1 \ {0x111, 101x1, 01xx1}, 10xxx \ {10101, 10xx0, 100x1}}
{}

{x1001 \ {01001, 11001}, 0xx10 \ {00x10, 01110, 0x010}}
{xxxx1 \ {1xx01, 0xx01, 110x1}, 11xx1 \ {11x11, 111x1, 111x1}, x0x1x \ {1011x, 1001x, 0011x}}
{
   xxx01x1001 \ {
   xxx0101001, xxx0111001, 1xx01x1001, 0xx01x1001, 11001x1001}, 11x01x1001 \ {
   11x0101001, 11x0111001, 11101x1001, 11101x1001}, x0x100xx10 \ {
   x0x1000x10, x0x1001110, x0x100x010, 101100xx10, 100100xx10, 001100xx10}}

{x0x11 \ {10111, x0011, 10x11}}
{0xx11 \ {01011, 01111, 01111}, x0xx1 \ {00111, x0101, 00011}, 0x00x \ {0x001, 01001, 0x000}}
{
   0xx11x0x11 \ {
   0xx1110111, 0xx11x0011, 0xx1110x11, 01011x0x11, 01111x0x11, 01111x0x11}, x0x11x0x11 \ {
   x0x1110111, x0x11x0011, x0x1110x11, 00111x0x11, 00011x0x11}}

{11x1x \ {11011, 11x11}}
{x0110 \ {10110}}
{
   x011011x10 \ {
   1011011x10}}

{010xx \ {0101x, 01010, 010x1}, x1x11 \ {11x11, x1111}}
{}
{}

{0xxx1 \ {0x101, 0x011, 010x1}, 00x1x \ {00x10, 00011}}
{0x11x \ {0x110, 0x111, 01110}}
{
   0x1110xx11 \ {
   0x1110x011, 0x11101011, 0x1110xx11}, 0x11x00x1x \ {
   0x11100x10, 0x11000x11, 0x11x00x10, 0x11x00011, 0x11000x1x, 0x11100x1x, 0111000x1x}}

{x0101 \ {00101, 10101, 10101}, 1x1xx \ {11111, 1110x, 111x0}}
{}
{}

{1xxxx \ {11xxx, 1xx01, 11001}, 01x01 \ {01101, 01001, 01001}}
{xx1x0 \ {0x1x0, x01x0, 001x0}, x1000 \ {11000}}
{
   xx1x01xxx0 \ {
   xx1101xx00, xx1001xx10, xx1x011xx0, 0x1x01xxx0, x01x01xxx0, 001x01xxx0}, x10001xx00 \ {
   x100011x00, 110001xx00}}

{x0111 \ {00111, 10111}, 1101x \ {11010, 11011}}
{0xx00 \ {01100, 01000, 00100}}
{}

{}
{x0x1x \ {0001x, 10x10, x0x11}}
{}

{}
{}
{}

{11xx1 \ {11011, 110x1, 111x1}, xx00x \ {xx001, x000x}}
{0x0xx \ {00001, 0001x, 000x1}}
{
   0x0x111xx1 \ {
   0x01111x01, 0x00111x11, 0x0x111011, 0x0x1110x1, 0x0x1111x1, 0000111xx1, 0001111xx1, 000x111xx1}, 0x00xxx00x \ {
   0x001xx000, 0x000xx001, 0x00xxx001, 0x00xx000x, 00001xx00x, 00001xx00x}}

{xx010 \ {00010, 11010, x0010}}
{0x11x \ {0x111, 01111}}
{
   0x110xx010 \ {
   0x11000010, 0x11011010, 0x110x0010}}

{000xx \ {000x0, 0000x, 000x1}}
{0x11x \ {01111, 00110, 00111}, x11x1 \ {11101, 111x1}}
{
   0x11x0001x \ {
   0x11100010, 0x11000011, 0x11x00010, 0x11x00011, 011110001x, 001100001x, 001110001x}, x11x1000x1 \ {
   x111100001, x110100011, x11x100001, x11x1000x1, 11101000x1, 111x1000x1}}

{xxx10 \ {00010, 11110, 10x10}, 0x110 \ {01110, 00110}, 1x1x0 \ {111x0, 101x0}}
{011xx \ {01111, 0110x}, 1xx00 \ {11x00, 10x00, 1x100}, 1x0x1 \ {10011, 110x1}}
{
   01110xxx10 \ {
   0111000010, 0111011110, 0111010x10}, 011100x110 \ {
   0111001110, 0111000110}, 011x01x1x0 \ {
   011101x100, 011001x110, 011x0111x0, 011x0101x0, 011001x1x0}, 1xx001x100 \ {
   1xx0011100, 1xx0010100, 11x001x100, 10x001x100, 1x1001x100}}

{x11x1 \ {x1101, 11101, 011x1}, xx1x0 \ {01110, 1x1x0, xx110}}
{x111x \ {01111, 01110, 11111}, 001x0 \ {00110, 00100, 00100}}
{
   x1111x1111 \ {
   x111101111, 01111x1111, 11111x1111}, x1110xx110 \ {
   x111001110, x11101x110, x1110xx110, 01110xx110}, 001x0xx1x0 \ {
   00110xx100, 00100xx110, 001x001110, 001x01x1x0, 001x0xx110, 00110xx1x0, 00100xx1x0, 00100xx1x0}}

{1xxxx \ {1xx00, 1100x, 1x111}, 10x10 \ {10110, 10010, 10010}}
{x001x \ {00010, 0001x}, 11xxx \ {11x00, 111xx, 1110x}}
{
   x001x1xx1x \ {
   x00111xx10, x00101xx11, x001x1x111, 000101xx1x, 0001x1xx1x}, 11xxx1xxxx \ {
   11xx11xxx0, 11xx01xxx1, 11x1x1xx0x, 11x0x1xx1x, 11xxx1xx00, 11xxx1100x, 11xxx1x111, 11x001xxxx, 111xx1xxxx, 1110x1xxxx}, x001010x10 \ {
   x001010110, x001010010, x001010010, 0001010x10, 0001010x10}, 11x1010x10 \ {
   11x1010110, 11x1010010, 11x1010010, 1111010x10}}

{00x1x \ {00010, 00110, 00x10}}
{1x1x0 \ {1x100, 11110, 101x0}, 100x0 \ {10000}, x101x \ {x1010, 11010, 11010}}
{
   1x11000x10 \ {
   1x11000010, 1x11000110, 1x11000x10, 1111000x10, 1011000x10}, 1001000x10 \ {
   1001000010, 1001000110, 1001000x10}, x101x00x1x \ {
   x101100x10, x101000x11, x101x00010, x101x00110, x101x00x10, x101000x1x, 1101000x1x, 1101000x1x}}

{00x1x \ {00x11, 00011, 00x10}}
{1x0xx \ {11000, 100x0, 100xx}, 0x11x \ {0x111, 00110, 0111x}}
{
   1x01x00x1x \ {
   1x01100x10, 1x01000x11, 1x01x00x11, 1x01x00011, 1x01x00x10, 1001000x1x, 1001x00x1x}, 0x11x00x1x \ {
   0x11100x10, 0x11000x11, 0x11x00x11, 0x11x00011, 0x11x00x10, 0x11100x1x, 0011000x1x, 0111x00x1x}}

{11xx0 \ {11000, 11100, 11x00}, 1x101 \ {10101, 11101, 11101}}
{0xxx1 \ {01xx1, 0x011, 01011}, xxx11 \ {xx011, 0xx11, 01011}}
{
   0xx011x101 \ {
   0xx0110101, 0xx0111101, 0xx0111101, 01x011x101}}

{}
{xx1x0 \ {x1100, 11100, 111x0}, xx110 \ {01110, 10110, 11110}}
{}

{}
{xxxx0 \ {xx100, x0110, 11100}, 000x1 \ {00011}}
{}

{x0xx0 \ {00100, x0x10, 00110}, 1x10x \ {10101, 1x100, 1x100}}
{00x10 \ {00110}}
{
   00x10x0x10 \ {
   00x10x0x10, 00x1000110, 00110x0x10}}

{011xx \ {0111x, 0110x, 0110x}}
{xx1x1 \ {01101, 0x111, 10101}}
{
   xx1x1011x1 \ {
   xx11101101, xx10101111, xx1x101111, xx1x101101, xx1x101101, 01101011x1, 0x111011x1, 10101011x1}}

{xx11x \ {00111, 01111, 1111x}}
{}
{}

{0x0x1 \ {000x1, 0x011, 01001}, 10x0x \ {10001, 1010x, 10100}, 1x001 \ {11001}}
{x11x1 \ {x1111, 111x1, 011x1}}
{
   x11x10x0x1 \ {
   x11110x001, x11010x011, x11x1000x1, x11x10x011, x11x101001, x11110x0x1, 111x10x0x1, 011x10x0x1}, x110110x01 \ {
   x110110001, x110110101, 1110110x01, 0110110x01}, x11011x001 \ {
   x110111001, 111011x001, 011011x001}}

{x1x1x \ {1101x, 11110, 0111x}, xxxxx \ {0x101, x1x1x, 011x0}, 1xx01 \ {1x001, 10x01, 10x01}}
{x1x01 \ {11101, 01001, 01001}}
{
   x1x01xxx01 \ {
   x1x010x101, 11101xxx01, 01001xxx01, 01001xxx01}, x1x011xx01 \ {
   x1x011x001, x1x0110x01, x1x0110x01, 111011xx01, 010011xx01, 010011xx01}}

{11xx0 \ {11110, 110x0}}
{x0x1x \ {10x10, 00x10, 00x1x}}
{
   x0x1011x10 \ {
   x0x1011110, x0x1011010, 10x1011x10, 00x1011x10, 00x1011x10}}

{x1xxx \ {110xx, x1111, 01x11}}
{0xx11 \ {0x011, 01x11, 01x11}, 00x1x \ {00x10, 00x11, 0001x}}
{
   0xx11x1x11 \ {
   0xx1111011, 0xx11x1111, 0xx1101x11, 0x011x1x11, 01x11x1x11, 01x11x1x11}, 00x1xx1x1x \ {
   00x11x1x10, 00x10x1x11, 00x1x1101x, 00x1xx1111, 00x1x01x11, 00x10x1x1x, 00x11x1x1x, 0001xx1x1x}}

{01x01 \ {01001, 01101}, xxxx0 \ {xxx10, x00x0, x0010}}
{x1xx1 \ {11101, 11x11, x1001}, xx1xx \ {x01x1, xx1x1, x111x}, xxx1x \ {0101x, 11010, x0110}}
{
   x1x0101x01 \ {
   x1x0101001, x1x0101101, 1110101x01, x100101x01}, xx10101x01 \ {
   xx10101001, xx10101101, x010101x01, xx10101x01}, xx1x0xxxx0 \ {
   xx110xxx00, xx100xxx10, xx1x0xxx10, xx1x0x00x0, xx1x0x0010, x1110xxxx0}, xxx10xxx10 \ {
   xxx10xxx10, xxx10x0010, xxx10x0010, 01010xxx10, 11010xxx10, x0110xxx10}}

{01x1x \ {01011, 0111x, 0111x}, 01x01 \ {01001, 01101}}
{11x1x \ {11011, 11111}, 1x1x1 \ {11111, 111x1, 11101}}
{
   11x1x01x1x \ {
   11x1101x10, 11x1001x11, 11x1x01011, 11x1x0111x, 11x1x0111x, 1101101x1x, 1111101x1x}, 1x11101x11 \ {
   1x11101011, 1x11101111, 1x11101111, 1111101x11, 1111101x11}, 1x10101x01 \ {
   1x10101001, 1x10101101, 1110101x01, 1110101x01}}

{0xxx0 \ {01110, 0x110}}
{xxx0x \ {1110x, 0x000, x0x00}, 0xx0x \ {01x00, 01x0x}}
{
   xxx000xx00 \ {
   111000xx00, 0x0000xx00, x0x000xx00}, 0xx000xx00 \ {
   01x000xx00, 01x000xx00}}

{}
{1101x \ {11010, 11011}}
{}

{x1x11 \ {11x11, x1011, 01x11}}
{}
{}

{1xx00 \ {1x100, 1x000}}
{x000x \ {00000, x0001}, 01xxx \ {01x0x, 01000, 01xx0}}
{
   x00001xx00 \ {
   x00001x100, x00001x000, 000001xx00}, 01x001xx00 \ {
   01x001x100, 01x001x000, 01x001xx00, 010001xx00, 01x001xx00}}

{0x11x \ {01111, 00110, 00111}, 100xx \ {100x0, 100x1, 10001}}
{}
{}

{010xx \ {01001, 01011, 01000}, 01xx0 \ {01110, 01100}, 111x0 \ {11100}}
{}
{}

{xxx11 \ {10011, x0011, x0x11}, 1x00x \ {11000, 10001, 10001}, 0xxx0 \ {0x110, 01x00, 0xx00}}
{}
{}

{xxx1x \ {xx111, 01011, 0001x}, 00x0x \ {0010x, 0000x, 00001}}
{}
{}

{00x0x \ {00101, 00100}, x0100 \ {10100, 00100}}
{0x00x \ {01001}}
{
   0x00x00x0x \ {
   0x00100x00, 0x00000x01, 0x00x00101, 0x00x00100, 0100100x0x}, 0x000x0100 \ {
   0x00010100, 0x00000100}}

{00x1x \ {00110, 0001x}, 001xx \ {00110, 001x0, 0011x}}
{xx001 \ {01001, x0001, 11001}}
{
   xx00100101 \ {
   0100100101, x000100101, 1100100101}}

{x00xx \ {x00x1, 10000, 1001x}, 11x11 \ {11011, 11111}, x11xx \ {01101, 01111, x1101}}
{}
{}

{xx0x1 \ {xx011, 00011, x0011}, xxxx0 \ {10110, 010x0, 010x0}, x10x0 \ {x1010, 110x0, 01010}}
{0x10x \ {00101, 01100, 0010x}}
{
   0x101xx001 \ {
   00101xx001, 00101xx001}, 0x100xxx00 \ {
   0x10001000, 0x10001000, 01100xxx00, 00100xxx00}, 0x100x1000 \ {
   0x10011000, 01100x1000, 00100x1000}}

{}
{0x1x1 \ {0x101, 01111, 01111}, x1x10 \ {x1110, 01110, 01110}, xx000 \ {11000, 00000}}
{}

{x10xx \ {x1000, 01011, 11010}, 1xx1x \ {1xx11, 10x1x, 10x11}}
{xxx00 \ {01100, 01x00, 01x00}}
{
   xxx00x1000 \ {
   xxx00x1000, 01100x1000, 01x00x1000, 01x00x1000}}

{}
{x11x1 \ {01111, 11101, 111x1}}
{}

{x1x1x \ {11x1x, x111x, 01011}, 1100x \ {11001, 11000}}
{0x001 \ {01001, 00001}}
{
   0x00111001 \ {
   0x00111001, 0100111001, 0000111001}}

{1xx00 \ {11000, 10000}, x1x01 \ {x1001, 01x01, 01x01}}
{x0x1x \ {x0011, 10x10, 00011}, x00x1 \ {x0001, 00011, 100x1}}
{
   x0001x1x01 \ {
   x0001x1001, x000101x01, x000101x01, x0001x1x01, 10001x1x01}}

{xxxx0 \ {01000, x1010, 11000}}
{10x1x \ {10010, 1011x, 10x10}, xx0x0 \ {0x0x0, 0x000, xx010}, x0xxx \ {10101, 001xx, 00x00}}
{
   10x10xxx10 \ {
   10x10x1010, 10010xxx10, 10110xxx10, 10x10xxx10}, xx0x0xxxx0 \ {
   xx010xxx00, xx000xxx10, xx0x001000, xx0x0x1010, xx0x011000, 0x0x0xxxx0, 0x000xxxx0, xx010xxxx0}, x0xx0xxxx0 \ {
   x0x10xxx00, x0x00xxx10, x0xx001000, x0xx0x1010, x0xx011000, 001x0xxxx0, 00x00xxxx0}}

{x1100 \ {11100}}
{x101x \ {x1010, 01011, x1011}, 00xx1 \ {00001, 00101}}
{}

{0x1x1 \ {001x1, 01111, 0x101}}
{x0x0x \ {10001, 00100, x0100}, xx001 \ {x1001, 00001, 00001}}
{
   x0x010x101 \ {
   x0x0100101, x0x010x101, 100010x101}, xx0010x101 \ {
   xx00100101, xx0010x101, x10010x101, 000010x101, 000010x101}}

{1100x \ {11001, 11000}, x1x0x \ {x1001, 11101, 11001}}
{x001x \ {10010, x0010}, xx001 \ {x0001, 01001, 11001}, 1110x \ {11101, 11100, 11100}}
{
   xx00111001 \ {
   xx00111001, x000111001, 0100111001, 1100111001}, 1110x1100x \ {
   1110111000, 1110011001, 1110x11001, 1110x11000, 111011100x, 111001100x, 111001100x}, xx001x1x01 \ {
   xx001x1001, xx00111101, xx00111001, x0001x1x01, 01001x1x01, 11001x1x01}, 1110xx1x0x \ {
   11101x1x00, 11100x1x01, 1110xx1001, 1110x11101, 1110x11001, 11101x1x0x, 11100x1x0x, 11100x1x0x}}

{xxx00 \ {x1100, 00000, 10x00}, 01xxx \ {01101, 010x0, 01x0x}}
{01xxx \ {011x0, 01x0x}}
{
   01x00xxx00 \ {
   01x00x1100, 01x0000000, 01x0010x00, 01100xxx00, 01x00xxx00}, 01xxx01xxx \ {
   01xx101xx0, 01xx001xx1, 01x1x01x0x, 01x0x01x1x, 01xxx01101, 01xxx010x0, 01xxx01x0x, 011x001xxx, 01x0x01xxx}}

{}
{xx110 \ {11110, 01110, 00110}, 1xx00 \ {11x00, 10x00, 1x000}}
{}

{10xxx \ {1011x, 10x01, 101x1}, xx111 \ {01111, 0x111, x1111}}
{x0xx1 \ {x01x1, 10111, 00111}, xx1x1 \ {10111, 10101, x11x1}}
{
   x0xx110xx1 \ {
   x0x1110x01, x0x0110x11, x0xx110111, x0xx110x01, x0xx1101x1, x01x110xx1, 1011110xx1, 0011110xx1}, xx1x110xx1 \ {
   xx11110x01, xx10110x11, xx1x110111, xx1x110x01, xx1x1101x1, 1011110xx1, 1010110xx1, x11x110xx1}, x0x11xx111 \ {
   x0x1101111, x0x110x111, x0x11x1111, x0111xx111, 10111xx111, 00111xx111}, xx111xx111 \ {
   xx11101111, xx1110x111, xx111x1111, 10111xx111, x1111xx111}}

{xx1xx \ {1011x, 00100, 00100}, x1x01 \ {01101}}
{01x10 \ {01110}, xx011 \ {x0011, 01011}}
{
   01x10xx110 \ {
   01x1010110, 01110xx110}, xx011xx111 \ {
   xx01110111, x0011xx111, 01011xx111}}

{00xx0 \ {000x0, 00010, 00010}, 01xx1 \ {011x1, 01101, 01x11}}
{1x01x \ {1101x, 1x010}, 0x1x0 \ {00100, 001x0, 01100}}
{
   1x01000x10 \ {
   1x01000010, 1x01000010, 1x01000010, 1101000x10, 1x01000x10}, 0x1x000xx0 \ {
   0x11000x00, 0x10000x10, 0x1x0000x0, 0x1x000010, 0x1x000010, 0010000xx0, 001x000xx0, 0110000xx0}, 1x01101x11 \ {
   1x01101111, 1x01101x11, 1101101x11}}

{1x01x \ {11010, 1x010, 11011}}
{11xx1 \ {11111, 11101, 110x1}, 10x1x \ {1001x, 10010, 10x10}, x1x01 \ {01x01, x1101, x1001}}
{
   11x111x011 \ {
   11x1111011, 111111x011, 110111x011}, 10x1x1x01x \ {
   10x111x010, 10x101x011, 10x1x11010, 10x1x1x010, 10x1x11011, 1001x1x01x, 100101x01x, 10x101x01x}}

{x0x11 \ {10011, 00x11, 10111}, xx1xx \ {x0101, x111x, 11100}, x0x0x \ {00001, x000x, 00x0x}}
{1x111 \ {10111}, x1xxx \ {x1101, x1000, 01001}}
{
   1x111x0x11 \ {
   1x11110011, 1x11100x11, 1x11110111, 10111x0x11}, x1x11x0x11 \ {
   x1x1110011, x1x1100x11, x1x1110111}, 1x111xx111 \ {
   1x111x1111, 10111xx111}, x1xxxxx1xx \ {
   x1xx1xx1x0, x1xx0xx1x1, x1x1xxx10x, x1x0xxx11x, x1xxxx0101, x1xxxx111x, x1xxx11100, x1101xx1xx, x1000xx1xx, 01001xx1xx}, x1x0xx0x0x \ {
   x1x01x0x00, x1x00x0x01, x1x0x00001, x1x0xx000x, x1x0x00x0x, x1101x0x0x, x1000x0x0x, 01001x0x0x}}

{x0xxx \ {x00xx, x0x11, 10010}}
{xxx0x \ {0x10x, 11x01, 0x000}, xxx10 \ {x1x10, 1x010, xx110}}
{
   xxx0xx0x0x \ {
   xxx01x0x00, xxx00x0x01, xxx0xx000x, 0x10xx0x0x, 11x01x0x0x, 0x000x0x0x}, xxx10x0x10 \ {
   xxx10x0010, xxx1010010, x1x10x0x10, 1x010x0x10, xx110x0x10}}

{x1x10 \ {x1110, x1010}, xx100 \ {10100, 11100}}
{}
{}

{x0111 \ {00111, 10111}, x1x00 \ {11x00, 11000, x1000}, xxxx1 \ {11101, 100x1, 1x001}}
{x00x1 \ {00011, 000x1, 10001}, 1x01x \ {10011, 1x011, 11010}}
{
   x0011x0111 \ {
   x001100111, x001110111, 00011x0111, 00011x0111}, 1x011x0111 \ {
   1x01100111, 1x01110111, 10011x0111, 1x011x0111}, x00x1xxxx1 \ {
   x0011xxx01, x0001xxx11, x00x111101, x00x1100x1, x00x11x001, 00011xxxx1, 000x1xxxx1, 10001xxxx1}, 1x011xxx11 \ {
   1x01110011, 10011xxx11, 1x011xxx11}}

{x01xx \ {10100, 00110, 1011x}, x1111 \ {11111, 01111, 01111}}
{000x0 \ {00010, 00000, 00000}, x111x \ {11110, 01111, x1110}, 1xx10 \ {11x10, 10110, 10010}}
{
   000x0x01x0 \ {
   00010x0100, 00000x0110, 000x010100, 000x000110, 000x010110, 00010x01x0, 00000x01x0, 00000x01x0}, x111xx011x \ {
   x1111x0110, x1110x0111, x111x00110, x111x1011x, 11110x011x, 01111x011x, x1110x011x}, 1xx10x0110 \ {
   1xx1000110, 1xx1010110, 11x10x0110, 10110x0110, 10010x0110}, x1111x1111 \ {
   x111111111, x111101111, x111101111, 01111x1111}}

{0x0xx \ {0x01x, 000xx, 000x1}, 10x11 \ {10011, 10111}}
{010xx \ {01001, 010x0, 010x1}}
{
   010xx0x0xx \ {
   010x10x0x0, 010x00x0x1, 0101x0x00x, 0100x0x01x, 010xx0x01x, 010xx000xx, 010xx000x1, 010010x0xx, 010x00x0xx, 010x10x0xx}, 0101110x11 \ {
   0101110011, 0101110111, 0101110x11}}

{xx0xx \ {1x0xx, 10011, x10x0}, 10x1x \ {10011, 1001x, 10110}, 101x1 \ {10101}}
{}
{}

{001xx \ {00100, 001x1, 00101}, 1xxx1 \ {10xx1, 1x001, 11111}}
{0xx10 \ {01110, 01x10, 0x110}}
{
   0xx1000110 \ {
   0111000110, 01x1000110, 0x11000110}}

{}
{1110x \ {11100}}
{}

{1001x \ {10010}, 0100x \ {01001, 01000, 01000}}
{}
{}

{1x1x0 \ {10100, 10110, 11110}, 0010x \ {00100, 00101}}
{x110x \ {01100, x1101, 01101}, x1x01 \ {x1101, 01001, 01x01}}
{
   x11001x100 \ {
   x110010100, 011001x100}, x110x0010x \ {
   x110100100, x110000101, x110x00100, x110x00101, 011000010x, x11010010x, 011010010x}, x1x0100101 \ {
   x1x0100101, x110100101, 0100100101, 01x0100101}}

{11x1x \ {11x10, 11x11, 11111}}
{1xxx0 \ {1x0x0, 1x100, 100x0}}
{
   1xx1011x10 \ {
   1xx1011x10, 1x01011x10, 1001011x10}}

{01xx0 \ {01000, 01x10, 01x00}}
{x011x \ {10111, x0111, x0110}}
{
   x011001x10 \ {
   x011001x10, x011001x10}}

{0x0x1 \ {01001, 010x1, 0x001}}
{}
{}

{11x1x \ {11011, 1101x, 1101x}, 0001x \ {00011, 00010}, x0xx0 \ {x00x0, 10100, 00100}}
{10x1x \ {10111, 10110}, 10xx1 \ {10x01, 100x1, 101x1}}
{
   10x1x11x1x \ {
   10x1111x10, 10x1011x11, 10x1x11011, 10x1x1101x, 10x1x1101x, 1011111x1x, 1011011x1x}, 10x1111x11 \ {
   10x1111011, 10x1111011, 10x1111011, 1001111x11, 1011111x11}, 10x1x0001x \ {
   10x1100010, 10x1000011, 10x1x00011, 10x1x00010, 101110001x, 101100001x}, 10x1100011 \ {
   10x1100011, 1001100011, 1011100011}, 10x10x0x10 \ {
   10x10x0010, 10110x0x10}}

{1x01x \ {10011, 11011, 11011}, x1101 \ {01101, 11101}}
{x0xx0 \ {x0110, x0x00, 00100}}
{
   x0x101x010 \ {
   x01101x010}}

{xxxx1 \ {x1xx1, xx1x1, x1101}, 010x0 \ {01000}, x00x0 \ {10000, 000x0, 100x0}}
{xx011 \ {x1011, x0011}}
{
   xx011xxx11 \ {
   xx011x1x11, xx011xx111, x1011xxx11, x0011xxx11}}

{xxx11 \ {xx011, 1x111, 00011}, 11x0x \ {11100, 11x01, 1100x}, xx0x0 \ {010x0, xx010, x10x0}}
{x1x01 \ {x1101, 01x01, 01001}, xx010 \ {00010, x1010, 1x010}}
{
   x1x0111x01 \ {
   x1x0111x01, x1x0111001, x110111x01, 01x0111x01, 0100111x01}, xx010xx010 \ {
   xx01001010, xx010xx010, xx010x1010, 00010xx010, x1010xx010, 1x010xx010}}

{x0x00 \ {00000, 10x00}, 1110x \ {11100, 11101, 11101}, x01xx \ {001x0, 1011x, 00111}}
{1x10x \ {11100, 11101, 10100}, 11xx0 \ {11000, 11x00}, x11x0 \ {111x0, 01100, x1100}}
{
   1x100x0x00 \ {
   1x10000000, 1x10010x00, 11100x0x00, 10100x0x00}, 11x00x0x00 \ {
   11x0000000, 11x0010x00, 11000x0x00, 11x00x0x00}, x1100x0x00 \ {
   x110000000, x110010x00, 11100x0x00, 01100x0x00, x1100x0x00}, 1x10x1110x \ {
   1x10111100, 1x10011101, 1x10x11100, 1x10x11101, 1x10x11101, 111001110x, 111011110x, 101001110x}, 11x0011100 \ {
   11x0011100, 1100011100, 11x0011100}, x110011100 \ {
   x110011100, 1110011100, 0110011100, x110011100}, 1x10xx010x \ {
   1x101x0100, 1x100x0101, 1x10x00100, 11100x010x, 11101x010x, 10100x010x}, 11xx0x01x0 \ {
   11x10x0100, 11x00x0110, 11xx0001x0, 11xx010110, 11000x01x0, 11x00x01x0}, x11x0x01x0 \ {
   x1110x0100, x1100x0110, x11x0001x0, x11x010110, 111x0x01x0, 01100x01x0, x1100x01x0}}

{}
{1xxxx \ {110x0, 11xx1, 111x1}, x11xx \ {11101, 1111x, 11100}}
{}

{}
{1011x \ {10111}, x0xx1 \ {x0011, x0101, 00xx1}}
{}

{1001x \ {10011, 10010, 10010}}
{0x0x1 \ {010x1, 01001, 000x1}}
{
   0x01110011 \ {
   0x01110011, 0101110011, 0001110011}}

{01xxx \ {0110x, 01101, 010x1}, x10xx \ {11010, 010x1, 01001}}
{xx0xx \ {x00x1, 010x0, 11001}}
{
   xx0xx01xxx \ {
   xx0x101xx0, xx0x001xx1, xx01x01x0x, xx00x01x1x, xx0xx0110x, xx0xx01101, xx0xx010x1, x00x101xxx, 010x001xxx, 1100101xxx}, xx0xxx10xx \ {
   xx0x1x10x0, xx0x0x10x1, xx01xx100x, xx00xx101x, xx0xx11010, xx0xx010x1, xx0xx01001, x00x1x10xx, 010x0x10xx, 11001x10xx}}

{x0x0x \ {00x01, x010x, x0101}, xx0xx \ {xx0x1, 010xx, 11001}}
{0x1x1 \ {011x1, 01101, 001x1}, 1x01x \ {1x010, 10010, 10010}}
{
   0x101x0x01 \ {
   0x10100x01, 0x101x0101, 0x101x0101, 01101x0x01, 01101x0x01, 00101x0x01}, 0x1x1xx0x1 \ {
   0x111xx001, 0x101xx011, 0x1x1xx0x1, 0x1x1010x1, 0x1x111001, 011x1xx0x1, 01101xx0x1, 001x1xx0x1}, 1x01xxx01x \ {
   1x011xx010, 1x010xx011, 1x01xxx011, 1x01x0101x, 1x010xx01x, 10010xx01x, 10010xx01x}}

{111x1 \ {11111, 11101}}
{000xx \ {00000, 00010, 00010}}
{
   000x1111x1 \ {
   0001111101, 0000111111, 000x111111, 000x111101}}

{xx011 \ {0x011, x1011}, x0x0x \ {00x01, 10101, 1000x}}
{xxx11 \ {x1011, 1x111, x1111}, xxx0x \ {0x001, 11x00, x0x0x}}
{
   xxx11xx011 \ {
   xxx110x011, xxx11x1011, x1011xx011, 1x111xx011, x1111xx011}, xxx0xx0x0x \ {
   xxx01x0x00, xxx00x0x01, xxx0x00x01, xxx0x10101, xxx0x1000x, 0x001x0x0x, 11x00x0x0x, x0x0xx0x0x}}

{}
{0x01x \ {00010, 0101x, 0001x}}
{}

{x1xxx \ {01100, 11x11, x111x}, 0xx01 \ {01x01, 0x101}, 1xx1x \ {10011, 10x11, 1x011}}
{x00xx \ {0000x, 10011, 000x0}, 11x1x \ {11011, 1111x, 11x10}}
{
   x00xxx1xxx \ {
   x00x1x1xx0, x00x0x1xx1, x001xx1x0x, x000xx1x1x, x00xx01100, x00xx11x11, x00xxx111x, 0000xx1xxx, 10011x1xxx, 000x0x1xxx}, 11x1xx1x1x \ {
   11x11x1x10, 11x10x1x11, 11x1x11x11, 11x1xx111x, 11011x1x1x, 1111xx1x1x, 11x10x1x1x}, x00010xx01 \ {
   x000101x01, x00010x101, 000010xx01}, x001x1xx1x \ {
   x00111xx10, x00101xx11, x001x10011, x001x10x11, x001x1x011, 100111xx1x, 000101xx1x}, 11x1x1xx1x \ {
   11x111xx10, 11x101xx11, 11x1x10011, 11x1x10x11, 11x1x1x011, 110111xx1x, 1111x1xx1x, 11x101xx1x}}

{xx11x \ {0x110, 00111, 01110}, 11x11 \ {11011, 11111, 11111}}
{1x0x1 \ {11011, 10011, 1x011}, xx01x \ {0x01x, 10010, xx010}}
{
   1x011xx111 \ {
   1x01100111, 11011xx111, 10011xx111, 1x011xx111}, xx01xxx11x \ {
   xx011xx110, xx010xx111, xx01x0x110, xx01x00111, xx01x01110, 0x01xxx11x, 10010xx11x, xx010xx11x}, 1x01111x11 \ {
   1x01111011, 1x01111111, 1x01111111, 1101111x11, 1001111x11, 1x01111x11}, xx01111x11 \ {
   xx01111011, xx01111111, xx01111111, 0x01111x11}}

{xx10x \ {x0101, 00101, xx101}, x01x1 \ {10101, 10111, 00111}}
{xxx11 \ {1x011, 0x111, x1011}}
{
   xxx11x0111 \ {
   xxx1110111, xxx1100111, 1x011x0111, 0x111x0111, x1011x0111}}

{1001x \ {10011, 10010, 10010}, xx010 \ {1x010, 0x010}}
{00x00 \ {00100}}
{}

{xxxx1 \ {00001, xx111, x1111}, 0x01x \ {0x011, 01011, 00010}}
{1xx1x \ {11x11, 1x011, 10111}}
{
   1xx11xxx11 \ {
   1xx11xx111, 1xx11x1111, 11x11xxx11, 1x011xxx11, 10111xxx11}, 1xx1x0x01x \ {
   1xx110x010, 1xx100x011, 1xx1x0x011, 1xx1x01011, 1xx1x00010, 11x110x01x, 1x0110x01x, 101110x01x}}

{}
{1x0x1 \ {110x1, 100x1, 10001}}
{}

{0x001 \ {00001, 01001}}
{xx0xx \ {11010, x10x1, x10xx}, 0xxxx \ {01x1x, 0x101, 010x0}}
{
   xx0010x001 \ {
   xx00100001, xx00101001, x10010x001, x10010x001}, 0xx010x001 \ {
   0xx0100001, 0xx0101001, 0x1010x001}}

{x1xxx \ {11011, x1001, x111x}, xx001 \ {x0001, x1001, 11001}}
{0111x \ {01111, 01110, 01110}, xx11x \ {x111x, 1111x, 11110}}
{
   0111xx1x1x \ {
   01111x1x10, 01110x1x11, 0111x11011, 0111xx111x, 01111x1x1x, 01110x1x1x, 01110x1x1x}, xx11xx1x1x \ {
   xx111x1x10, xx110x1x11, xx11x11011, xx11xx111x, x111xx1x1x, 1111xx1x1x, 11110x1x1x}}

{11x0x \ {11100, 1100x, 1110x}, x1000 \ {01000}, x1x01 \ {11001, x1101}}
{xx111 \ {11111, 01111}}
{}

{x11xx \ {111x0, 1111x}}
{x0x00 \ {x0000, 00x00, 00000}, 101x1 \ {10111}, 0x11x \ {01110, 00111}}
{
   x0x00x1100 \ {
   x0x0011100, x0000x1100, 00x00x1100, 00000x1100}, 101x1x11x1 \ {
   10111x1101, 10101x1111, 101x111111, 10111x11x1}, 0x11xx111x \ {
   0x111x1110, 0x110x1111, 0x11x11110, 0x11x1111x, 01110x111x, 00111x111x}}

{xx1x0 \ {10100, 00100, 10110}, x10x0 \ {01010, 010x0, 01000}}
{xx00x \ {10000, 00001, xx001}}
{
   xx000xx100 \ {
   xx00010100, xx00000100, 10000xx100}, xx000x1000 \ {
   xx00001000, xx00001000, 10000x1000}}

{000x0 \ {00000}}
{01x0x \ {01x00, 01000, 01100}, x1xx0 \ {11x00, 01x00, 11000}}
{
   01x0000000 \ {
   01x0000000, 01x0000000, 0100000000, 0110000000}, x1xx0000x0 \ {
   x1x1000000, x1x0000010, x1xx000000, 11x00000x0, 01x00000x0, 11000000x0}}

{xx0xx \ {10011, 11001, x001x}, 1xx10 \ {11010, 10110, 1x110}}
{011x0 \ {01110}, x1xxx \ {010x1, 11010, x11x1}}
{
   011x0xx0x0 \ {
   01110xx000, 01100xx010, 011x0x0010, 01110xx0x0}, x1xxxxx0xx \ {
   x1xx1xx0x0, x1xx0xx0x1, x1x1xxx00x, x1x0xxx01x, x1xxx10011, x1xxx11001, x1xxxx001x, 010x1xx0xx, 11010xx0xx, x11x1xx0xx}, 011101xx10 \ {
   0111011010, 0111010110, 011101x110, 011101xx10}, x1x101xx10 \ {
   x1x1011010, x1x1010110, x1x101x110, 110101xx10}}

{0xxxx \ {0110x, 01111, 00xx1}, 000x0 \ {00000, 00010, 00010}}
{}
{}

{}
{}
{}

{x0001 \ {00001}}
{x11x1 \ {x1101, 01101, 01111}}
{
   x1101x0001 \ {
   x110100001, x1101x0001, 01101x0001}}

{x001x \ {1001x, x0010, 00011}, 001xx \ {00101, 00100}}
{0x000 \ {01000, 00000}}
{
   0x00000100 \ {
   0x00000100, 0100000100, 0000000100}}

{1x010 \ {11010, 10010}, 1x0xx \ {1x000, 1x0x0, 10000}, 000xx \ {00011, 00010}}
{11xxx \ {11111, 11x11, 11010}, 0x1x1 \ {0x111, 001x1, 00111}}
{
   11x101x010 \ {
   11x1011010, 11x1010010, 110101x010}, 11xxx1x0xx \ {
   11xx11x0x0, 11xx01x0x1, 11x1x1x00x, 11x0x1x01x, 11xxx1x000, 11xxx1x0x0, 11xxx10000, 111111x0xx, 11x111x0xx, 110101x0xx}, 0x1x11x0x1 \ {
   0x1111x001, 0x1011x011, 0x1111x0x1, 001x11x0x1, 001111x0x1}, 11xxx000xx \ {
   11xx1000x0, 11xx0000x1, 11x1x0000x, 11x0x0001x, 11xxx00011, 11xxx00010, 11111000xx, 11x11000xx, 11010000xx}, 0x1x1000x1 \ {
   0x11100001, 0x10100011, 0x1x100011, 0x111000x1, 001x1000x1, 00111000x1}}

{x11xx \ {111xx, 01111, x110x}, xx1x1 \ {x11x1, x1111, 0x111}}
{x10xx \ {1101x, x10x0, 010xx}, 1010x \ {10100}}
{
   x10xxx11xx \ {
   x10x1x11x0, x10x0x11x1, x101xx110x, x100xx111x, x10xx111xx, x10xx01111, x10xxx110x, 1101xx11xx, x10x0x11xx, 010xxx11xx}, 1010xx110x \ {
   10101x1100, 10100x1101, 1010x1110x, 1010xx110x, 10100x110x}, x10x1xx1x1 \ {
   x1011xx101, x1001xx111, x10x1x11x1, x10x1x1111, x10x10x111, 11011xx1x1, 010x1xx1x1}, 10101xx101 \ {
   10101x1101}}

{x0101 \ {10101}}
{}
{}

{0x1xx \ {01100, 00100, 0x1x0}, 00x11 \ {00111, 00011, 00011}}
{xx010 \ {x0010}, 1xx00 \ {10x00, 1x000, 1x000}}
{
   xx0100x110 \ {
   xx0100x110, x00100x110}, 1xx000x100 \ {
   1xx0001100, 1xx0000100, 1xx000x100, 10x000x100, 1x0000x100, 1x0000x100}}

{11xxx \ {11000, 11x10, 1111x}}
{x0xx0 \ {10110, 10xx0, x0110}}
{
   x0xx011xx0 \ {
   x0x1011x00, x0x0011x10, x0xx011000, x0xx011x10, x0xx011110, 1011011xx0, 10xx011xx0, x011011xx0}}

{001x0 \ {00100, 00110, 00110}, x01x0 \ {10110, 10100, x0100}}
{}
{}

{}
{xxx01 \ {x0x01, 0x101, 11101}}
{}

{0xx0x \ {00001, 0000x, 0110x}, 1xx1x \ {11010, 10x10, 10011}}
{xx0x1 \ {11011, x0011, x1011}, xx1xx \ {101xx, 1111x, x1110}}
{
   xx0010xx01 \ {
   xx00100001, xx00100001, xx00101101}, xx10x0xx0x \ {
   xx1010xx00, xx1000xx01, xx10x00001, xx10x0000x, xx10x0110x, 1010x0xx0x}, xx0111xx11 \ {
   xx01110011, 110111xx11, x00111xx11, x10111xx11}, xx11x1xx1x \ {
   xx1111xx10, xx1101xx11, xx11x11010, xx11x10x10, xx11x10011, 1011x1xx1x, 1111x1xx1x, x11101xx1x}}

{xxx01 \ {1xx01, 1x101, x1001}, x0xxx \ {1010x, x00x0, 00x11}}
{00x11 \ {00011, 00111}}
{
   00x11x0x11 \ {
   00x1100x11, 00011x0x11, 00111x0x11}}

{x111x \ {1111x, 0111x}, 10xx0 \ {10010, 10000}}
{11x0x \ {11001, 11x00, 11x01}}
{
   11x0010x00 \ {
   11x0010000, 11x0010x00}}

{xx0x0 \ {1x010, xx010, 0x0x0}, xx0xx \ {0001x, 0000x, 110x1}, 1x1x1 \ {10101, 111x1, 1x111}}
{001xx \ {0011x, 001x0, 0010x}, 00x1x \ {0011x, 0001x, 00010}}
{
   001x0xx0x0 \ {
   00110xx000, 00100xx010, 001x01x010, 001x0xx010, 001x00x0x0, 00110xx0x0, 001x0xx0x0, 00100xx0x0}, 00x10xx010 \ {
   00x101x010, 00x10xx010, 00x100x010, 00110xx010, 00010xx010, 00010xx010}, 001xxxx0xx \ {
   001x1xx0x0, 001x0xx0x1, 0011xxx00x, 0010xxx01x, 001xx0001x, 001xx0000x, 001xx110x1, 0011xxx0xx, 001x0xx0xx, 0010xxx0xx}, 00x1xxx01x \ {
   00x11xx010, 00x10xx011, 00x1x0001x, 00x1x11011, 0011xxx01x, 0001xxx01x, 00010xx01x}, 001x11x1x1 \ {
   001111x101, 001011x111, 001x110101, 001x1111x1, 001x11x111, 001111x1x1, 001011x1x1}, 00x111x111 \ {
   00x1111111, 00x111x111, 001111x111, 000111x111}}

{x01xx \ {00111, x01x1, 001x0}, 1x0xx \ {10000, 110xx, 1x001}}
{1xx1x \ {10111, 1xx10, 11111}}
{
   1xx1xx011x \ {
   1xx11x0110, 1xx10x0111, 1xx1x00111, 1xx1xx0111, 1xx1x00110, 10111x011x, 1xx10x011x, 11111x011x}, 1xx1x1x01x \ {
   1xx111x010, 1xx101x011, 1xx1x1101x, 101111x01x, 1xx101x01x, 111111x01x}}

{1x0xx \ {1x011, 10001, 1000x}}
{}
{}

{10x1x \ {10011, 1011x, 10x11}}
{}
{}

{xx0xx \ {0x00x, 11000, x0011}, 00x1x \ {00x11, 00110, 00111}}
{010xx \ {010x1, 0100x, 01010}}
{
   010xxxx0xx \ {
   010x1xx0x0, 010x0xx0x1, 0101xxx00x, 0100xxx01x, 010xx0x00x, 010xx11000, 010xxx0011, 010x1xx0xx, 0100xxx0xx, 01010xx0xx}, 0101x00x1x \ {
   0101100x10, 0101000x11, 0101x00x11, 0101x00110, 0101x00111, 0101100x1x, 0101000x1x}}

{10xx1 \ {10001, 10x11, 10x01}, 0xx00 \ {01100, 01x00, 01000}}
{0xx01 \ {0x001, 0x101, 00x01}, 1xxx1 \ {10011, 111x1, 11x01}}
{
   0xx0110x01 \ {
   0xx0110001, 0xx0110x01, 0x00110x01, 0x10110x01, 00x0110x01}, 1xxx110xx1 \ {
   1xx1110x01, 1xx0110x11, 1xxx110001, 1xxx110x11, 1xxx110x01, 1001110xx1, 111x110xx1, 11x0110xx1}}

{00xx1 \ {00x11, 001x1, 00101}}
{xxxx1 \ {x1xx1, 10xx1, 11101}, 1xxxx \ {10x0x, 11xx0, 1101x}}
{
   xxxx100xx1 \ {
   xxx1100x01, xxx0100x11, xxxx100x11, xxxx1001x1, xxxx100101, x1xx100xx1, 10xx100xx1, 1110100xx1}, 1xxx100xx1 \ {
   1xx1100x01, 1xx0100x11, 1xxx100x11, 1xxx1001x1, 1xxx100101, 10x0100xx1, 1101100xx1}}

{00x00 \ {00000, 00100, 00100}}
{1x100 \ {11100, 10100}, 0x0x1 \ {00011, 010x1, 00001}, 0xxx1 \ {00001, 00011, 01x01}}
{
   1x10000x00 \ {
   1x10000000, 1x10000100, 1x10000100, 1110000x00, 1010000x00}}

{xx010 \ {10010}}
{x000x \ {10001, 00001, 0000x}}
{}

{11x0x \ {11100, 11x01, 11001}, xx000 \ {x0000, x1000, 10000}}
{xxx0x \ {0xx00, x010x, 0x001}, 001x1 \ {00111, 00101, 00101}}
{
   xxx0x11x0x \ {
   xxx0111x00, xxx0011x01, xxx0x11100, xxx0x11x01, xxx0x11001, 0xx0011x0x, x010x11x0x, 0x00111x0x}, 0010111x01 \ {
   0010111x01, 0010111001, 0010111x01, 0010111x01}, xxx00xx000 \ {
   xxx00x0000, xxx00x1000, xxx0010000, 0xx00xx000, x0100xx000}}

{xxxx1 \ {0x0x1, xx011, 1x011}, 010xx \ {01000, 01010, 010x0}}
{0x1x1 \ {01111, 0x111, 00111}}
{
   0x1x1xxxx1 \ {
   0x111xxx01, 0x101xxx11, 0x1x10x0x1, 0x1x1xx011, 0x1x11x011, 01111xxxx1, 0x111xxxx1, 00111xxxx1}, 0x1x1010x1 \ {
   0x11101001, 0x10101011, 01111010x1, 0x111010x1, 00111010x1}}

{1x010 \ {11010, 10010, 10010}, xx0xx \ {x0011, 10011, 110x1}}
{0011x \ {00110, 00111}}
{
   001101x010 \ {
   0011011010, 0011010010, 0011010010, 001101x010}, 0011xxx01x \ {
   00111xx010, 00110xx011, 0011xx0011, 0011x10011, 0011x11011, 00110xx01x, 00111xx01x}}

{xx0xx \ {0x011, 0000x, 11000}, 001xx \ {0011x, 00101, 00100}, 11xx1 \ {11011, 11x01}}
{01x01 \ {01101}, 1xxx0 \ {10x10, 1x1x0, 1x010}}
{
   01x01xx001 \ {
   01x0100001, 01101xx001}, 1xxx0xx0x0 \ {
   1xx10xx000, 1xx00xx010, 1xxx000000, 1xxx011000, 10x10xx0x0, 1x1x0xx0x0, 1x010xx0x0}, 01x0100101 \ {
   01x0100101, 0110100101}, 1xxx0001x0 \ {
   1xx1000100, 1xx0000110, 1xxx000110, 1xxx000100, 10x10001x0, 1x1x0001x0, 1x010001x0}, 01x0111x01 \ {
   01x0111x01, 0110111x01}}

{1x1xx \ {1x1x1, 1x111, 1011x}}
{0xx1x \ {0011x, 0x01x, 00x11}}
{
   0xx1x1x11x \ {
   0xx111x110, 0xx101x111, 0xx1x1x111, 0xx1x1x111, 0xx1x1011x, 0011x1x11x, 0x01x1x11x, 00x111x11x}}

{x1xx0 \ {11xx0, x1010, 11110}}
{}
{}

{}
{x111x \ {01111, x1110, 11110}}
{}

{x0xx1 \ {00xx1, 00x01, 00x11}, x01x0 \ {101x0, 001x0}}
{x1010 \ {11010}, x0x00 \ {10000, 10x00, 10100}}
{
   x1010x0110 \ {
   x101010110, x101000110, 11010x0110}, x0x00x0100 \ {
   x0x0010100, x0x0000100, 10000x0100, 10x00x0100, 10100x0100}}

{0x00x \ {0100x, 0x001, 00001}, xx0xx \ {01000, 0001x, xx00x}}
{}
{}

{01x1x \ {01110, 0111x, 0101x}}
{x011x \ {x0111, 10110, 0011x}}
{
   x011x01x1x \ {
   x011101x10, x011001x11, x011x01110, x011x0111x, x011x0101x, x011101x1x, 1011001x1x, 0011x01x1x}}

{11xxx \ {11101, 11011, 11x11}}
{0x0xx \ {000x1, 0x00x}, xx1xx \ {11100, 00100, 1010x}, 0x00x \ {0000x, 00000, 00000}}
{
   0x0xx11xxx \ {
   0x0x111xx0, 0x0x011xx1, 0x01x11x0x, 0x00x11x1x, 0x0xx11101, 0x0xx11011, 0x0xx11x11, 000x111xxx, 0x00x11xxx}, xx1xx11xxx \ {
   xx1x111xx0, xx1x011xx1, xx11x11x0x, xx10x11x1x, xx1xx11101, xx1xx11011, xx1xx11x11, 1110011xxx, 0010011xxx, 1010x11xxx}, 0x00x11x0x \ {
   0x00111x00, 0x00011x01, 0x00x11101, 0000x11x0x, 0000011x0x, 0000011x0x}}

{1xx01 \ {10001, 10x01, 1x001}}
{00xxx \ {001x0, 00111, 00x00}}
{
   00x011xx01 \ {
   00x0110001, 00x0110x01, 00x011x001}}

{x0101 \ {10101, 00101}}
{1x010 \ {11010, 10010, 10010}, xx1xx \ {xx110, 1110x, x01xx}, 1xx11 \ {1x111, 1x011, 1x011}}
{
   xx101x0101 \ {
   xx10110101, xx10100101, 11101x0101, x0101x0101}}

{x0110 \ {10110}}
{1xx1x \ {11x11, 1011x, 1111x}, 1xx1x \ {1xx11, 11x10, 1111x}}
{
   1xx10x0110 \ {
   1xx1010110, 10110x0110, 11110x0110}, 1xx10x0110 \ {
   1xx1010110, 11x10x0110, 11110x0110}}

{}
{}
{}

{01x0x \ {01100, 01001, 01000}, 00x0x \ {00001, 00101}}
{xx101 \ {1x101, 00101}}
{
   xx10101x01 \ {
   xx10101001, 1x10101x01, 0010101x01}, xx10100x01 \ {
   xx10100001, xx10100101, 1x10100x01, 0010100x01}}

{111x1 \ {11101, 11111}}
{01x1x \ {0111x, 0101x, 01010}, x1x01 \ {01101}}
{
   01x1111111 \ {
   01x1111111, 0111111111, 0101111111}, x1x0111101 \ {
   x1x0111101, 0110111101}}

{xx110 \ {00110, x1110, 01110}, x10xx \ {01000, 01001, 110x0}}
{1x01x \ {10011, 1001x, 1x011}, xx1x0 \ {1x100, 11100, 001x0}}
{
   1x010xx110 \ {
   1x01000110, 1x010x1110, 1x01001110, 10010xx110}, xx110xx110 \ {
   xx11000110, xx110x1110, xx11001110, 00110xx110}, 1x01xx101x \ {
   1x011x1010, 1x010x1011, 1x01x11010, 10011x101x, 1001xx101x, 1x011x101x}, xx1x0x10x0 \ {
   xx110x1000, xx100x1010, xx1x001000, xx1x0110x0, 1x100x10x0, 11100x10x0, 001x0x10x0}}

{x1x11 \ {x1011, 11011, 01x11}, 1x01x \ {11010, 11011, 10011}}
{xx1x0 \ {11100, 01100, 0x100}}
{
   xx1101x010 \ {
   xx11011010}}

{0000x \ {00000, 00001}}
{1x110 \ {10110}, 000x1 \ {00001, 00011}, x1xx1 \ {11111, 01001, 01x01}}
{
   0000100001 \ {
   0000100001, 0000100001}, x1x0100001 \ {
   x1x0100001, 0100100001, 01x0100001}}

{1xx10 \ {10110, 11010, 10x10}, x1x01 \ {11001, x1101, 01101}}
{x11x1 \ {111x1, 11111, x1101}, 1x11x \ {1x111, 10110}}
{
   1x1101xx10 \ {
   1x11010110, 1x11011010, 1x11010x10, 101101xx10}, x1101x1x01 \ {
   x110111001, x1101x1101, x110101101, 11101x1x01, x1101x1x01}}

{0x000 \ {00000, 01000, 01000}}
{1x010 \ {11010, 10010}, xx111 \ {x1111, 0x111}}
{}

{0x1x1 \ {0x111, 01111, 00101}}
{xx10x \ {01100, 11100, x0100}}
{
   xx1010x101 \ {
   xx10100101}}

{0xxx0 \ {01x10, 0xx00, 000x0}}
{x1xx1 \ {01011, 11x01, 011x1}, 0x101 \ {00101, 01101}, 0xxxx \ {0xx1x, 0x0xx}}
{
   0xxx00xxx0 \ {
   0xx100xx00, 0xx000xx10, 0xxx001x10, 0xxx00xx00, 0xxx0000x0, 0xx100xxx0, 0x0x00xxx0}}

{x011x \ {10111, 10110, x0110}, 1x1xx \ {1x101, 101x1, 11100}}
{0000x \ {00001, 00000}, x0x1x \ {00x11, 1001x, x011x}}
{
   x0x1xx011x \ {
   x0x11x0110, x0x10x0111, x0x1x10111, x0x1x10110, x0x1xx0110, 00x11x011x, 1001xx011x, x011xx011x}, 0000x1x10x \ {
   000011x100, 000001x101, 0000x1x101, 0000x10101, 0000x11100, 000011x10x, 000001x10x}, x0x1x1x11x \ {
   x0x111x110, x0x101x111, x0x1x10111, 00x111x11x, 1001x1x11x, x011x1x11x}}

{1xx00 \ {10x00, 11x00, 10100}}
{x0x10 \ {10010, 10110, 00x10}, 1xx0x \ {1x000, 11000, 1x100}, xx101 \ {11101, 1x101}}
{
   1xx001xx00 \ {
   1xx0010x00, 1xx0011x00, 1xx0010100, 1x0001xx00, 110001xx00, 1x1001xx00}}

{x00xx \ {10011, x0010, 1001x}, x10x1 \ {01001, x1001, 110x1}, 01xx1 \ {01111, 010x1, 01101}}
{x0xxx \ {x0010, x01xx, 00100}, xxxx0 \ {00000, xxx00, 01x10}, 0x110 \ {01110, 00110}}
{
   x0xxxx00xx \ {
   x0xx1x00x0, x0xx0x00x1, x0x1xx000x, x0x0xx001x, x0xxx10011, x0xxxx0010, x0xxx1001x, x0010x00xx, x01xxx00xx, 00100x00xx}, xxxx0x00x0 \ {
   xxx10x0000, xxx00x0010, xxxx0x0010, xxxx010010, 00000x00x0, xxx00x00x0, 01x10x00x0}, 0x110x0010 \ {
   0x110x0010, 0x11010010, 01110x0010, 00110x0010}, x0xx1x10x1 \ {
   x0x11x1001, x0x01x1011, x0xx101001, x0xx1x1001, x0xx1110x1, x01x1x10x1}, x0xx101xx1 \ {
   x0x1101x01, x0x0101x11, x0xx101111, x0xx1010x1, x0xx101101, x01x101xx1}}

{x110x \ {1110x, 01101, 01101}}
{xx10x \ {1x100, xx101, x1101}}
{
   xx10xx110x \ {
   xx101x1100, xx100x1101, xx10x1110x, xx10x01101, xx10x01101, 1x100x110x, xx101x110x, x1101x110x}}

{xx010 \ {x0010, x1010, 00010}}
{1xxx1 \ {11101, 11xx1, 101x1}, 1xx01 \ {10x01, 11x01, 11101}}
{}

{1x0x1 \ {1x011, 1x001, 1x001}, 1x1xx \ {1110x, 1x111, 1x101}, 001xx \ {00111, 001x0}}
{x001x \ {10010, 0001x}, 1x110 \ {10110}}
{
   x00111x011 \ {
   x00111x011, 000111x011}, x001x1x11x \ {
   x00111x110, x00101x111, x001x1x111, 100101x11x, 0001x1x11x}, 1x1101x110 \ {
   101101x110}, x001x0011x \ {
   x001100110, x001000111, x001x00111, x001x00110, 100100011x, 0001x0011x}, 1x11000110 \ {
   1x11000110, 1011000110}}

{1001x \ {10010, 10011}, x0x0x \ {0000x, 00x0x}, x0000 \ {10000, 00000}}
{0x100 \ {01100}}
{
   0x100x0x00 \ {
   0x10000000, 0x10000x00, 01100x0x00}, 0x100x0000 \ {
   0x10010000, 0x10000000, 01100x0000}}

{xx0x1 \ {1x001, xx001, 01001}}
{0x111 \ {01111, 00111, 00111}}
{
   0x111xx011 \ {
   01111xx011, 00111xx011, 00111xx011}}

{}
{100xx \ {1001x, 1000x, 100x0}}
{}

{x0x1x \ {0001x, 00x10, 10011}, 1x0xx \ {110xx, 110x0, 1000x}}
{011xx \ {01110, 0111x, 01101}, xx1x1 \ {xx111, 00101, 01101}}
{
   0111xx0x1x \ {
   01111x0x10, 01110x0x11, 0111x0001x, 0111x00x10, 0111x10011, 01110x0x1x, 0111xx0x1x}, xx111x0x11 \ {
   xx11100011, xx11110011, xx111x0x11}, 011xx1x0xx \ {
   011x11x0x0, 011x01x0x1, 0111x1x00x, 0110x1x01x, 011xx110xx, 011xx110x0, 011xx1000x, 011101x0xx, 0111x1x0xx, 011011x0xx}, xx1x11x0x1 \ {
   xx1111x001, xx1011x011, xx1x1110x1, xx1x110001, xx1111x0x1, 001011x0x1, 011011x0x1}}

{x1x1x \ {x1x10, 11x10, x1010}, 0x11x \ {00111, 01110}}
{}
{}

{01x1x \ {01x11, 01110, 01x10}, xxxx0 \ {0x0x0, 01xx0, x00x0}}
{x000x \ {10000, 00000}, 1x100 \ {10100}}
{
   x0000xxx00 \ {
   x00000x000, x000001x00, x0000x0000, 10000xxx00, 00000xxx00}, 1x100xxx00 \ {
   1x1000x000, 1x10001x00, 1x100x0000, 10100xxx00}}

{xxx0x \ {0x000, 00001, 00x00}, 0xx11 \ {00x11, 00011, 0x011}}
{x1x11 \ {01x11, x1111}, 0x011 \ {00011}}
{
   x1x110xx11 \ {
   x1x1100x11, x1x1100011, x1x110x011, 01x110xx11, x11110xx11}, 0x0110xx11 \ {
   0x01100x11, 0x01100011, 0x0110x011, 000110xx11}}

{x0x00 \ {x0000, 00000, 00100}, x10xx \ {x10x0, 010x1, 01010}}
{xx101 \ {0x101, 11101, 01101}}
{
   xx101x1001 \ {
   xx10101001, 0x101x1001, 11101x1001, 01101x1001}}

{xxx00 \ {xx000, 10000, x0x00}, x0x01 \ {10001, x0001}, 0x1xx \ {01110, 001x1, 01111}}
{1xx11 \ {10011, 11111, 11011}, 00x11 \ {00011}}
{
   1xx110x111 \ {
   1xx1100111, 1xx1101111, 100110x111, 111110x111, 110110x111}, 00x110x111 \ {
   00x1100111, 00x1101111, 000110x111}}

{x1100 \ {11100, 01100}}
{0x0xx \ {00011, 01000}}
{
   0x000x1100 \ {
   0x00011100, 0x00001100, 01000x1100}}

{x0x10 \ {00x10, x0110, x0010}, x1x10 \ {11110, 01010, 01x10}}
{001x1 \ {00111}, 001xx \ {0010x, 00100, 0011x}, x1x0x \ {11000, 11100, 01101}}
{
   00110x0x10 \ {
   0011000x10, 00110x0110, 00110x0010, 00110x0x10}, 00110x1x10 \ {
   0011011110, 0011001010, 0011001x10, 00110x1x10}}

{x1xx0 \ {01xx0, 11100, x1110}, x100x \ {01001, 1100x, x1000}}
{xx010 \ {1x010, x0010}, xx1xx \ {x01x0, 011x0, x11xx}}
{
   xx010x1x10 \ {
   xx01001x10, xx010x1110, 1x010x1x10, x0010x1x10}, xx1x0x1xx0 \ {
   xx110x1x00, xx100x1x10, xx1x001xx0, xx1x011100, xx1x0x1110, x01x0x1xx0, 011x0x1xx0, x11x0x1xx0}, xx10xx100x \ {
   xx101x1000, xx100x1001, xx10x01001, xx10x1100x, xx10xx1000, x0100x100x, 01100x100x, x110xx100x}}

{0xxx0 \ {0x110, 00010, 01xx0}}
{x110x \ {11101, 11100, x1100}, x1x01 \ {11x01, 11001, x1001}}
{
   x11000xx00 \ {
   x110001x00, 111000xx00, x11000xx00}}

{00x00 \ {00100, 00000, 00000}, 00xx1 \ {00x01, 00111, 00101}}
{x111x \ {x1110, 11110, 01110}, x1001 \ {11001, 01001, 01001}, 1x100 \ {10100, 11100, 11100}}
{
   1x10000x00 \ {
   1x10000100, 1x10000000, 1x10000000, 1010000x00, 1110000x00, 1110000x00}, x111100x11 \ {
   x111100111}, x100100x01 \ {
   x100100x01, x100100101, 1100100x01, 0100100x01, 0100100x01}}

{}
{1xx1x \ {11011, 11x1x, 10010}, x00xx \ {10001, 10010, 00011}, 0x0x0 \ {000x0, 010x0}}
{}

{0x1x0 \ {0x110, 001x0, 01100}, x1000 \ {11000, 01000}, x1x0x \ {11101, 01x00, x110x}}
{xx0x0 \ {x1000, 1x000, 11010}, 1xx10 \ {11110, 1x110, 10x10}, x1x01 \ {11001, 01001, 01x01}}
{
   xx0x00x1x0 \ {
   xx0100x100, xx0000x110, xx0x00x110, xx0x0001x0, xx0x001100, x10000x1x0, 1x0000x1x0, 110100x1x0}, 1xx100x110 \ {
   1xx100x110, 1xx1000110, 111100x110, 1x1100x110, 10x100x110}, xx000x1000 \ {
   xx00011000, xx00001000, x1000x1000, 1x000x1000}, xx000x1x00 \ {
   xx00001x00, xx000x1100, x1000x1x00, 1x000x1x00}, x1x01x1x01 \ {
   x1x0111101, x1x01x1101, 11001x1x01, 01001x1x01, 01x01x1x01}}

{x1010 \ {11010}, xx111 \ {00111, 1x111, 10111}}
{x00xx \ {00000, 000x0, 0001x}, xx010 \ {00010, 0x010, x0010}}
{
   x0010x1010 \ {
   x001011010, 00010x1010, 00010x1010}, xx010x1010 \ {
   xx01011010, 00010x1010, 0x010x1010, x0010x1010}, x0011xx111 \ {
   x001100111, x00111x111, x001110111, 00011xx111}}

{1x1x0 \ {101x0, 10110, 1x100}}
{xx0x0 \ {1x000, x00x0, 01000}}
{
   xx0x01x1x0 \ {
   xx0101x100, xx0001x110, xx0x0101x0, xx0x010110, xx0x01x100, 1x0001x1x0, x00x01x1x0, 010001x1x0}}

{}
{xx111 \ {10111, x1111, 0x111}, xx001 \ {00001, 01001, x1001}}
{}

{11x1x \ {11x10, 11011, 11110}, 11xxx \ {110x1, 1110x, 11x1x}}
{xx10x \ {1x100, 0010x, 1x101}, x1xx0 \ {11xx0, 11x10, x10x0}}
{
   x1x1011x10 \ {
   x1x1011x10, x1x1011110, 11x1011x10, 11x1011x10, x101011x10}, xx10x11x0x \ {
   xx10111x00, xx10011x01, xx10x11001, xx10x1110x, 1x10011x0x, 0010x11x0x, 1x10111x0x}, x1xx011xx0 \ {
   x1x1011x00, x1x0011x10, x1xx011100, x1xx011x10, 11xx011xx0, 11x1011xx0, x10x011xx0}}

{101xx \ {101x1, 10100, 101x0}, 0x101 \ {00101, 01101}}
{x01xx \ {101x1, 1010x, 00110}, 110x1 \ {11001}}
{
   x01xx101xx \ {
   x01x1101x0, x01x0101x1, x011x1010x, x010x1011x, x01xx101x1, x01xx10100, x01xx101x0, 101x1101xx, 1010x101xx, 00110101xx}, 110x1101x1 \ {
   1101110101, 1100110111, 110x1101x1, 11001101x1}, x01010x101 \ {
   x010100101, x010101101, 101010x101, 101010x101}, 110010x101 \ {
   1100100101, 1100101101, 110010x101}}

{x1xxx \ {0111x, 11x01, 01x10}, 0100x \ {01001, 01000}}
{x10xx \ {010x1, x1011, 01001}, 11xxx \ {11010, 1101x, 110x0}}
{
   x10xxx1xxx \ {
   x10x1x1xx0, x10x0x1xx1, x101xx1x0x, x100xx1x1x, x10xx0111x, x10xx11x01, x10xx01x10, 010x1x1xxx, x1011x1xxx, 01001x1xxx}, 11xxxx1xxx \ {
   11xx1x1xx0, 11xx0x1xx1, 11x1xx1x0x, 11x0xx1x1x, 11xxx0111x, 11xxx11x01, 11xxx01x10, 11010x1xxx, 1101xx1xxx, 110x0x1xxx}, x100x0100x \ {
   x100101000, x100001001, x100x01001, x100x01000, 010010100x, 010010100x}, 11x0x0100x \ {
   11x0101000, 11x0001001, 11x0x01001, 11x0x01000, 110000100x}}

{x010x \ {10100, 00100, 1010x}, x1010 \ {11010, 01010, 01010}, xxx11 \ {11011, 0x011, 01x11}}
{1x11x \ {1x111, 10110}, x1101 \ {01101, 11101}, 0x1xx \ {001x0, 0x100, 00100}}
{
   x1101x0101 \ {
   x110110101, 01101x0101, 11101x0101}, 0x10xx010x \ {
   0x101x0100, 0x100x0101, 0x10x10100, 0x10x00100, 0x10x1010x, 00100x010x, 0x100x010x, 00100x010x}, 1x110x1010 \ {
   1x11011010, 1x11001010, 1x11001010, 10110x1010}, 0x110x1010 \ {
   0x11011010, 0x11001010, 0x11001010, 00110x1010}, 1x111xxx11 \ {
   1x11111011, 1x1110x011, 1x11101x11, 1x111xxx11}, 0x111xxx11 \ {
   0x11111011, 0x1110x011, 0x11101x11}}

{xx1x1 \ {01111, 111x1, 11101}}
{0001x \ {00011, 00010}, 1x1x0 \ {10100, 11110, 10110}, x0101 \ {00101}}
{
   00011xx111 \ {
   0001101111, 0001111111, 00011xx111}, x0101xx101 \ {
   x010111101, x010111101, 00101xx101}}

{}
{xxx0x \ {11101, x0x01, 00x01}, 1x011 \ {11011, 10011}}
{}

{0xx01 \ {01101, 00x01}}
{x001x \ {10010, x0010, 10011}, 1110x \ {11100, 11101}}
{
   111010xx01 \ {
   1110101101, 1110100x01, 111010xx01}}

{xx0x0 \ {x1000, 1x0x0, x10x0}, xxxx0 \ {11010, 0xx00, 01000}}
{1xxx0 \ {1x100, 11100, 11110}, 0x00x \ {01001, 01000}, 10x10 \ {10110, 10010, 10010}}
{
   1xxx0xx0x0 \ {
   1xx10xx000, 1xx00xx010, 1xxx0x1000, 1xxx01x0x0, 1xxx0x10x0, 1x100xx0x0, 11100xx0x0, 11110xx0x0}, 0x000xx000 \ {
   0x000x1000, 0x0001x000, 0x000x1000, 01000xx000}, 10x10xx010 \ {
   10x101x010, 10x10x1010, 10110xx010, 10010xx010, 10010xx010}, 1xxx0xxxx0 \ {
   1xx10xxx00, 1xx00xxx10, 1xxx011010, 1xxx00xx00, 1xxx001000, 1x100xxxx0, 11100xxxx0, 11110xxxx0}, 0x000xxx00 \ {
   0x0000xx00, 0x00001000, 01000xxx00}, 10x10xxx10 \ {
   10x1011010, 10110xxx10, 10010xxx10, 10010xxx10}}

{x101x \ {11011, x1010, 0101x}, 1xxx1 \ {10001, 10011, 11x01}}
{1xx0x \ {10000, 1xx01, 10001}}
{
   1xx011xx01 \ {
   1xx0110001, 1xx0111x01, 1xx011xx01, 100011xx01}}

{xxxx1 \ {0x111, 111x1, x0001}, 0x110 \ {01110, 00110}, xx001 \ {10001, x0001, 11001}}
{}
{}

{xx101 \ {x1101}, 1x0xx \ {10001, 1000x, 11000}}
{111xx \ {11101, 1110x, 11100}}
{
   11101xx101 \ {
   11101x1101, 11101xx101, 11101xx101}, 111xx1x0xx \ {
   111x11x0x0, 111x01x0x1, 1111x1x00x, 1110x1x01x, 111xx10001, 111xx1000x, 111xx11000, 111011x0xx, 1110x1x0xx, 111001x0xx}}

{x0x00 \ {10x00, x0100, 00000}, 1x0x1 \ {1x001, 11011, 100x1}, x0xxx \ {x00xx, 10x1x, 00xx0}}
{}
{}

{xxx00 \ {x1100, 0x100, xx100}, x10xx \ {010xx, 110x1, 110xx}}
{0xxxx \ {00x0x, 01x01}, 10xx1 \ {10111, 10x11, 10x01}, 01x0x \ {01100, 0100x, 01101}}
{
   0xx00xxx00 \ {
   0xx00x1100, 0xx000x100, 0xx00xx100, 00x00xxx00}, 01x00xxx00 \ {
   01x00x1100, 01x000x100, 01x00xx100, 01100xxx00, 01000xxx00}, 0xxxxx10xx \ {
   0xxx1x10x0, 0xxx0x10x1, 0xx1xx100x, 0xx0xx101x, 0xxxx010xx, 0xxxx110x1, 0xxxx110xx, 00x0xx10xx, 01x01x10xx}, 10xx1x10x1 \ {
   10x11x1001, 10x01x1011, 10xx1010x1, 10xx1110x1, 10xx1110x1, 10111x10x1, 10x11x10x1, 10x01x10x1}, 01x0xx100x \ {
   01x01x1000, 01x00x1001, 01x0x0100x, 01x0x11001, 01x0x1100x, 01100x100x, 0100xx100x, 01101x100x}}

{1x0x0 \ {100x0, 11010, 10010}}
{xx11x \ {x1111, x111x, xx111}, 100xx \ {1000x, 10001, 10010}}
{
   xx1101x010 \ {
   xx11010010, xx11011010, xx11010010, x11101x010}, 100x01x0x0 \ {
   100101x000, 100001x010, 100x0100x0, 100x011010, 100x010010, 100001x0x0, 100101x0x0}}

{x10x0 \ {x1000, 11010, 11000}, 10xx0 \ {100x0, 10x10, 10110}, 101x0 \ {10100, 10110, 10110}}
{x0x00 \ {00x00, x0000, 10100}}
{
   x0x00x1000 \ {
   x0x00x1000, x0x0011000, 00x00x1000, x0000x1000, 10100x1000}, x0x0010x00 \ {
   x0x0010000, 00x0010x00, x000010x00, 1010010x00}, x0x0010100 \ {
   x0x0010100, 00x0010100, x000010100, 1010010100}}

{0101x \ {01010, 01011, 01011}, xxxx1 \ {01001, 00011, x1011}}
{0x00x \ {00001, 00000, 00000}}
{
   0x001xxx01 \ {
   0x00101001, 00001xxx01}}

{x1011 \ {11011, 01011}, x001x \ {00010, 10011, 0001x}}
{0x001 \ {00001}}
{}

{x0xx1 \ {10x11, 10111, x00x1}, 11x0x \ {11x00, 1110x, 11101}, xx100 \ {01100, x0100, x0100}}
{}
{}

{0x1x0 \ {00100, 0x100, 0x100}}
{x0x10 \ {10x10, 00x10, 00x10}, 0000x \ {00001, 00000}, 1xx0x \ {10x00, 1110x, 1100x}}
{
   x0x100x110 \ {
   10x100x110, 00x100x110, 00x100x110}, 000000x100 \ {
   0000000100, 000000x100, 000000x100, 000000x100}, 1xx000x100 \ {
   1xx0000100, 1xx000x100, 1xx000x100, 10x000x100, 111000x100, 110000x100}}

{x1xxx \ {01xx1, 11x01, x101x}, x01xx \ {x0100, 101xx, 0011x}}
{0x001 \ {01001, 00001}, 011xx \ {011x1, 01100}}
{
   0x001x1x01 \ {
   0x00101x01, 0x00111x01, 01001x1x01, 00001x1x01}, 011xxx1xxx \ {
   011x1x1xx0, 011x0x1xx1, 0111xx1x0x, 0110xx1x1x, 011xx01xx1, 011xx11x01, 011xxx101x, 011x1x1xxx, 01100x1xxx}, 0x001x0101 \ {
   0x00110101, 01001x0101, 00001x0101}, 011xxx01xx \ {
   011x1x01x0, 011x0x01x1, 0111xx010x, 0110xx011x, 011xxx0100, 011xx101xx, 011xx0011x, 011x1x01xx, 01100x01xx}}

{1xxxx \ {1011x, 110x0, 1010x}, xx101 \ {00101, x0101, 11101}}
{1111x \ {11111, 11110}, xx000 \ {x0000, 11000, 01000}}
{
   1111x1xx1x \ {
   111111xx10, 111101xx11, 1111x1011x, 1111x11010, 111111xx1x, 111101xx1x}, xx0001xx00 \ {
   xx00011000, xx00010100, x00001xx00, 110001xx00, 010001xx00}}

{x1x00 \ {x1100, 11100, 01100}, xx0x0 \ {1x000, xx000, x0010}}
{xx01x \ {00011, 00010, x0010}}
{
   xx010xx010 \ {
   xx010x0010, 00010xx010, x0010xx010}}

{11xxx \ {1100x, 11x0x, 11x01}}
{}
{}

{xx111 \ {10111, 11111, 01111}, 1xxx0 \ {10x00, 100x0, 11000}}
{x10x0 \ {x1010, 11010, 01000}, 10xx1 \ {100x1, 10001}}
{
   10x11xx111 \ {
   10x1110111, 10x1111111, 10x1101111, 10011xx111}, x10x01xxx0 \ {
   x10101xx00, x10001xx10, x10x010x00, x10x0100x0, x10x011000, x10101xxx0, 110101xxx0, 010001xxx0}}

{x11x0 \ {01110, 11110, 11100}, x1xx1 \ {01001, x1x11, x1001}}
{10x1x \ {1011x, 10x10, 10110}, x11xx \ {x110x, 111xx, 011xx}}
{
   10x10x1110 \ {
   10x1001110, 10x1011110, 10110x1110, 10x10x1110, 10110x1110}, x11x0x11x0 \ {
   x1110x1100, x1100x1110, x11x001110, x11x011110, x11x011100, x1100x11x0, 111x0x11x0, 011x0x11x0}, 10x11x1x11 \ {
   10x11x1x11, 10111x1x11}, x11x1x1xx1 \ {
   x1111x1x01, x1101x1x11, x11x101001, x11x1x1x11, x11x1x1001, x1101x1xx1, 111x1x1xx1, 011x1x1xx1}}

{xx110 \ {00110, x0110, 1x110}, 1x01x \ {1x010, 10011}}
{00x0x \ {0000x, 00001, 00x01}}
{}

{xx1x1 \ {x1111, 10111, x0101}, 100x0 \ {10000, 10010}}
{x1x1x \ {01x10, x1010, x111x}, 1x00x \ {1000x, 1x001, 10001}, 0x00x \ {0x001, 0100x, 00001}}
{
   x1x11xx111 \ {
   x1x11x1111, x1x1110111, x1111xx111}, 1x001xx101 \ {
   1x001x0101, 10001xx101, 1x001xx101, 10001xx101}, 0x001xx101 \ {
   0x001x0101, 0x001xx101, 01001xx101, 00001xx101}, x1x1010010 \ {
   x1x1010010, 01x1010010, x101010010, x111010010}, 1x00010000 \ {
   1x00010000, 1000010000}, 0x00010000 \ {
   0x00010000, 0100010000}}

{x10x1 \ {01001, x1011, 11011}, 01x11 \ {01011, 01111}}
{xx100 \ {x1100, 11100}, xx00x \ {0100x, 00000, 1x000}}
{
   xx001x1001 \ {
   xx00101001, 01001x1001}}

{x0x11 \ {x0111, 10111, 00x11}}
{xx1xx \ {011x0, 001x0, 1111x}, xxxx1 \ {0x111, 110x1, x10x1}}
{
   xx111x0x11 \ {
   xx111x0111, xx11110111, xx11100x11, 11111x0x11}, xxx11x0x11 \ {
   xxx11x0111, xxx1110111, xxx1100x11, 0x111x0x11, 11011x0x11, x1011x0x11}}

{xxxx0 \ {01100, xx010, 1x010}}
{}
{}

{}
{1x1x0 \ {11110, 111x0, 111x0}, 01xxx \ {01x1x, 01xx1, 011x0}}
{}

{110x0 \ {11000}, x0100 \ {00100}}
{}
{}

{x1x0x \ {01101, 11101, x1101}}
{xxxxx \ {1xx11, 011x1, 01xx0}, 01x01 \ {01001}, x011x \ {10111, x0110, 00111}}
{
   xxx0xx1x0x \ {
   xxx01x1x00, xxx00x1x01, xxx0x01101, xxx0x11101, xxx0xx1101, 01101x1x0x, 01x00x1x0x}, 01x01x1x01 \ {
   01x0101101, 01x0111101, 01x01x1101, 01001x1x01}}

{xx0xx \ {x1010, xx00x, 1x011}}
{01x0x \ {01000, 01001, 01x00}}
{
   01x0xxx00x \ {
   01x01xx000, 01x00xx001, 01x0xxx00x, 01000xx00x, 01001xx00x, 01x00xx00x}}

{1x0xx \ {1101x, 1x010, 11011}}
{010xx \ {0101x, 01000, 010x0}, 101x1 \ {10111, 10101}}
{
   010xx1x0xx \ {
   010x11x0x0, 010x01x0x1, 0101x1x00x, 0100x1x01x, 010xx1101x, 010xx1x010, 010xx11011, 0101x1x0xx, 010001x0xx, 010x01x0xx}, 101x11x0x1 \ {
   101111x001, 101011x011, 101x111011, 101x111011, 101111x0x1, 101011x0x1}}

{10x01 \ {10101, 10001}, xx011 \ {01011, 10011}, xx0x1 \ {1x0x1, xx001, x1001}}
{0xx00 \ {01100, 01x00, 0x000}, 0x10x \ {00101, 0010x, 01100}}
{
   0x10110x01 \ {
   0x10110101, 0x10110001, 0010110x01, 0010110x01}, 0x101xx001 \ {
   0x1011x001, 0x101xx001, 0x101x1001, 00101xx001, 00101xx001}}

{0xx11 \ {00011, 0x011, 0x011}, 11x1x \ {11010, 1111x, 11110}, x0x1x \ {10111, x0011, x001x}}
{0xx11 \ {01x11, 00011, 00111}, 1x00x \ {1x000, 1x001, 10001}}
{
   0xx110xx11 \ {
   0xx1100011, 0xx110x011, 0xx110x011, 01x110xx11, 000110xx11, 001110xx11}, 0xx1111x11 \ {
   0xx1111111, 01x1111x11, 0001111x11, 0011111x11}, 0xx11x0x11 \ {
   0xx1110111, 0xx11x0011, 0xx11x0011, 01x11x0x11, 00011x0x11, 00111x0x11}}

{x001x \ {0001x, x0010, 10010}, 1xxxx \ {1x11x, 11111, 110xx}}
{x1x11 \ {x1111, 11011, 11x11}, xxxx1 \ {001x1, x0001, x1x01}}
{
   x1x11x0011 \ {
   x1x1100011, x1111x0011, 11011x0011, 11x11x0011}, xxx11x0011 \ {
   xxx1100011, 00111x0011}, x1x111xx11 \ {
   x1x111x111, x1x1111111, x1x1111011, x11111xx11, 110111xx11, 11x111xx11}, xxxx11xxx1 \ {
   xxx111xx01, xxx011xx11, xxxx11x111, xxxx111111, xxxx1110x1, 001x11xxx1, x00011xxx1, x1x011xxx1}}

{xx1xx \ {111xx, 10111, 0111x}, xxxx1 \ {01001, 10x01, 00x01}}
{}
{}

{0x01x \ {00011, 0001x, 0101x}, x011x \ {0011x, 10111}, x11x0 \ {011x0, 11110, 11100}}
{110x0 \ {11010, 11000}, 10xx1 \ {101x1, 10011}}
{
   110100x010 \ {
   1101000010, 1101001010, 110100x010}, 10x110x011 \ {
   10x1100011, 10x1100011, 10x1101011, 101110x011, 100110x011}, 11010x0110 \ {
   1101000110, 11010x0110}, 10x11x0111 \ {
   10x1100111, 10x1110111, 10111x0111, 10011x0111}, 110x0x11x0 \ {
   11010x1100, 11000x1110, 110x0011x0, 110x011110, 110x011100, 11010x11x0, 11000x11x0}}

{11x10 \ {11110, 11010}, x1x1x \ {11111, 01x1x, 01111}}
{000xx \ {00010, 0001x, 000x0}}
{
   0001011x10 \ {
   0001011110, 0001011010, 0001011x10, 0001011x10, 0001011x10}, 0001xx1x1x \ {
   00011x1x10, 00010x1x11, 0001x11111, 0001x01x1x, 0001x01111, 00010x1x1x, 0001xx1x1x, 00010x1x1x}}

{}
{x1x1x \ {01011, 1101x, 01111}, xx10x \ {11100, 1110x, x0101}}
{}

{x1010 \ {11010}, x110x \ {11100, x1100, 11101}}
{x001x \ {10011, 0001x, 00010}, x10x1 \ {11001, 110x1, 11011}}
{
   x0010x1010 \ {
   x001011010, 00010x1010, 00010x1010}, x1001x1101 \ {
   x100111101, 11001x1101, 11001x1101}}

{xxx0x \ {1100x, 0x10x, 0xx01}}
{111x0 \ {11100, 11110}}
{
   11100xxx00 \ {
   1110011000, 111000x100, 11100xxx00}}

{011xx \ {0111x, 0110x, 01110}, xxx10 \ {1x110, x1010, 01110}, 0x0x0 \ {00010, 01010}}
{x1100 \ {01100}, x1xxx \ {01100, 11x1x, x1xx1}}
{
   x110001100 \ {
   x110001100, 0110001100}, x1xxx011xx \ {
   x1xx1011x0, x1xx0011x1, x1x1x0110x, x1x0x0111x, x1xxx0111x, x1xxx0110x, x1xxx01110, 01100011xx, 11x1x011xx, x1xx1011xx}, x1x10xxx10 \ {
   x1x101x110, x1x10x1010, x1x1001110, 11x10xxx10}, x11000x000 \ {
   011000x000}, x1xx00x0x0 \ {
   x1x100x000, x1x000x010, x1xx000010, x1xx001010, 011000x0x0, 11x100x0x0}}

{01xxx \ {0110x, 01x0x, 01111}}
{0x1x0 \ {01100, 0x100, 001x0}, 0x0x0 \ {00000, 000x0}, 1xx11 \ {10x11, 1x111, 10011}}
{
   0x1x001xx0 \ {
   0x11001x00, 0x10001x10, 0x1x001100, 0x1x001x00, 0110001xx0, 0x10001xx0, 001x001xx0}, 0x0x001xx0 \ {
   0x01001x00, 0x00001x10, 0x0x001100, 0x0x001x00, 0000001xx0, 000x001xx0}, 1xx1101x11 \ {
   1xx1101111, 10x1101x11, 1x11101x11, 1001101x11}}

{x101x \ {01011, 1101x, 0101x}, x0xx1 \ {00101, 000x1, 10x01}}
{1xx0x \ {10100, 1x100, 1000x}}
{
   1xx01x0x01 \ {
   1xx0100101, 1xx0100001, 1xx0110x01, 10001x0x01}}

{x111x \ {0111x, 11110, 01111}, x0xx1 \ {x00x1, x0x01, 10001}, x0100 \ {00100, 10100}}
{x01xx \ {x011x, x0110, 10100}, 0001x \ {00010, 00011}}
{
   x011xx111x \ {
   x0111x1110, x0110x1111, x011x0111x, x011x11110, x011x01111, x011xx111x, x0110x111x}, 0001xx111x \ {
   00011x1110, 00010x1111, 0001x0111x, 0001x11110, 0001x01111, 00010x111x, 00011x111x}, x01x1x0xx1 \ {
   x0111x0x01, x0101x0x11, x01x1x00x1, x01x1x0x01, x01x110001, x0111x0xx1}, 00011x0x11 \ {
   00011x0011, 00011x0x11}, x0100x0100 \ {
   x010000100, x010010100, 10100x0100}}

{x0xx0 \ {100x0, 00x10, 00x10}}
{xxxx1 \ {x0xx1, x1001, 011x1}, x1100 \ {11100, 01100}, x0000 \ {00000}}
{
   x1100x0x00 \ {
   x110010000, 11100x0x00, 01100x0x00}, x0000x0x00 \ {
   x000010000, 00000x0x00}}

{1xx0x \ {10101, 11101, 1x10x}, x11xx \ {11111, 0110x, 111x0}, 0x10x \ {0x101, 00100, 00100}}
{000xx \ {0000x, 00001, 00011}, x00x1 \ {00011, 000x1, x0001}}
{
   0000x1xx0x \ {
   000011xx00, 000001xx01, 0000x10101, 0000x11101, 0000x1x10x, 0000x1xx0x, 000011xx0x}, x00011xx01 \ {
   x000110101, x000111101, x00011x101, 000011xx01, x00011xx01}, 000xxx11xx \ {
   000x1x11x0, 000x0x11x1, 0001xx110x, 0000xx111x, 000xx11111, 000xx0110x, 000xx111x0, 0000xx11xx, 00001x11xx, 00011x11xx}, x00x1x11x1 \ {
   x0011x1101, x0001x1111, x00x111111, x00x101101, 00011x11x1, 000x1x11x1, x0001x11x1}, 0000x0x10x \ {
   000010x100, 000000x101, 0000x0x101, 0000x00100, 0000x00100, 0000x0x10x, 000010x10x}, x00010x101 \ {
   x00010x101, 000010x101, x00010x101}}

{1x1xx \ {1010x, 1x110, 10100}, x11x1 \ {01101, x1101, 011x1}}
{00xx1 \ {00101, 00001, 00x11}}
{
   00xx11x1x1 \ {
   00x111x101, 00x011x111, 00xx110101, 001011x1x1, 000011x1x1, 00x111x1x1}, 00xx1x11x1 \ {
   00x11x1101, 00x01x1111, 00xx101101, 00xx1x1101, 00xx1011x1, 00101x11x1, 00001x11x1, 00x11x11x1}}

{0xx0x \ {00101, 0x101, 0xx00}}
{xxx1x \ {x1111, 00011}}
{}

{xx0x0 \ {10000, 1x010, 1x0x0}}
{x0x00 \ {10x00, x0000, 10000}}
{
   x0x00xx000 \ {
   x0x0010000, x0x001x000, 10x00xx000, x0000xx000, 10000xx000}}

{01x0x \ {0110x, 01000, 01101}}
{x011x \ {00110, 10111, 1011x}, xx1x1 \ {001x1, xx111, x01x1}}
{
   xx10101x01 \ {
   xx10101101, xx10101101, 0010101x01, x010101x01}}

{}
{x0xx1 \ {10101, 00011, 00xx1}, 0xx1x \ {0001x, 0xx10, 0x110}}
{}

{01xx1 \ {01001, 01111, 01011}}
{x00x1 \ {x0011, 00001, 000x1}, 0x1x1 \ {0x101, 01101}}
{
   x00x101xx1 \ {
   x001101x01, x000101x11, x00x101001, x00x101111, x00x101011, x001101xx1, 0000101xx1, 000x101xx1}, 0x1x101xx1 \ {
   0x11101x01, 0x10101x11, 0x1x101001, 0x1x101111, 0x1x101011, 0x10101xx1, 0110101xx1}}

{x0xx1 \ {10001, 10101, 101x1}, 000xx \ {00001, 00000}}
{x1x1x \ {11111, 01x1x, 01x1x}, x00xx \ {1001x, x0010, x0010}, 1xx01 \ {1x001, 10101}}
{
   x1x11x0x11 \ {
   x1x1110111, 11111x0x11, 01x11x0x11, 01x11x0x11}, x00x1x0xx1 \ {
   x0011x0x01, x0001x0x11, x00x110001, x00x110101, x00x1101x1, 10011x0xx1}, 1xx01x0x01 \ {
   1xx0110001, 1xx0110101, 1xx0110101, 1x001x0x01, 10101x0x01}, x1x1x0001x \ {
   x1x1100010, x1x1000011, 111110001x, 01x1x0001x, 01x1x0001x}, x00xx000xx \ {
   x00x1000x0, x00x0000x1, x001x0000x, x000x0001x, x00xx00001, x00xx00000, 1001x000xx, x0010000xx, x0010000xx}, 1xx0100001 \ {
   1xx0100001, 1x00100001, 1010100001}}

{1xxx1 \ {1x1x1, 11011}, x1xx0 \ {01x10, 11100, 111x0}}
{0x101 \ {00101}}
{
   0x1011xx01 \ {
   0x1011x101, 001011xx01}}

{1010x \ {10101, 10100, 10100}, x0x01 \ {10101, 00x01}}
{xxxxx \ {001x0, 11100, 1xx10}, xx0x1 \ {1x001, 01011, 00011}}
{
   xxx0x1010x \ {
   xxx0110100, xxx0010101, xxx0x10101, xxx0x10100, xxx0x10100, 001001010x, 111001010x}, xx00110101 \ {
   xx00110101, 1x00110101}, xxx01x0x01 \ {
   xxx0110101, xxx0100x01}, xx001x0x01 \ {
   xx00110101, xx00100x01, 1x001x0x01}}

{1xx00 \ {10100, 1x000, 11100}, 11xxx \ {11x11, 111x0, 11100}}
{xx011 \ {00011, 01011, x0011}, xx1x1 \ {x11x1, 10111, 11101}}
{
   xx01111x11 \ {
   xx01111x11, 0001111x11, 0101111x11, x001111x11}, xx1x111xx1 \ {
   xx11111x01, xx10111x11, xx1x111x11, x11x111xx1, 1011111xx1, 1110111xx1}}

{}
{0x100 \ {01100}, 10xx0 \ {101x0, 10x10}, 00xx1 \ {00111, 00x11, 00001}}
{}

{x00xx \ {100x0, x0000, x001x}, 11x00 \ {11000}}
{x10x0 \ {01010, 010x0, x1010}}
{
   x10x0x00x0 \ {
   x1010x0000, x1000x0010, x10x0100x0, x10x0x0000, x10x0x0010, 01010x00x0, 010x0x00x0, x1010x00x0}, x100011x00 \ {
   x100011000, 0100011x00}}

{x11x0 \ {11110, 011x0}}
{}
{}

{0xx11 \ {0x111, 00011, 00x11}, x1000 \ {01000, 11000}}
{001x1 \ {00111, 00101}, xx111 \ {0x111, x1111}}
{
   001110xx11 \ {
   001110x111, 0011100011, 0011100x11, 001110xx11}, xx1110xx11 \ {
   xx1110x111, xx11100011, xx11100x11, 0x1110xx11, x11110xx11}}

{0x1xx \ {0x110, 01101}, x1x1x \ {11x1x, 01x11, 11011}}
{x01x0 \ {10110, 00100, 101x0}, xx1x0 \ {1x1x0, 111x0, 1x110}}
{
   x01x00x1x0 \ {
   x01100x100, x01000x110, x01x00x110, 101100x1x0, 001000x1x0, 101x00x1x0}, xx1x00x1x0 \ {
   xx1100x100, xx1000x110, xx1x00x110, 1x1x00x1x0, 111x00x1x0, 1x1100x1x0}, x0110x1x10 \ {
   x011011x10, 10110x1x10, 10110x1x10}, xx110x1x10 \ {
   xx11011x10, 1x110x1x10, 11110x1x10, 1x110x1x10}}

{xxx10 \ {11x10, 00110, xx010}, 10x00 \ {10000}}
{xx111 \ {x0111, 01111, 00111}}
{}

{x11x0 \ {011x0, 11100, x1110}, x01xx \ {001x0, 10100, x0100}, 000xx \ {000x1, 0000x, 00000}}
{x100x \ {0100x, 01001}, 11x1x \ {11111, 11011, 11010}}
{
   x1000x1100 \ {
   x100001100, x100011100, 01000x1100}, 11x10x1110 \ {
   11x1001110, 11x10x1110, 11010x1110}, x100xx010x \ {
   x1001x0100, x1000x0101, x100x00100, x100x10100, x100xx0100, 0100xx010x, 01001x010x}, 11x1xx011x \ {
   11x11x0110, 11x10x0111, 11x1x00110, 11111x011x, 11011x011x, 11010x011x}, x100x0000x \ {
   x100100000, x100000001, x100x00001, x100x0000x, x100x00000, 0100x0000x, 010010000x}, 11x1x0001x \ {
   11x1100010, 11x1000011, 11x1x00011, 111110001x, 110110001x, 110100001x}}

{x0xx0 \ {000x0, 00x10, x0x10}, 1xx01 \ {1x001, 11x01, 1x101}}
{}
{}

{xx01x \ {00010, 1001x, xx011}}
{}
{}

{xx000 \ {x1000, 1x000, 00000}, x1xxx \ {0100x, 11x11, 11101}, 0x1xx \ {001x0, 0x110, 0x1x0}}
{xxx01 \ {10101, 00x01}}
{
   xxx01x1x01 \ {
   xxx0101001, xxx0111101, 10101x1x01, 00x01x1x01}, xxx010x101 \ {
   101010x101, 00x010x101}}

{x1xx1 \ {x1x11, x1101, 01x01}, 0x0xx \ {010x0, 0x01x, 00000}}
{0xxx0 \ {0x0x0, 011x0, 0xx00}}
{
   0xxx00x0x0 \ {
   0xx100x000, 0xx000x010, 0xxx0010x0, 0xxx00x010, 0xxx000000, 0x0x00x0x0, 011x00x0x0, 0xx000x0x0}}

{11x01 \ {11101, 11001}}
{0x0x0 \ {00000, 0x000, 000x0}}
{}

{1x10x \ {1x101, 1110x, 1110x}}
{0x1x0 \ {00100, 0x100, 0x110}}
{
   0x1001x100 \ {
   0x10011100, 0x10011100, 001001x100, 0x1001x100}}

{00x0x \ {00100, 00x00}}
{1100x \ {11001, 11000, 11000}}
{
   1100x00x0x \ {
   1100100x00, 1100000x01, 1100x00100, 1100x00x00, 1100100x0x, 1100000x0x, 1100000x0x}}

{000x0 \ {00000, 00010, 00010}}
{xx10x \ {xx101, 10101, 1x101}}
{
   xx10000000 \ {
   xx10000000}}

{0x0x0 \ {000x0, 0x000, 00010}}
{x1x10 \ {11x10, 11110, 11110}, 01xxx \ {0101x, 010x0, 01101}}
{
   x1x100x010 \ {
   x1x1000010, x1x1000010, 11x100x010, 111100x010, 111100x010}, 01xx00x0x0 \ {
   01x100x000, 01x000x010, 01xx0000x0, 01xx00x000, 01xx000010, 010100x0x0, 010x00x0x0}}

{00xx0 \ {00010, 000x0, 00100}, xx000 \ {00000}}
{00xx0 \ {001x0, 00x10, 00x10}, 0xx1x \ {01x11, 0111x, 01011}}
{
   00xx000xx0 \ {
   00x1000x00, 00x0000x10, 00xx000010, 00xx0000x0, 00xx000100, 001x000xx0, 00x1000xx0, 00x1000xx0}, 0xx1000x10 \ {
   0xx1000010, 0xx1000010, 0111000x10}, 00x00xx000 \ {
   00x0000000, 00100xx000}}

{1111x \ {11111, 11110, 11110}, 0x1x1 \ {011x1, 001x1, 01111}, 110x1 \ {11001, 11011}}
{001xx \ {001x1, 00111, 001x0}}
{
   0011x1111x \ {
   0011111110, 0011011111, 0011x11111, 0011x11110, 0011x11110, 001111111x, 001111111x, 001101111x}, 001x10x1x1 \ {
   001110x101, 001010x111, 001x1011x1, 001x1001x1, 001x101111, 001x10x1x1, 001110x1x1}, 001x1110x1 \ {
   0011111001, 0010111011, 001x111001, 001x111011, 001x1110x1, 00111110x1}}

{x1001 \ {11001, 01001}, 010x1 \ {01001}}
{xx1xx \ {01110, 01101, xx1x1}}
{
   xx101x1001 \ {
   xx10111001, xx10101001, 01101x1001, xx101x1001}, xx1x1010x1 \ {
   xx11101001, xx10101011, xx1x101001, 01101010x1, xx1x1010x1}}

{1x11x \ {11111, 11110, 1111x}, 11x11 \ {11011, 11111}}
{01xx1 \ {01011, 010x1}, 1xx0x \ {1xx00, 10100, 1x10x}}
{
   01x111x111 \ {
   01x1111111, 01x1111111, 010111x111, 010111x111}, 01x1111x11 \ {
   01x1111011, 01x1111111, 0101111x11, 0101111x11}}

{}
{x00xx \ {x0000, 1001x, 1001x}}
{}

{xx111 \ {10111, 00111}, xxx0x \ {0x00x, x0x00, 11x0x}, 11x11 \ {11011}}
{00x0x \ {00100, 00x01, 00000}, x10x0 \ {x1010, 11000, 11010}, 010x0 \ {01000, 01010}}
{
   00x0xxxx0x \ {
   00x01xxx00, 00x00xxx01, 00x0x0x00x, 00x0xx0x00, 00x0x11x0x, 00100xxx0x, 00x01xxx0x, 00000xxx0x}, x1000xxx00 \ {
   x10000x000, x1000x0x00, x100011x00, 11000xxx00}, 01000xxx00 \ {
   010000x000, 01000x0x00, 0100011x00, 01000xxx00}}

{xx01x \ {0001x, 1x010, xx010}}
{1xxx1 \ {10x01, 11001, 110x1}, 1xx1x \ {10011, 10010, 1x011}}
{
   1xx11xx011 \ {
   1xx1100011, 11011xx011}, 1xx1xxx01x \ {
   1xx11xx010, 1xx10xx011, 1xx1x0001x, 1xx1x1x010, 1xx1xxx010, 10011xx01x, 10010xx01x, 1x011xx01x}}

{10x10 \ {10110, 10010}, 00x1x \ {00010, 00011, 00110}, 10x11 \ {10011, 10111, 10111}}
{}
{}

{x1x10 \ {11110, 01x10, x1110}, xx0xx \ {010x0, 0001x, x001x}}
{x111x \ {01111, x1111, 1111x}, x1x10 \ {01010, 11010}, x0101 \ {00101}}
{
   x1110x1x10 \ {
   x111011110, x111001x10, x1110x1110, 11110x1x10}, x1x10x1x10 \ {
   x1x1011110, x1x1001x10, x1x10x1110, 01010x1x10, 11010x1x10}, x111xxx01x \ {
   x1111xx010, x1110xx011, x111x01010, x111x0001x, x111xx001x, 01111xx01x, x1111xx01x, 1111xxx01x}, x1x10xx010 \ {
   x1x1001010, x1x1000010, x1x10x0010, 01010xx010, 11010xx010}, x0101xx001 \ {
   00101xx001}}

{1xx11 \ {1x111, 10011}, 000x0 \ {00000}}
{xx1xx \ {0x10x, xx11x, 0111x}, 1x0x0 \ {11010, 110x0, 100x0}}
{
   xx1111xx11 \ {
   xx1111x111, xx11110011, xx1111xx11, 011111xx11}, xx1x0000x0 \ {
   xx11000000, xx10000010, xx1x000000, 0x100000x0, xx110000x0, 01110000x0}, 1x0x0000x0 \ {
   1x01000000, 1x00000010, 1x0x000000, 11010000x0, 110x0000x0, 100x0000x0}}

{10xx1 \ {10001, 100x1, 10111}, x11xx \ {x11x1, 01100, 11100}}
{1xx11 \ {1x011, 10x11, 11x11}, x11x1 \ {11111, 111x1, x1111}, xxx01 \ {xx001, 0x001, 0x001}}
{
   1xx1110x11 \ {
   1xx1110011, 1xx1110111, 1x01110x11, 10x1110x11, 11x1110x11}, x11x110xx1 \ {
   x111110x01, x110110x11, x11x110001, x11x1100x1, x11x110111, 1111110xx1, 111x110xx1, x111110xx1}, xxx0110x01 \ {
   xxx0110001, xxx0110001, xx00110x01, 0x00110x01, 0x00110x01}, 1xx11x1111 \ {
   1xx11x1111, 1x011x1111, 10x11x1111, 11x11x1111}, x11x1x11x1 \ {
   x1111x1101, x1101x1111, x11x1x11x1, 11111x11x1, 111x1x11x1, x1111x11x1}, xxx01x1101 \ {
   xxx01x1101, xx001x1101, 0x001x1101, 0x001x1101}}

{0xxx1 \ {000x1, 0xx01, 01x11}, 0x00x \ {01000, 0100x}, x111x \ {01111, x1110, 0111x}}
{}
{}

{x1x01 \ {11x01, 01001, 01x01}, 0x0x0 \ {000x0, 0x010, 01000}}
{00xxx \ {00100, 0010x, 000x0}, 011xx \ {0110x, 01110, 01100}, x10xx \ {01010, 11011, 110xx}}
{
   00x01x1x01 \ {
   00x0111x01, 00x0101001, 00x0101x01, 00101x1x01}, 01101x1x01 \ {
   0110111x01, 0110101001, 0110101x01, 01101x1x01}, x1001x1x01 \ {
   x100111x01, x100101001, x100101x01, 11001x1x01}, 00xx00x0x0 \ {
   00x100x000, 00x000x010, 00xx0000x0, 00xx00x010, 00xx001000, 001000x0x0, 001000x0x0, 000x00x0x0}, 011x00x0x0 \ {
   011100x000, 011000x010, 011x0000x0, 011x00x010, 011x001000, 011000x0x0, 011100x0x0, 011000x0x0}, x10x00x0x0 \ {
   x10100x000, x10000x010, x10x0000x0, x10x00x010, x10x001000, 010100x0x0, 110x00x0x0}}

{010xx \ {01010, 01000, 01011}}
{xx011 \ {x0011, 01011, 10011}, 0xx11 \ {0x111, 01011, 00111}, 11xxx \ {11x1x, 1101x, 11101}}
{
   xx01101011 \ {
   xx01101011, x001101011, 0101101011, 1001101011}, 0xx1101011 \ {
   0xx1101011, 0x11101011, 0101101011, 0011101011}, 11xxx010xx \ {
   11xx1010x0, 11xx0010x1, 11x1x0100x, 11x0x0101x, 11xxx01010, 11xxx01000, 11xxx01011, 11x1x010xx, 1101x010xx, 11101010xx}}

{010x0 \ {01000, 01010}, x10xx \ {01011, 010xx, 1100x}, xx11x \ {xx110, 1x11x, 0x110}}
{1x10x \ {11101, 1010x}}
{
   1x10001000 \ {
   1x10001000, 1010001000}, 1x10xx100x \ {
   1x101x1000, 1x100x1001, 1x10x0100x, 1x10x1100x, 11101x100x, 1010xx100x}}

{11xx1 \ {110x1, 111x1, 11101}, 0xxxx \ {01x0x, 001xx, 0101x}}
{10xx1 \ {10x11, 101x1, 10111}}
{
   10xx111xx1 \ {
   10x1111x01, 10x0111x11, 10xx1110x1, 10xx1111x1, 10xx111101, 10x1111xx1, 101x111xx1, 1011111xx1}, 10xx10xxx1 \ {
   10x110xx01, 10x010xx11, 10xx101x01, 10xx1001x1, 10xx101011, 10x110xxx1, 101x10xxx1, 101110xxx1}}

{1xxxx \ {10x11, 1x011, 1011x}, 1x1x0 \ {11110, 11100}}
{0x1xx \ {0x100, 01100, 0111x}}
{
   0x1xx1xxxx \ {
   0x1x11xxx0, 0x1x01xxx1, 0x11x1xx0x, 0x10x1xx1x, 0x1xx10x11, 0x1xx1x011, 0x1xx1011x, 0x1001xxxx, 011001xxxx, 0111x1xxxx}, 0x1x01x1x0 \ {
   0x1101x100, 0x1001x110, 0x1x011110, 0x1x011100, 0x1001x1x0, 011001x1x0, 011101x1x0}}

{1x11x \ {1x111, 1x110, 1x110}}
{}
{}

{xx0x1 \ {1x011, 01001, xx001}, 01x10 \ {01010}}
{1111x \ {11111, 11110}}
{
   11111xx011 \ {
   111111x011, 11111xx011}, 1111001x10 \ {
   1111001010, 1111001x10}}

{x110x \ {1110x, 0110x}, x1xxx \ {x10x0, 01x1x, 11011}, 0x010 \ {01010, 00010}}
{x10x1 \ {11001, x1011, x1011}}
{
   x1001x1101 \ {
   x100111101, x100101101, 11001x1101}, x10x1x1xx1 \ {
   x1011x1x01, x1001x1x11, x10x101x11, x10x111011, 11001x1xx1, x1011x1xx1, x1011x1xx1}}

{x01xx \ {x0100, x0101, 00101}}
{11x1x \ {1111x, 11x10}}
{
   11x1xx011x \ {
   11x11x0110, 11x10x0111, 1111xx011x, 11x10x011x}}

{x1xx1 \ {011x1, x1x11, 01101}}
{0x110 \ {00110, 01110}, xx100 \ {01100, 10100}, 10xx1 \ {10001, 10011, 10111}}
{
   10xx1x1xx1 \ {
   10x11x1x01, 10x01x1x11, 10xx1011x1, 10xx1x1x11, 10xx101101, 10001x1xx1, 10011x1xx1, 10111x1xx1}}

{}
{001xx \ {00110, 0010x, 00101}}
{}

{1x00x \ {1x000, 11001, 10001}, 1x111 \ {11111, 10111}}
{xxxx1 \ {0x111, 11x01, x1x01}, 101x1 \ {10111, 10101}, x00xx \ {000x0, x0001, 0001x}}
{
   xxx011x001 \ {
   xxx0111001, xxx0110001, 11x011x001, x1x011x001}, 101011x001 \ {
   1010111001, 1010110001, 101011x001}, x000x1x00x \ {
   x00011x000, x00001x001, x000x1x000, x000x11001, x000x10001, 000001x00x, x00011x00x}, xxx111x111 \ {
   xxx1111111, xxx1110111, 0x1111x111}, 101111x111 \ {
   1011111111, 1011110111, 101111x111}, x00111x111 \ {
   x001111111, x001110111, 000111x111}}

{}
{1x11x \ {1111x, 1x111, 1011x}, xx10x \ {0x10x, 11101, 11100}}
{}

{x0xx1 \ {x0x01, 100x1, 00x01}, x11xx \ {x1101, 0111x, 11100}}
{01x10 \ {01110, 01010}, 1xxxx \ {10100, 10x10, 10000}}
{
   1xxx1x0xx1 \ {
   1xx11x0x01, 1xx01x0x11, 1xxx1x0x01, 1xxx1100x1, 1xxx100x01}, 01x10x1110 \ {
   01x1001110, 01110x1110, 01010x1110}, 1xxxxx11xx \ {
   1xxx1x11x0, 1xxx0x11x1, 1xx1xx110x, 1xx0xx111x, 1xxxxx1101, 1xxxx0111x, 1xxxx11100, 10100x11xx, 10x10x11xx, 10000x11xx}}

{00xx0 \ {00100, 001x0, 000x0}}
{x10xx \ {110xx, 11011, x1011}, 000x0 \ {00000, 00010, 00010}}
{
   x10x000xx0 \ {
   x101000x00, x100000x10, x10x000100, x10x0001x0, x10x0000x0, 110x000xx0}, 000x000xx0 \ {
   0001000x00, 0000000x10, 000x000100, 000x0001x0, 000x0000x0, 0000000xx0, 0001000xx0, 0001000xx0}}

{0xxx1 \ {0xx11, 0x0x1, 0x1x1}}
{x101x \ {x1010, 1101x, 0101x}, x1xx1 \ {x11x1, 11001, 11x01}}
{
   x10110xx11 \ {
   x10110xx11, x10110x011, x10110x111, 110110xx11, 010110xx11}, x1xx10xxx1 \ {
   x1x110xx01, x1x010xx11, x1xx10xx11, x1xx10x0x1, x1xx10x1x1, x11x10xxx1, 110010xxx1, 11x010xxx1}}

{x0100 \ {00100, 10100, 10100}}
{}
{}

{0x10x \ {0x100, 00100, 00100}, xx010 \ {11010, 00010, x1010}, x0x10 \ {x0010, 00110, x0110}}
{xxx01 \ {01x01, 10101, 11101}, 0xx10 \ {0x110, 00010, 01110}}
{
   xxx010x101 \ {
   01x010x101, 101010x101, 111010x101}, 0xx10xx010 \ {
   0xx1011010, 0xx1000010, 0xx10x1010, 0x110xx010, 00010xx010, 01110xx010}, 0xx10x0x10 \ {
   0xx10x0010, 0xx1000110, 0xx10x0110, 0x110x0x10, 00010x0x10, 01110x0x10}}

{x0100 \ {00100, 10100}, x1001 \ {01001}}
{}
{}

{x10x0 \ {x1010, 11010, 01010}}
{00xx1 \ {00101, 001x1}}
{}

{00x1x \ {00x11, 00010, 00111}, x1xx1 \ {x1001, x1111, 01xx1}, 101xx \ {101x1, 101x0, 10100}}
{}
{}

{xxxxx \ {10110, xxx0x, x11x1}, x0x01 \ {10101, 10001, 00001}}
{0x0xx \ {01011, 00011, 010xx}, 01x0x \ {01001, 0100x, 01101}, xx0x1 \ {11011, 0x0x1, 1x011}}
{
   0x0xxxxxxx \ {
   0x0x1xxxx0, 0x0x0xxxx1, 0x01xxxx0x, 0x00xxxx1x, 0x0xx10110, 0x0xxxxx0x, 0x0xxx11x1, 01011xxxxx, 00011xxxxx, 010xxxxxxx}, 01x0xxxx0x \ {
   01x01xxx00, 01x00xxx01, 01x0xxxx0x, 01x0xx1101, 01001xxx0x, 0100xxxx0x, 01101xxx0x}, xx0x1xxxx1 \ {
   xx011xxx01, xx001xxx11, xx0x1xxx01, xx0x1x11x1, 11011xxxx1, 0x0x1xxxx1, 1x011xxxx1}, 0x001x0x01 \ {
   0x00110101, 0x00110001, 0x00100001, 01001x0x01}, 01x01x0x01 \ {
   01x0110101, 01x0110001, 01x0100001, 01001x0x01, 01001x0x01, 01101x0x01}, xx001x0x01 \ {
   xx00110101, xx00110001, xx00100001, 0x001x0x01}}

{xxxx0 \ {x0010, 0xxx0, 000x0}, xx1xx \ {00101, 0111x, 10101}}
{x0101 \ {00101, 10101}}
{
   x0101xx101 \ {
   x010100101, x010110101, 00101xx101, 10101xx101}}

{10xx1 \ {100x1, 10001, 10001}}
{}
{}

{0x111 \ {01111, 00111}, 00x1x \ {00111, 00x11, 00110}, xx1x1 \ {01111, xx111, 0x111}}
{1011x \ {10111, 10110}, xx1x1 \ {011x1, 11101, 10111}, x0x1x \ {10x1x, x0111, x011x}}
{
   101110x111 \ {
   1011101111, 1011100111, 101110x111}, xx1110x111 \ {
   xx11101111, xx11100111, 011110x111, 101110x111}, x0x110x111 \ {
   x0x1101111, x0x1100111, 10x110x111, x01110x111, x01110x111}, 1011x00x1x \ {
   1011100x10, 1011000x11, 1011x00111, 1011x00x11, 1011x00110, 1011100x1x, 1011000x1x}, xx11100x11 \ {
   xx11100111, xx11100x11, 0111100x11, 1011100x11}, x0x1x00x1x \ {
   x0x1100x10, x0x1000x11, x0x1x00111, x0x1x00x11, x0x1x00110, 10x1x00x1x, x011100x1x, x011x00x1x}, 10111xx111 \ {
   1011101111, 10111xx111, 101110x111, 10111xx111}, xx1x1xx1x1 \ {
   xx111xx101, xx101xx111, xx1x101111, xx1x1xx111, xx1x10x111, 011x1xx1x1, 11101xx1x1, 10111xx1x1}, x0x11xx111 \ {
   x0x1101111, x0x11xx111, x0x110x111, 10x11xx111, x0111xx111, x0111xx111}}

{0110x \ {01101, 01100}}
{xx0x1 \ {00011, 100x1, 110x1}, 01xx1 \ {011x1, 01001, 010x1}}
{
   xx00101101 \ {
   xx00101101, 1000101101, 1100101101}, 01x0101101 \ {
   01x0101101, 0110101101, 0100101101, 0100101101}}

{111x0 \ {11100, 11110}, xx101 \ {0x101, 00101, 11101}}
{xxx01 \ {10101, 10x01, 0x101}}
{
   xxx01xx101 \ {
   xxx010x101, xxx0100101, xxx0111101, 10101xx101, 10x01xx101, 0x101xx101}}

{}
{0xx0x \ {0xx01, 00001}}
{}

{1xx1x \ {11110, 1xx11, 1111x}, 00x10 \ {00010}, 0x1x0 \ {011x0, 00100, 00100}}
{x0011 \ {00011, 10011}, xxx0x \ {00x01, 0110x, 0100x}}
{
   x00111xx11 \ {
   x00111xx11, x001111111, 000111xx11, 100111xx11}, xxx000x100 \ {
   xxx0001100, xxx0000100, xxx0000100, 011000x100, 010000x100}}

{01x11 \ {01111}}
{0x0xx \ {00001, 000x1, 010x1}}
{
   0x01101x11 \ {
   0x01101111, 0001101x11, 0101101x11}}

{10x00 \ {10000, 10100, 10100}, 00x00 \ {00100, 00000}, x10xx \ {0101x, 11001, 010x0}}
{01x1x \ {01x11, 0111x, 01111}, 100x0 \ {10000, 10010}}
{
   1000010x00 \ {
   1000010000, 1000010100, 1000010100, 1000010x00}, 1000000x00 \ {
   1000000100, 1000000000, 1000000x00}, 01x1xx101x \ {
   01x11x1010, 01x10x1011, 01x1x0101x, 01x1x01010, 01x11x101x, 0111xx101x, 01111x101x}, 100x0x10x0 \ {
   10010x1000, 10000x1010, 100x001010, 100x0010x0, 10000x10x0, 10010x10x0}}

{01x00 \ {01100, 01000}, x1x0x \ {11101, 11x00, 01000}}
{01xx0 \ {010x0, 01110, 01x00}}
{
   01x0001x00 \ {
   01x0001100, 01x0001000, 0100001x00, 01x0001x00}, 01x00x1x00 \ {
   01x0011x00, 01x0001000, 01000x1x00, 01x00x1x00}}

{x11xx \ {011x1, x111x, x110x}, 01x11 \ {01111, 01011, 01011}}
{000x1 \ {00011, 00001, 00001}}
{
   000x1x11x1 \ {
   00011x1101, 00001x1111, 000x1011x1, 000x1x1111, 000x1x1101, 00011x11x1, 00001x11x1, 00001x11x1}, 0001101x11 \ {
   0001101111, 0001101011, 0001101011, 0001101x11}}

{1xx01 \ {11x01, 10x01, 10101}, 1x1x0 \ {1x100, 11100, 1x110}}
{}
{}

{xxx11 \ {10111, xx111}, 1x101 \ {11101, 10101, 10101}}
{x1x0x \ {x1x01, x110x, 11x00}}
{
   x1x011x101 \ {
   x1x0111101, x1x0110101, x1x0110101, x1x011x101, x11011x101}}

{010xx \ {010x1, 0101x, 01000}}
{0xx1x \ {01111, 01x10, 01x11}}
{
   0xx1x0101x \ {
   0xx1101010, 0xx1001011, 0xx1x01011, 0xx1x0101x, 011110101x, 01x100101x, 01x110101x}}

{}
{1xx1x \ {10x11, 1x010, 10011}, x1xx0 \ {01100, x1x00, 11xx0}}
{}

{00x1x \ {00x10, 00111, 00011}}
{x010x \ {00101, 0010x, 10101}}
{}

{1x1x0 \ {1x100, 101x0, 111x0}, 1xx11 \ {11x11, 1x011, 10111}}
{0xx00 \ {0x000, 01000, 01000}, 1x101 \ {11101}}
{
   0xx001x100 \ {
   0xx001x100, 0xx0010100, 0xx0011100, 0x0001x100, 010001x100, 010001x100}}

{1x11x \ {1x111, 10111, 1011x}, 0xxxx \ {00x0x, 0xx00, 00x10}}
{x1x11 \ {01x11, 11011, 11011}, xx0xx \ {010xx, xx001, x101x}}
{
   x1x111x111 \ {
   x1x111x111, x1x1110111, x1x1110111, 01x111x111, 110111x111, 110111x111}, xx01x1x11x \ {
   xx0111x110, xx0101x111, xx01x1x111, xx01x10111, xx01x1011x, 0101x1x11x, x101x1x11x}, x1x110xx11 \ {
   01x110xx11, 110110xx11, 110110xx11}, xx0xx0xxxx \ {
   xx0x10xxx0, xx0x00xxx1, xx01x0xx0x, xx00x0xx1x, xx0xx00x0x, xx0xx0xx00, xx0xx00x10, 010xx0xxxx, xx0010xxxx, x101x0xxxx}}

{xx110 \ {0x110, 1x110}, 10x10 \ {10010, 10110, 10110}}
{}
{}

{1xx11 \ {11011, 11111, 10x11}, x0111 \ {10111, 00111, 00111}}
{0xxxx \ {0x01x, 01101, 00x00}, 0x0x1 \ {010x1, 00011, 01011}, x1xxx \ {01110, 110x1, 11110}}
{
   0xx111xx11 \ {
   0xx1111011, 0xx1111111, 0xx1110x11, 0x0111xx11}, 0x0111xx11 \ {
   0x01111011, 0x01111111, 0x01110x11, 010111xx11, 000111xx11, 010111xx11}, x1x111xx11 \ {
   x1x1111011, x1x1111111, x1x1110x11, 110111xx11}, 0xx11x0111 \ {
   0xx1110111, 0xx1100111, 0xx1100111, 0x011x0111}, 0x011x0111 \ {
   0x01110111, 0x01100111, 0x01100111, 01011x0111, 00011x0111, 01011x0111}, x1x11x0111 \ {
   x1x1110111, x1x1100111, x1x1100111, 11011x0111}}

{1x1x1 \ {111x1, 11101, 11111}, 1100x \ {11001}, 0001x \ {00011, 00010, 00010}}
{10xx0 \ {10010, 100x0, 10x10}, xx01x \ {00010, xx011, xx011}}
{
   xx0111x111 \ {
   xx01111111, xx01111111, xx0111x111, xx0111x111}, 10x0011000 \ {
   1000011000}, 10x1000010 \ {
   10x1000010, 10x1000010, 1001000010, 1001000010, 10x1000010}, xx01x0001x \ {
   xx01100010, xx01000011, xx01x00011, xx01x00010, xx01x00010, 000100001x, xx0110001x, xx0110001x}}

{x01x1 \ {x0111, 10101, x0101}}
{0xx00 \ {01100, 01000, 01x00}, x100x \ {01001, x1001, 01000}, 0xxx0 \ {001x0, 0x0x0, 00110}}
{
   x1001x0101 \ {
   x100110101, x1001x0101, 01001x0101, x1001x0101}}

{xx001 \ {00001, 1x001}, x0x1x \ {00011, 10x1x, 10x10}, xx100 \ {1x100, 11100, 0x100}}
{x1001 \ {01001}, x00xx \ {10011, 00010, 0000x}}
{
   x1001xx001 \ {
   x100100001, x10011x001, 01001xx001}, x0001xx001 \ {
   x000100001, x00011x001, 00001xx001}, x001xx0x1x \ {
   x0011x0x10, x0010x0x11, x001x00011, x001x10x1x, x001x10x10, 10011x0x1x, 00010x0x1x}, x0000xx100 \ {
   x00001x100, x000011100, x00000x100, 00000xx100}}

{01xx1 \ {01011, 01111, 01x11}}
{1xx0x \ {11x0x, 1xx01}, x101x \ {x1011, 1101x, 1101x}}
{
   1xx0101x01 \ {
   11x0101x01, 1xx0101x01}, x101101x11 \ {
   x101101011, x101101111, x101101x11, x101101x11, 1101101x11, 1101101x11}}

{xxx0x \ {00101, 1x100, xx001}}
{}
{}

{00xx0 \ {00100, 00110, 00010}, xxx1x \ {1xx1x, 11010, 00110}}
{1x01x \ {1x011, 1x010, 10010}, xx0x0 \ {01000, x0010, 1x000}}
{
   1x01000x10 \ {
   1x01000110, 1x01000010, 1x01000x10, 1001000x10}, xx0x000xx0 \ {
   xx01000x00, xx00000x10, xx0x000100, xx0x000110, xx0x000010, 0100000xx0, x001000xx0, 1x00000xx0}, 1x01xxxx1x \ {
   1x011xxx10, 1x010xxx11, 1x01x1xx1x, 1x01x11010, 1x01x00110, 1x011xxx1x, 1x010xxx1x, 10010xxx1x}, xx010xxx10 \ {
   xx0101xx10, xx01011010, xx01000110, x0010xxx10}}

{xxx10 \ {0x110, 1x010, x1010}, 0x01x \ {00010, 01011, 0001x}}
{00xxx \ {000x0, 0001x, 001xx}}
{
   00x10xxx10 \ {
   00x100x110, 00x101x010, 00x10x1010, 00010xxx10, 00010xxx10, 00110xxx10}, 00x1x0x01x \ {
   00x110x010, 00x100x011, 00x1x00010, 00x1x01011, 00x1x0001x, 000100x01x, 0001x0x01x, 0011x0x01x}}

{10x10 \ {10010, 10110, 10110}}
{1xx1x \ {1xx10, 10x11, 1x01x}, 1xx0x \ {11000, 1x00x, 11001}, x1011 \ {01011}}
{
   1xx1010x10 \ {
   1xx1010010, 1xx1010110, 1xx1010110, 1xx1010x10, 1x01010x10}}

{0111x \ {01110, 01111}, xx1x0 \ {00100, 1x100, 1x110}}
{}
{}

{0x011 \ {01011}}
{xx100 \ {00100, 0x100, x0100}}
{}

{1xx01 \ {11x01, 10101, 10101}, xx00x \ {01001, x1000, 0100x}, xxx1x \ {x0011, 1011x, 10111}}
{1xx0x \ {1x101, 10000, 1x001}}
{
   1xx011xx01 \ {
   1xx0111x01, 1xx0110101, 1xx0110101, 1x1011xx01, 1x0011xx01}, 1xx0xxx00x \ {
   1xx01xx000, 1xx00xx001, 1xx0x01001, 1xx0xx1000, 1xx0x0100x, 1x101xx00x, 10000xx00x, 1x001xx00x}}

{0xxx1 \ {01111, 00x11, 010x1}}
{}
{}

{x0100 \ {10100, 00100}}
{x11x1 \ {111x1, x1101}, x1x00 \ {x1000, 11000, 01x00}}
{
   x1x00x0100 \ {
   x1x0010100, x1x0000100, x1000x0100, 11000x0100, 01x00x0100}}

{x1100 \ {11100, 01100, 01100}, x0x0x \ {10x00, x0100, 10x01}, 1xxx0 \ {110x0, 111x0, 1x110}}
{01xx1 \ {01011, 01101}, 0xx01 \ {01x01, 00x01, 00x01}}
{
   01x01x0x01 \ {
   01x0110x01, 01101x0x01}, 0xx01x0x01 \ {
   0xx0110x01, 01x01x0x01, 00x01x0x01, 00x01x0x01}}

{x001x \ {x0010, 00010, 1001x}, x0001 \ {10001, 00001}}
{011xx \ {011x0, 01111}, 11xxx \ {11x01, 110xx, 11xx1}}
{
   0111xx001x \ {
   01111x0010, 01110x0011, 0111xx0010, 0111x00010, 0111x1001x, 01110x001x, 01111x001x}, 11x1xx001x \ {
   11x11x0010, 11x10x0011, 11x1xx0010, 11x1x00010, 11x1x1001x, 1101xx001x, 11x11x001x}, 01101x0001 \ {
   0110110001, 0110100001}, 11x01x0001 \ {
   11x0110001, 11x0100001, 11x01x0001, 11001x0001, 11x01x0001}}

{11x01 \ {11101, 11001, 11001}}
{x1xxx \ {01xx0, 11x10, 01010}}
{
   x1x0111x01 \ {
   x1x0111101, x1x0111001, x1x0111001}}

{x1x10 \ {11110, x1110, 01x10}}
{0x11x \ {0x111, 00111, 0111x}}
{
   0x110x1x10 \ {
   0x11011110, 0x110x1110, 0x11001x10, 01110x1x10}}

{10x1x \ {10011, 10111, 1001x}}
{x10x0 \ {01010, 01000, 110x0}, xx1x1 \ {01101, x0101, 11111}}
{
   x101010x10 \ {
   x101010010, 0101010x10, 1101010x10}, xx11110x11 \ {
   xx11110011, xx11110111, xx11110011, 1111110x11}}

{0110x \ {01100, 01101, 01101}, 11x01 \ {11001, 11101}}
{xx01x \ {x101x, 10010, 01010}, 1x01x \ {11010, 1x010, 10011}, x1xxx \ {110x0, 11011, x11xx}}
{
   x1x0x0110x \ {
   x1x0101100, x1x0001101, x1x0x01100, x1x0x01101, x1x0x01101, 110000110x, x110x0110x}, x1x0111x01 \ {
   x1x0111001, x1x0111101, x110111x01}}

{x00xx \ {10001, x001x, 00011}, x1000 \ {11000, 01000, 01000}, 0x1x0 \ {01110, 0x110, 0x110}}
{0xx1x \ {0x110, 0x010, 0001x}, 0101x \ {01010, 01011}}
{
   0xx1xx001x \ {
   0xx11x0010, 0xx10x0011, 0xx1xx001x, 0xx1x00011, 0x110x001x, 0x010x001x, 0001xx001x}, 0101xx001x \ {
   01011x0010, 01010x0011, 0101xx001x, 0101x00011, 01010x001x, 01011x001x}, 0xx100x110 \ {
   0xx1001110, 0xx100x110, 0xx100x110, 0x1100x110, 0x0100x110, 000100x110}, 010100x110 \ {
   0101001110, 010100x110, 010100x110, 010100x110}}

{}
{}
{}

{x1x11 \ {01x11, 11011, 11111}}
{}
{}

{}
{10xxx \ {10x00, 101x0, 1010x}, xx100 \ {00100, 10100, 01100}}
{}

{00xx1 \ {00x11, 00111, 00111}, 11x00 \ {11100}}
{11xxx \ {110x0, 11110, 11x11}, x0x1x \ {x0111, 00011}}
{
   11xx100xx1 \ {
   11x1100x01, 11x0100x11, 11xx100x11, 11xx100111, 11xx100111, 11x1100xx1}, x0x1100x11 \ {
   x0x1100x11, x0x1100111, x0x1100111, x011100x11, 0001100x11}, 11x0011x00 \ {
   11x0011100, 1100011x00}}

{1xx0x \ {11001, 11000, 10x00}, x00x0 \ {00000, x0010, 10000}}
{1x1x1 \ {11111, 1x101, 10111}}
{
   1x1011xx01 \ {
   1x10111001, 1x1011xx01}}

{xxx0x \ {x0x01, 01101, 1000x}, xxx11 \ {x1111, x0x11, xx111}, 11xx0 \ {11x00, 111x0, 11x10}}
{xxx0x \ {1x101, 10001, 0x001}, 0x01x \ {01010, 01011}, 1110x \ {11101, 11100}}
{
   xxx0xxxx0x \ {
   xxx01xxx00, xxx00xxx01, xxx0xx0x01, xxx0x01101, xxx0x1000x, 1x101xxx0x, 10001xxx0x, 0x001xxx0x}, 1110xxxx0x \ {
   11101xxx00, 11100xxx01, 1110xx0x01, 1110x01101, 1110x1000x, 11101xxx0x, 11100xxx0x}, 0x011xxx11 \ {
   0x011x1111, 0x011x0x11, 0x011xx111, 01011xxx11}, xxx0011x00 \ {
   xxx0011x00, xxx0011100}, 0x01011x10 \ {
   0x01011110, 0x01011x10, 0101011x10}, 1110011x00 \ {
   1110011x00, 1110011100, 1110011x00}}

{xx001 \ {x1001, 00001, 01001}, 11xx1 \ {11x01, 11x11}}
{0000x \ {00001, 00000}}
{
   00001xx001 \ {
   00001x1001, 0000100001, 0000101001, 00001xx001}, 0000111x01 \ {
   0000111x01, 0000111x01}}

{x000x \ {x0000, 00001, 00000}, xx110 \ {01110, 0x110, x1110}}
{x10x0 \ {11010, 01010, 11000}}
{
   x1000x0000 \ {
   x1000x0000, x100000000, 11000x0000}, x1010xx110 \ {
   x101001110, x10100x110, x1010x1110, 11010xx110, 01010xx110}}

{xx110 \ {1x110, 00110}}
{xx0xx \ {11000, xx01x, 00010}}
{
   xx010xx110 \ {
   xx0101x110, xx01000110, xx010xx110, 00010xx110}}

{x0x10 \ {x0110, 00110, 00x10}, x0xxx \ {00x1x, 00101, 100x1}}
{x0xxx \ {00110, 10101, x00xx}, x1110 \ {01110}}
{
   x0x10x0x10 \ {
   x0x10x0110, x0x1000110, x0x1000x10, 00110x0x10, x0010x0x10}, x0xxxx0xxx \ {
   x0xx1x0xx0, x0xx0x0xx1, x0x1xx0x0x, x0x0xx0x1x, x0xxx00x1x, x0xxx00101, x0xxx100x1, 00110x0xxx, 10101x0xxx, x00xxx0xxx}, x1110x0x10 \ {
   x111000x10, 01110x0x10}}

{x1110 \ {11110, 01110}}
{x11x0 \ {011x0, 11110, 11100}}
{
   x1110x1110 \ {
   x111011110, x111001110, 01110x1110, 11110x1110}}

{100x1 \ {10001}, 0xxxx \ {01x01, 00x10, 0xxx1}}
{0x0x0 \ {00010, 0x010, 0x000}, 1xx0x \ {10001, 10101, 10000}}
{
   1xx0110001 \ {
   1xx0110001, 1000110001, 1010110001}, 0x0x00xxx0 \ {
   0x0100xx00, 0x0000xx10, 0x0x000x10, 000100xxx0, 0x0100xxx0, 0x0000xxx0}, 1xx0x0xx0x \ {
   1xx010xx00, 1xx000xx01, 1xx0x01x01, 1xx0x0xx01, 100010xx0x, 101010xx0x, 100000xx0x}}

{00x00 \ {00000, 00100}, 00x00 \ {00000, 00100}, 1xxx0 \ {10x10, 10000, 11x10}}
{01x1x \ {01010, 01x11, 01x11}}
{
   01x101xx10 \ {
   01x1010x10, 01x1011x10, 010101xx10}}

{00x0x \ {0000x, 00000, 00101}, x1101 \ {11101, 01101}}
{0x110 \ {01110, 00110, 00110}, 1x100 \ {11100, 10100}}
{
   1x10000x00 \ {
   1x10000000, 1x10000000, 1110000x00, 1010000x00}}

{1x0xx \ {1x001, 1100x, 11011}, x0x10 \ {10x10, 00110, x0110}}
{1101x \ {11010, 11011, 11011}, 00xxx \ {0000x, 00101, 00100}, x11x0 \ {01100, x1100, 111x0}}
{
   1101x1x01x \ {
   110111x010, 110101x011, 1101x11011, 110101x01x, 110111x01x, 110111x01x}, 00xxx1x0xx \ {
   00xx11x0x0, 00xx01x0x1, 00x1x1x00x, 00x0x1x01x, 00xxx1x001, 00xxx1100x, 00xxx11011, 0000x1x0xx, 001011x0xx, 001001x0xx}, x11x01x0x0 \ {
   x11101x000, x11001x010, x11x011000, 011001x0x0, x11001x0x0, 111x01x0x0}, 11010x0x10 \ {
   1101010x10, 1101000110, 11010x0110, 11010x0x10}, 00x10x0x10 \ {
   00x1010x10, 00x1000110, 00x10x0110}, x1110x0x10 \ {
   x111010x10, x111000110, x1110x0110, 11110x0x10}}

{xx111 \ {x1111, x0111, 01111}, 1xxxx \ {10111, 100x0, 11x00}}
{xx001 \ {00001, x1001, 01001}, 0x10x \ {00100, 0x100, 00101}}
{
   xx0011xx01 \ {
   000011xx01, x10011xx01, 010011xx01}, 0x10x1xx0x \ {
   0x1011xx00, 0x1001xx01, 0x10x10000, 0x10x11x00, 001001xx0x, 0x1001xx0x, 001011xx0x}}

{0xx11 \ {01011, 01111, 01x11}}
{x111x \ {x1111, 11111, 11110}}
{
   x11110xx11 \ {
   x111101011, x111101111, x111101x11, x11110xx11, 111110xx11}}

{x11x0 \ {011x0, 01110, x1110}, 01xx1 \ {01x01, 01011}}
{0xxxx \ {00001, 011x1, 0x011}, 1x0x0 \ {10010, 1x000, 110x0}}
{
   0xxx0x11x0 \ {
   0xx10x1100, 0xx00x1110, 0xxx0011x0, 0xxx001110, 0xxx0x1110}, 1x0x0x11x0 \ {
   1x010x1100, 1x000x1110, 1x0x0011x0, 1x0x001110, 1x0x0x1110, 10010x11x0, 1x000x11x0, 110x0x11x0}, 0xxx101xx1 \ {
   0xx1101x01, 0xx0101x11, 0xxx101x01, 0xxx101011, 0000101xx1, 011x101xx1, 0x01101xx1}}

{1x0xx \ {1x010, 11001, 10010}, 0x1x0 \ {0x110, 01110}}
{}
{}

{10x1x \ {10x11, 10010, 10010}}
{110x0 \ {11010, 11000}}
{
   1101010x10 \ {
   1101010010, 1101010010, 1101010x10}}

{01x1x \ {01x11, 01x10, 0101x}, 10xx1 \ {10001, 101x1}}
{xxx00 \ {10x00, 00000, 01000}, 110xx \ {1100x, 11001}}
{
   1101x01x1x \ {
   1101101x10, 1101001x11, 1101x01x11, 1101x01x10, 1101x0101x}, 110x110xx1 \ {
   1101110x01, 1100110x11, 110x110001, 110x1101x1, 1100110xx1, 1100110xx1}}

{}
{xx01x \ {11011, 1x010, 1x010}, 01x0x \ {01x00, 01000, 01x01}}
{}

{01x0x \ {01000, 01x01, 0100x}}
{01x10 \ {01010, 01110, 01110}, 1x1x1 \ {111x1, 1x101}}
{
   1x10101x01 \ {
   1x10101x01, 1x10101001, 1110101x01, 1x10101x01}}

{000xx \ {0000x, 00001, 000x0}}
{xx111 \ {0x111, 01111, 10111}, x1x1x \ {01011, 01x11, 11011}}
{
   xx11100011 \ {
   0x11100011, 0111100011, 1011100011}, x1x1x0001x \ {
   x1x1100010, x1x1000011, x1x1x00010, 010110001x, 01x110001x, 110110001x}}

{xx11x \ {00111, x1111, x0111}, x10xx \ {x10x0, 01001, 0101x}}
{x111x \ {11110, x1111, 01111}}
{
   x111xxx11x \ {
   x1111xx110, x1110xx111, x111x00111, x111xx1111, x111xx0111, 11110xx11x, x1111xx11x, 01111xx11x}, x111xx101x \ {
   x1111x1010, x1110x1011, x111xx1010, x111x0101x, 11110x101x, x1111x101x, 01111x101x}}

{}
{x1110 \ {01110, 11110, 11110}, x000x \ {10001, 1000x, 0000x}}
{}

{x0xx0 \ {100x0, x0x10, x0110}, 0x0xx \ {0101x, 00010, 0x011}}
{x00x1 \ {000x1, x0001, x0001}, 0x1xx \ {0x1x1, 0x11x, 0x1x0}, 10xxx \ {101x1, 10000, 10x01}}
{
   0x1x0x0xx0 \ {
   0x110x0x00, 0x100x0x10, 0x1x0100x0, 0x1x0x0x10, 0x1x0x0110, 0x110x0xx0, 0x1x0x0xx0}, 10xx0x0xx0 \ {
   10x10x0x00, 10x00x0x10, 10xx0100x0, 10xx0x0x10, 10xx0x0110, 10000x0xx0}, x00x10x0x1 \ {
   x00110x001, x00010x011, x00x101011, x00x10x011, 000x10x0x1, x00010x0x1, x00010x0x1}, 0x1xx0x0xx \ {
   0x1x10x0x0, 0x1x00x0x1, 0x11x0x00x, 0x10x0x01x, 0x1xx0101x, 0x1xx00010, 0x1xx0x011, 0x1x10x0xx, 0x11x0x0xx, 0x1x00x0xx}, 10xxx0x0xx \ {
   10xx10x0x0, 10xx00x0x1, 10x1x0x00x, 10x0x0x01x, 10xxx0101x, 10xxx00010, 10xxx0x011, 101x10x0xx, 100000x0xx, 10x010x0xx}}

{x000x \ {10001, 00000, 1000x}}
{}
{}

{0xxx0 \ {00x00, 00xx0, 0x0x0}}
{x1x0x \ {11x0x, 11101, x100x}, xxxxx \ {1xxx0, 0x101, 11000}, xxx10 \ {01010, 1xx10, 11x10}}
{
   x1x000xx00 \ {
   x1x0000x00, x1x0000x00, x1x000x000, 11x000xx00, x10000xx00}, xxxx00xxx0 \ {
   xxx100xx00, xxx000xx10, xxxx000x00, xxxx000xx0, xxxx00x0x0, 1xxx00xxx0, 110000xxx0}, xxx100xx10 \ {
   xxx1000x10, xxx100x010, 010100xx10, 1xx100xx10, 11x100xx10}}

{x0xx0 \ {00110, 101x0, x0010}, 1xx10 \ {11010, 10x10, 10010}}
{0x10x \ {01100, 0110x, 00100}, 0x11x \ {00111, 00110, 0x111}}
{
   0x100x0x00 \ {
   0x10010100, 01100x0x00, 01100x0x00, 00100x0x00}, 0x110x0x10 \ {
   0x11000110, 0x11010110, 0x110x0010, 00110x0x10}, 0x1101xx10 \ {
   0x11011010, 0x11010x10, 0x11010010, 001101xx10}}

{x1x10 \ {11x10, 11110, x1010}, x10xx \ {010xx, x100x, 01001}}
{}
{}

{0x1xx \ {001xx, 01100}, x110x \ {x1100, 1110x, 0110x}}
{10x00 \ {10100}}
{
   10x000x100 \ {
   10x0000100, 10x0001100, 101000x100}, 10x00x1100 \ {
   10x00x1100, 10x0011100, 10x0001100, 10100x1100}}

{x00xx \ {100x0, 00001, 10000}}
{xx00x \ {11001, 00000, xx000}}
{
   xx00xx000x \ {
   xx001x0000, xx000x0001, xx00x10000, xx00x00001, xx00x10000, 11001x000x, 00000x000x, xx000x000x}}

{x00xx \ {x00x0, x001x}, 0010x \ {00101, 00100}, 011xx \ {011x0, 01100, 01100}}
{01xxx \ {0111x, 0110x, 011x0}, x001x \ {10011, 00010}, xxx0x \ {00100, 01x01, 11x0x}}
{
   01xxxx00xx \ {
   01xx1x00x0, 01xx0x00x1, 01x1xx000x, 01x0xx001x, 01xxxx00x0, 01xxxx001x, 0111xx00xx, 0110xx00xx, 011x0x00xx}, x001xx001x \ {
   x0011x0010, x0010x0011, x001xx0010, x001xx001x, 10011x001x, 00010x001x}, xxx0xx000x \ {
   xxx01x0000, xxx00x0001, xxx0xx0000, 00100x000x, 01x01x000x, 11x0xx000x}, 01x0x0010x \ {
   01x0100100, 01x0000101, 01x0x00101, 01x0x00100, 0110x0010x, 011000010x}, xxx0x0010x \ {
   xxx0100100, xxx0000101, xxx0x00101, xxx0x00100, 001000010x, 01x010010x, 11x0x0010x}, 01xxx011xx \ {
   01xx1011x0, 01xx0011x1, 01x1x0110x, 01x0x0111x, 01xxx011x0, 01xxx01100, 01xxx01100, 0111x011xx, 0110x011xx, 011x0011xx}, x001x0111x \ {
   x001101110, x001001111, x001x01110, 100110111x, 000100111x}, xxx0x0110x \ {
   xxx0101100, xxx0001101, xxx0x01100, xxx0x01100, xxx0x01100, 001000110x, 01x010110x, 11x0x0110x}}

{10xx1 \ {10111, 10001, 101x1}, 0111x \ {01110, 01111, 01111}, 010xx \ {010x1, 01000, 01011}}
{1xx1x \ {11x10, 1x110}}
{
   1xx1110x11 \ {
   1xx1110111, 1xx1110111}, 1xx1x0111x \ {
   1xx1101110, 1xx1001111, 1xx1x01110, 1xx1x01111, 1xx1x01111, 11x100111x, 1x1100111x}, 1xx1x0101x \ {
   1xx1101010, 1xx1001011, 1xx1x01011, 1xx1x01011, 11x100101x, 1x1100101x}}

{x1xxx \ {x111x, 11000, 0111x}}
{0xx1x \ {0x111, 00111, 00010}}
{
   0xx1xx1x1x \ {
   0xx11x1x10, 0xx10x1x11, 0xx1xx111x, 0xx1x0111x, 0x111x1x1x, 00111x1x1x, 00010x1x1x}}

{00xxx \ {001x0, 0010x, 00x11}}
{}
{}

{1x11x \ {1x111, 1x110, 1111x}}
{0x0xx \ {0x00x, 0x0x1, 0100x}, x1000 \ {01000, 11000}}
{
   0x01x1x11x \ {
   0x0111x110, 0x0101x111, 0x01x1x111, 0x01x1x110, 0x01x1111x, 0x0111x11x}}

{111xx \ {11101, 11110, 11111}, xxx10 \ {01x10, 11010, 01110}}
{x1x10 \ {01x10, x1110, 01110}}
{
   x1x1011110 \ {
   x1x1011110, 01x1011110, x111011110, 0111011110}, x1x10xxx10 \ {
   x1x1001x10, x1x1011010, x1x1001110, 01x10xxx10, x1110xxx10, 01110xxx10}}

{x0xx1 \ {x01x1, 10011}, x00x1 \ {10001, x0001}}
{100xx \ {1000x, 10010, 10011}}
{
   100x1x0xx1 \ {
   10011x0x01, 10001x0x11, 100x1x01x1, 100x110011, 10001x0xx1, 10011x0xx1}, 100x1x00x1 \ {
   10011x0001, 10001x0011, 100x110001, 100x1x0001, 10001x00x1, 10011x00x1}}

{}
{}
{}

{11xxx \ {11101, 11x11, 11x10}}
{xxx1x \ {0011x, 11x10, x0x1x}}
{
   xxx1x11x1x \ {
   xxx1111x10, xxx1011x11, xxx1x11x11, xxx1x11x10, 0011x11x1x, 11x1011x1x, x0x1x11x1x}}

{xxx1x \ {xxx11, 01x1x, 11x10}}
{xxxx0 \ {10x10, 01x10, x11x0}, xx011 \ {x0011, 01011, x1011}}
{
   xxx10xxx10 \ {
   xxx1001x10, xxx1011x10, 10x10xxx10, 01x10xxx10, x1110xxx10}, xx011xxx11 \ {
   xx011xxx11, xx01101x11, x0011xxx11, 01011xxx11, x1011xxx11}}

{x101x \ {01011, 1101x, 0101x}, 0x11x \ {0x111, 0011x, 01111}}
{011x1 \ {01101, 01111}}
{
   01111x1011 \ {
   0111101011, 0111111011, 0111101011, 01111x1011}, 011110x111 \ {
   011110x111, 0111100111, 0111101111, 011110x111}}

{}
{1xxxx \ {110x0, 11011, 1001x}, x0001 \ {00001, 10001, 10001}}
{}

{11xxx \ {1111x, 11x1x, 110xx}, 1x11x \ {10111, 1111x}, 1xx10 \ {11x10, 1x010}}
{}
{}

{010xx \ {01000, 010x1}}
{0x01x \ {0x010, 0101x}}
{
   0x01x0101x \ {
   0x01101010, 0x01001011, 0x01x01011, 0x0100101x, 0101x0101x}}

{x1x0x \ {x100x, 01x0x, 01101}}
{0xxx0 \ {0x010, 001x0, 00000}, 101x0 \ {10110}}
{
   0xx00x1x00 \ {
   0xx00x1000, 0xx0001x00, 00100x1x00, 00000x1x00}, 10100x1x00 \ {
   10100x1000, 1010001x00}}

{0x1x0 \ {001x0, 0x110, 01100}}
{0x0x1 \ {01011, 000x1, 010x1}}
{}

{xx010 \ {0x010, 11010, 01010}, x1101 \ {11101, 01101}}
{x1x1x \ {x1010, 0111x, 01x1x}}
{
   x1x10xx010 \ {
   x1x100x010, x1x1011010, x1x1001010, x1010xx010, 01110xx010, 01x10xx010}}

{x10xx \ {11001, 0101x, 010xx}, x100x \ {0100x, 11000, 11000}}
{1x01x \ {1x011, 11011, 10011}, 111x1 \ {11111}}
{
   1x01xx101x \ {
   1x011x1010, 1x010x1011, 1x01x0101x, 1x01x0101x, 1x011x101x, 11011x101x, 10011x101x}, 111x1x10x1 \ {
   11111x1001, 11101x1011, 111x111001, 111x101011, 111x1010x1, 11111x10x1}, 11101x1001 \ {
   1110101001}}

{xx100 \ {x1100, x0100, x0100}}
{x11x1 \ {111x1, 011x1}, 1111x \ {11110, 11111}, 01x1x \ {0101x, 01111}}
{}

{00xx0 \ {00x10, 00x00, 00110}, xxx11 \ {x0011, x1011, xx011}}
{0xx00 \ {00x00, 0x000, 0x100}, 1x10x \ {10101, 11101, 11101}}
{
   0xx0000x00 \ {
   0xx0000x00, 00x0000x00, 0x00000x00, 0x10000x00}, 1x10000x00 \ {
   1x10000x00}}

{1xx10 \ {10x10, 10110, 10110}, 1xx00 \ {11100, 1x000, 1x100}}
{xx01x \ {00010, 11011, x001x}}
{
   xx0101xx10 \ {
   xx01010x10, xx01010110, xx01010110, 000101xx10, x00101xx10}}

{}
{1x00x \ {1x001, 11000, 11001}}
{}

{x0x0x \ {10101, 1000x, x0001}}
{1xxx1 \ {11111, 11001, 101x1}}
{
   1xx01x0x01 \ {
   1xx0110101, 1xx0110001, 1xx01x0001, 11001x0x01, 10101x0x01}}

{11x0x \ {11x00, 1100x, 11100}}
{xx110 \ {11110, 01110, 01110}}
{}

{x010x \ {10101, 0010x, x0101}, x1x0x \ {x1001, 01100, x1x01}}
{1010x \ {10100}, 000x1 \ {00011, 00001}}
{
   1010xx010x \ {
   10101x0100, 10100x0101, 1010x10101, 1010x0010x, 1010xx0101, 10100x010x}, 00001x0101 \ {
   0000110101, 0000100101, 00001x0101, 00001x0101}, 1010xx1x0x \ {
   10101x1x00, 10100x1x01, 1010xx1001, 1010x01100, 1010xx1x01, 10100x1x0x}, 00001x1x01 \ {
   00001x1001, 00001x1x01, 00001x1x01}}

{xx011 \ {0x011, 00011, 1x011}}
{0011x \ {00111}, 00xxx \ {00110, 00x0x, 00011}, x0x0x \ {00101, 10000, 10101}}
{
   00111xx011 \ {
   001110x011, 0011100011, 001111x011, 00111xx011}, 00x11xx011 \ {
   00x110x011, 00x1100011, 00x111x011, 00011xx011}}

{1x11x \ {1x111, 11110}, xx01x \ {1x010, 0001x, 11010}, x0x10 \ {00x10, 10110}}
{xx1x1 \ {x0111, 0x1x1, 10111}, xx0x1 \ {11011, 1x001, 01011}}
{
   xx1111x111 \ {
   xx1111x111, x01111x111, 0x1111x111, 101111x111}, xx0111x111 \ {
   xx0111x111, 110111x111, 010111x111}, xx111xx011 \ {
   xx11100011, x0111xx011, 0x111xx011, 10111xx011}, xx011xx011 \ {
   xx01100011, 11011xx011, 01011xx011}}

{xx0x0 \ {100x0, 11010, 0x010}}
{1x00x \ {1x000, 1000x, 11000}, 110x1 \ {11001}, 01xx1 \ {01001, 011x1, 01101}}
{
   1x000xx000 \ {
   1x00010000, 1x000xx000, 10000xx000, 11000xx000}}

{1x1x1 \ {101x1, 11101, 11101}}
{x0x11 \ {10011, 00x11, 10111}, 10xxx \ {10xx0, 10110, 10010}}
{
   x0x111x111 \ {
   x0x1110111, 100111x111, 00x111x111, 101111x111}, 10xx11x1x1 \ {
   10x111x101, 10x011x111, 10xx1101x1, 10xx111101, 10xx111101}}

{0xx00 \ {0x000, 00100, 01x00}, 0x00x \ {0x001, 01000, 01000}}
{10xxx \ {10001, 10x01, 10x00}}
{
   10x000xx00 \ {
   10x000x000, 10x0000100, 10x0001x00, 10x000xx00}, 10x0x0x00x \ {
   10x010x000, 10x000x001, 10x0x0x001, 10x0x01000, 10x0x01000, 100010x00x, 10x010x00x, 10x000x00x}}

{011xx \ {0111x, 011x1, 011x0}, 11xx0 \ {11010, 110x0, 11x10}}
{111xx \ {11100, 111x1}, 01xx0 \ {01x10, 011x0}, 0x1x0 \ {0x100, 00100, 01110}}
{
   111xx011xx \ {
   111x1011x0, 111x0011x1, 1111x0110x, 1110x0111x, 111xx0111x, 111xx011x1, 111xx011x0, 11100011xx, 111x1011xx}, 01xx0011x0 \ {
   01x1001100, 01x0001110, 01xx001110, 01xx0011x0, 01x10011x0, 011x0011x0}, 0x1x0011x0 \ {
   0x11001100, 0x10001110, 0x1x001110, 0x1x0011x0, 0x100011x0, 00100011x0, 01110011x0}, 111x011xx0 \ {
   1111011x00, 1110011x10, 111x011010, 111x0110x0, 111x011x10, 1110011xx0}, 01xx011xx0 \ {
   01x1011x00, 01x0011x10, 01xx011010, 01xx0110x0, 01xx011x10, 01x1011xx0, 011x011xx0}, 0x1x011xx0 \ {
   0x11011x00, 0x10011x10, 0x1x011010, 0x1x0110x0, 0x1x011x10, 0x10011xx0, 0010011xx0, 0111011xx0}}

{xx100 \ {x1100, 1x100, 11100}}
{x0x0x \ {00001, 00x01, 00x0x}}
{
   x0x00xx100 \ {
   x0x00x1100, x0x001x100, x0x0011100, 00x00xx100}}

{}
{x11xx \ {x111x, x110x, 1111x}}
{}

{xx0xx \ {xx01x, 10010, xx00x}, xx0xx \ {1x0x1, 01001, x00x0}}
{01xxx \ {01111, 010x1, 011x0}}
{
   01xxxxx0xx \ {
   01xx1xx0x0, 01xx0xx0x1, 01x1xxx00x, 01x0xxx01x, 01xxxxx01x, 01xxx10010, 01xxxxx00x, 01111xx0xx, 010x1xx0xx, 011x0xx0xx}, 01xxxxx0xx \ {
   01xx1xx0x0, 01xx0xx0x1, 01x1xxx00x, 01x0xxx01x, 01xxx1x0x1, 01xxx01001, 01xxxx00x0, 01111xx0xx, 010x1xx0xx, 011x0xx0xx}}

{1xxxx \ {1x00x, 1001x, 1000x}, 01xx1 \ {01001, 01011, 01x11}, 0xx0x \ {00x01, 0x00x, 01100}}
{0xx00 \ {01x00, 01100, 00000}, x0xx0 \ {10100, 00x10, x0010}, x1100 \ {01100, 11100, 11100}}
{
   0xx001xx00 \ {
   0xx001x000, 0xx0010000, 01x001xx00, 011001xx00, 000001xx00}, x0xx01xxx0 \ {
   x0x101xx00, x0x001xx10, x0xx01x000, x0xx010010, x0xx010000, 101001xxx0, 00x101xxx0, x00101xxx0}, x11001xx00 \ {
   x11001x000, x110010000, 011001xx00, 111001xx00, 111001xx00}, 0xx000xx00 \ {
   0xx000x000, 0xx0001100, 01x000xx00, 011000xx00, 000000xx00}, x0x000xx00 \ {
   x0x000x000, x0x0001100, 101000xx00}, x11000xx00 \ {
   x11000x000, x110001100, 011000xx00, 111000xx00, 111000xx00}}

{xx01x \ {1101x, 0x01x, x0010}, 1001x \ {10010, 10011}}
{10xxx \ {10010, 100x0, 10011}}
{
   10x1xxx01x \ {
   10x11xx010, 10x10xx011, 10x1x1101x, 10x1x0x01x, 10x1xx0010, 10010xx01x, 10010xx01x, 10011xx01x}, 10x1x1001x \ {
   10x1110010, 10x1010011, 10x1x10010, 10x1x10011, 100101001x, 100101001x, 100111001x}}

{10x01 \ {10101}}
{1xx1x \ {11011, 10111, 11x10}}
{}

{x0100 \ {10100}}
{x10xx \ {x10x0, 010x0, x1011}}
{
   x1000x0100 \ {
   x100010100, x1000x0100, 01000x0100}}

{x0xx0 \ {10x10, x0x10, 10xx0}}
{0x1x1 \ {01101, 0x111}, x01x0 \ {10100, 00110, 00110}}
{
   x01x0x0xx0 \ {
   x0110x0x00, x0100x0x10, x01x010x10, x01x0x0x10, x01x010xx0, 10100x0xx0, 00110x0xx0, 00110x0xx0}}

{1x1x0 \ {10100, 11110, 11100}, 111xx \ {11100, 11101, 1110x}}
{x01xx \ {00110, 001xx, 10100}}
{
   x01x01x1x0 \ {
   x01101x100, x01001x110, x01x010100, x01x011110, x01x011100, 001101x1x0, 001x01x1x0, 101001x1x0}, x01xx111xx \ {
   x01x1111x0, x01x0111x1, x011x1110x, x010x1111x, x01xx11100, x01xx11101, x01xx1110x, 00110111xx, 001xx111xx, 10100111xx}}

{0xx11 \ {0x011, 01111, 00x11}, x11xx \ {x1100, 111x1, 01101}}
{1100x \ {11000}, xx0x1 \ {xx001, 1x001, x0011}}
{
   xx0110xx11 \ {
   xx0110x011, xx01101111, xx01100x11, x00110xx11}, 1100xx110x \ {
   11001x1100, 11000x1101, 1100xx1100, 1100x11101, 1100x01101, 11000x110x}, xx0x1x11x1 \ {
   xx011x1101, xx001x1111, xx0x1111x1, xx0x101101, xx001x11x1, 1x001x11x1, x0011x11x1}}

{001xx \ {001x0, 00100, 00111}, 1xxxx \ {111x1, 10xx1, 11111}, 0x010 \ {01010, 00010, 00010}}
{1xx00 \ {1x000, 11100, 10x00}}
{
   1xx0000100 \ {
   1xx0000100, 1xx0000100, 1x00000100, 1110000100, 10x0000100}, 1xx001xx00 \ {
   1x0001xx00, 111001xx00, 10x001xx00}}

{}
{}
{}

{xx0x0 \ {x1010, 0x010, 00010}}
{1x0xx \ {10010, 11011, 1x011}}
{
   1x0x0xx0x0 \ {
   1x010xx000, 1x000xx010, 1x0x0x1010, 1x0x00x010, 1x0x000010, 10010xx0x0}}

{11xxx \ {1100x, 11001, 11001}, 1x011 \ {11011, 10011}, 00x0x \ {0010x, 00000, 00101}}
{1x0xx \ {10000, 11010}}
{
   1x0xx11xxx \ {
   1x0x111xx0, 1x0x011xx1, 1x01x11x0x, 1x00x11x1x, 1x0xx1100x, 1x0xx11001, 1x0xx11001, 1000011xxx, 1101011xxx}, 1x0111x011 \ {
   1x01111011, 1x01110011}, 1x00x00x0x \ {
   1x00100x00, 1x00000x01, 1x00x0010x, 1x00x00000, 1x00x00101, 1000000x0x}}

{x1111 \ {11111, 01111, 01111}, 11xx1 \ {11101, 11001}}
{x1xxx \ {11100, x100x, 11xx1}}
{
   x1x11x1111 \ {
   x1x1111111, x1x1101111, x1x1101111, 11x11x1111}, x1xx111xx1 \ {
   x1x1111x01, x1x0111x11, x1xx111101, x1xx111001, x100111xx1, 11xx111xx1}}

{x0xx1 \ {x0011, 00x01, 00x01}}
{}
{}

{000x1 \ {00011}, 01x0x \ {0100x, 01001, 0110x}}
{01x11 \ {01011, 01111, 01111}, xx111 \ {11111, x0111, 01111}}
{
   01x1100011 \ {
   01x1100011, 0101100011, 0111100011, 0111100011}, xx11100011 \ {
   xx11100011, 1111100011, x011100011, 0111100011}}

{11xx0 \ {11x10, 11x00, 110x0}}
{x1x1x \ {x1110, 0111x, x111x}, 10x0x \ {1000x, 10000, 10000}}
{
   x1x1011x10 \ {
   x1x1011x10, x1x1011010, x111011x10, 0111011x10, x111011x10}, 10x0011x00 \ {
   10x0011x00, 10x0011000, 1000011x00, 1000011x00, 1000011x00}}

{xx0x1 \ {01001, x0011, xx001}}
{0011x \ {00111, 00110, 00110}, 1xxx0 \ {10xx0, 10100, 10x00}}
{
   00111xx011 \ {
   00111x0011, 00111xx011}}

{xx0x0 \ {100x0, 1x000, x00x0}, x1000 \ {01000, 11000, 11000}}
{}
{}

{xx001 \ {0x001, x1001, 11001}}
{1x11x \ {1x111, 10110}}
{}

{010xx \ {01011, 01001, 01010}, 1xx01 \ {10001, 11x01, 11x01}}
{x10xx \ {x1011, x101x}}
{
   x10xx010xx \ {
   x10x1010x0, x10x0010x1, x101x0100x, x100x0101x, x10xx01011, x10xx01001, x10xx01010, x1011010xx, x101x010xx}, x10011xx01 \ {
   x100110001, x100111x01, x100111x01}}

{}
{1x0x0 \ {11010, 11000, 110x0}}
{}

{}
{0xx0x \ {01x0x, 00x0x, 01000}, x1000 \ {11000, 01000}}
{}

{}
{10x00 \ {10100, 10000}}
{}

{}
{x11xx \ {1111x, 111xx, 111xx}}
{}

{xxxxx \ {0xx0x, x0101, 0xxx0}, 01xxx \ {01111, 011x0, 01x01}}
{x110x \ {01100, 1110x}, 10x1x \ {10111, 10x10}}
{
   x110xxxx0x \ {
   x1101xxx00, x1100xxx01, x110x0xx0x, x110xx0101, x110x0xx00, 01100xxx0x, 1110xxxx0x}, 10x1xxxx1x \ {
   10x11xxx10, 10x10xxx11, 10x1x0xx10, 10111xxx1x, 10x10xxx1x}, x110x01x0x \ {
   x110101x00, x110001x01, x110x01100, x110x01x01, 0110001x0x, 1110x01x0x}, 10x1x01x1x \ {
   10x1101x10, 10x1001x11, 10x1x01111, 10x1x01110, 1011101x1x, 10x1001x1x}}

{}
{1x1x0 \ {111x0, 10100, 1x100}, 000x1 \ {00001, 00011, 00011}}
{}

{xx11x \ {xx111, 1x111, 11110}}
{x1x10 \ {01110, x1110}, 0001x \ {00010, 00011}}
{
   x1x10xx110 \ {
   x1x1011110, 01110xx110, x1110xx110}, 0001xxx11x \ {
   00011xx110, 00010xx111, 0001xxx111, 0001x1x111, 0001x11110, 00010xx11x, 00011xx11x}}

{}
{xx1x0 \ {101x0, 0x1x0, 111x0}}
{}

{0x010 \ {01010, 00010}, x110x \ {0110x, 01101}}
{0x1xx \ {00101, 0x111, 0x100}, x0x1x \ {x0x10, x0010, 10111}}
{
   0x1100x010 \ {
   0x11001010, 0x11000010}, x0x100x010 \ {
   x0x1001010, x0x1000010, x0x100x010, x00100x010}, 0x10xx110x \ {
   0x101x1100, 0x100x1101, 0x10x0110x, 0x10x01101, 00101x110x, 0x100x110x}}

{0101x \ {01010, 01011, 01011}}
{xx01x \ {01011, 0001x, 1001x}, xxxx1 \ {x10x1, 1x0x1, xx001}, 00xxx \ {000x0, 00011, 000x1}}
{
   xx01x0101x \ {
   xx01101010, xx01001011, xx01x01010, xx01x01011, xx01x01011, 010110101x, 0001x0101x, 1001x0101x}, xxx1101011 \ {
   xxx1101011, xxx1101011, x101101011, 1x01101011}, 00x1x0101x \ {
   00x1101010, 00x1001011, 00x1x01010, 00x1x01011, 00x1x01011, 000100101x, 000110101x, 000110101x}}

{x0x01 \ {00001, 10001, 10101}, x1010 \ {11010, 01010}}
{x0x1x \ {10x1x, 10010}, 010x0 \ {01010, 01000}, xxx00 \ {x0000, x0x00, 00100}}
{
   x0x10x1010 \ {
   x0x1011010, x0x1001010, 10x10x1010, 10010x1010}, 01010x1010 \ {
   0101011010, 0101001010, 01010x1010}}

{x0x0x \ {0010x, x000x, x0000}, 0xxxx \ {0xxx0, 0x0x0, 0011x}}
{101xx \ {101x0, 10110, 10100}}
{
   1010xx0x0x \ {
   10101x0x00, 10100x0x01, 1010x0010x, 1010xx000x, 1010xx0000, 10100x0x0x, 10100x0x0x}, 101xx0xxxx \ {
   101x10xxx0, 101x00xxx1, 1011x0xx0x, 1010x0xx1x, 101xx0xxx0, 101xx0x0x0, 101xx0011x, 101x00xxxx, 101100xxxx, 101000xxxx}}

{1xx00 \ {11x00, 1x000, 10000}, 0xx1x \ {0x011, 0x110, 00111}}
{xx010 \ {1x010, 00010, 0x010}, 1xxx0 \ {10010, 10110, 110x0}}
{
   1xx001xx00 \ {
   1xx0011x00, 1xx001x000, 1xx0010000, 110001xx00}, xx0100xx10 \ {
   xx0100x110, 1x0100xx10, 000100xx10, 0x0100xx10}, 1xx100xx10 \ {
   1xx100x110, 100100xx10, 101100xx10, 110100xx10}}

{x00xx \ {1000x, 10001, 00000}, x0x1x \ {1001x, 10110}, 1xx10 \ {11010, 11x10}}
{1xx10 \ {10x10, 10010}}
{
   1xx10x0010 \ {
   10x10x0010, 10010x0010}, 1xx10x0x10 \ {
   1xx1010010, 1xx1010110, 10x10x0x10, 10010x0x10}, 1xx101xx10 \ {
   1xx1011010, 1xx1011x10, 10x101xx10, 100101xx10}}

{0x010 \ {00010, 01010}}
{x100x \ {01000, 11000, 11000}, x100x \ {11000, 01001}}
{}

{}
{1x1x1 \ {10111, 11111}}
{}

{10x11 \ {10111, 10011}}
{1000x \ {10001, 10000}}
{}

{x00xx \ {10011, x00x0, 100x1}, xxxx1 \ {0x0x1, x1001, xx111}}
{xx010 \ {x0010, 1x010, 1x010}, xxx01 \ {11101, 11x01, 10001}}
{
   xx010x0010 \ {
   xx010x0010, x0010x0010, 1x010x0010, 1x010x0010}, xxx01x0001 \ {
   xxx0110001, 11101x0001, 11x01x0001, 10001x0001}, xxx01xxx01 \ {
   xxx010x001, xxx01x1001, 11101xxx01, 11x01xxx01, 10001xxx01}}

{1x0xx \ {1000x, 10011, 110x1}, xx011 \ {x0011, 00011, 1x011}}
{0x1xx \ {001x1, 00110, 0x1x0}}
{
   0x1xx1x0xx \ {
   0x1x11x0x0, 0x1x01x0x1, 0x11x1x00x, 0x10x1x01x, 0x1xx1000x, 0x1xx10011, 0x1xx110x1, 001x11x0xx, 001101x0xx, 0x1x01x0xx}, 0x111xx011 \ {
   0x111x0011, 0x11100011, 0x1111x011, 00111xx011}}

{xx101 \ {11101, 0x101, x0101}}
{x1xxx \ {11x0x, 0110x, 11xx0}, 10xxx \ {10xx1, 100x1, 10xx0}}
{
   x1x01xx101 \ {
   x1x0111101, x1x010x101, x1x01x0101, 11x01xx101, 01101xx101}, 10x01xx101 \ {
   10x0111101, 10x010x101, 10x01x0101, 10x01xx101, 10001xx101}}

{01x0x \ {0100x, 01001}}
{}
{}

{0x11x \ {0x111, 00111, 00111}}
{x01x0 \ {x0100, 00100, 001x0}}
{
   x01100x110 \ {
   001100x110}}

{10xx0 \ {10x10, 100x0, 10000}, xx0x1 \ {x0001, xx011, 1x011}}
{x1x0x \ {x1x01, 1100x, 11x01}, x1xxx \ {01x01, 01xx0, 01x10}, x1101 \ {01101, 11101}}
{
   x1x0010x00 \ {
   x1x0010000, x1x0010000, 1100010x00}, x1xx010xx0 \ {
   x1x1010x00, x1x0010x10, x1xx010x10, x1xx0100x0, x1xx010000, 01xx010xx0, 01x1010xx0}, x1x01xx001 \ {
   x1x01x0001, x1x01xx001, 11001xx001, 11x01xx001}, x1xx1xx0x1 \ {
   x1x11xx001, x1x01xx011, x1xx1x0001, x1xx1xx011, x1xx11x011, 01x01xx0x1}, x1101xx001 \ {
   x1101x0001, 01101xx001, 11101xx001}}

{x0001 \ {10001, 00001, 00001}}
{x10xx \ {110x1, 0100x, 110xx}, x1xx0 \ {110x0, 11x10, x10x0}, 0x010 \ {00010, 01010}}
{
   x1001x0001 \ {
   x100110001, x100100001, x100100001, 11001x0001, 01001x0001, 11001x0001}}

{00xxx \ {00001, 00x0x, 00x0x}, 00xx0 \ {00x00, 00010}, x0x10 \ {10010, 00110, 00110}}
{0x0xx \ {0100x, 0x01x, 0x00x}, 0x00x \ {0100x, 00000}}
{
   0x0xx00xxx \ {
   0x0x100xx0, 0x0x000xx1, 0x01x00x0x, 0x00x00x1x, 0x0xx00001, 0x0xx00x0x, 0x0xx00x0x, 0100x00xxx, 0x01x00xxx, 0x00x00xxx}, 0x00x00x0x \ {
   0x00100x00, 0x00000x01, 0x00x00001, 0x00x00x0x, 0x00x00x0x, 0100x00x0x, 0000000x0x}, 0x0x000xx0 \ {
   0x01000x00, 0x00000x10, 0x0x000x00, 0x0x000010, 0100000xx0, 0x01000xx0, 0x00000xx0}, 0x00000x00 \ {
   0x00000x00, 0100000x00, 0000000x00}, 0x010x0x10 \ {
   0x01010010, 0x01000110, 0x01000110, 0x010x0x10}}

{x10xx \ {x1011, 110x0, 01010}}
{xxx0x \ {11001, 0x101, 1110x}, x0010 \ {00010}, 0xxx0 \ {0x100, 011x0, 0x0x0}}
{
   xxx0xx100x \ {
   xxx01x1000, xxx00x1001, xxx0x11000, 11001x100x, 0x101x100x, 1110xx100x}, x0010x1010 \ {
   x001011010, x001001010, 00010x1010}, 0xxx0x10x0 \ {
   0xx10x1000, 0xx00x1010, 0xxx0110x0, 0xxx001010, 0x100x10x0, 011x0x10x0, 0x0x0x10x0}}

{00x10 \ {00010}}
{0xx11 \ {01x11, 01111, 01111}, 0xx1x \ {01x11, 0111x, 00110}, 011x0 \ {01100}}
{
   0xx1000x10 \ {
   0xx1000010, 0111000x10, 0011000x10}, 0111000x10 \ {
   0111000010}}

{x0x1x \ {0011x, x0110, 10x1x}}
{x01xx \ {x0100, 00101, 10100}}
{
   x011xx0x1x \ {
   x0111x0x10, x0110x0x11, x011x0011x, x011xx0110, x011x10x1x}}

{x0x00 \ {10000, x0100, 10x00}, 001xx \ {001x1, 00100}}
{00x0x \ {0010x}, xx111 \ {x1111}}
{
   00x00x0x00 \ {
   00x0010000, 00x00x0100, 00x0010x00, 00100x0x00}, 00x0x0010x \ {
   00x0100100, 00x0000101, 00x0x00101, 00x0x00100, 0010x0010x}, xx11100111 \ {
   xx11100111, x111100111}}

{xx01x \ {0x011, 0x010, 11010}}
{0xx1x \ {0001x, 0011x, 00111}}
{
   0xx1xxx01x \ {
   0xx11xx010, 0xx10xx011, 0xx1x0x011, 0xx1x0x010, 0xx1x11010, 0001xxx01x, 0011xxx01x, 00111xx01x}}

{0x01x \ {01011, 00010}, xx100 \ {1x100, x1100}}
{x1x00 \ {01100, x1100, 11x00}}
{
   x1x00xx100 \ {
   x1x001x100, x1x00x1100, 01100xx100, x1100xx100, 11x00xx100}}

{1x0xx \ {110x0, 1001x, 1x011}}
{1xx00 \ {10000, 11x00, 1x100}, 0x10x \ {00101, 0110x, 0x101}, 1xxx1 \ {1x111, 10011, 1xx01}}
{
   1xx001x000 \ {
   1xx0011000, 100001x000, 11x001x000, 1x1001x000}, 0x10x1x00x \ {
   0x1011x000, 0x1001x001, 0x10x11000, 001011x00x, 0110x1x00x, 0x1011x00x}, 1xxx11x0x1 \ {
   1xx111x001, 1xx011x011, 1xxx110011, 1xxx11x011, 1x1111x0x1, 100111x0x1, 1xx011x0x1}}

{x01x1 \ {001x1, 10101, 101x1}}
{xxxx1 \ {xx111, 1x0x1, x01x1}}
{
   xxxx1x01x1 \ {
   xxx11x0101, xxx01x0111, xxxx1001x1, xxxx110101, xxxx1101x1, xx111x01x1, 1x0x1x01x1, x01x1x01x1}}

{x1xx1 \ {11111, x1111, 11011}}
{0101x \ {01010, 01011}, xx010 \ {11010, 01010, 00010}}
{
   01011x1x11 \ {
   0101111111, 01011x1111, 0101111011, 01011x1x11}}

{x110x \ {x1101, 0110x, x1100}, 0x0x0 \ {01000, 010x0, 0x010}}
{1x0x0 \ {100x0, 110x0, 10010}}
{
   1x000x1100 \ {
   1x00001100, 1x000x1100, 10000x1100, 11000x1100}, 1x0x00x0x0 \ {
   1x0100x000, 1x0000x010, 1x0x001000, 1x0x0010x0, 1x0x00x010, 100x00x0x0, 110x00x0x0, 100100x0x0}}

{01x1x \ {01x11, 0101x, 01x10}}
{11x1x \ {11x10, 11x11}, 110x1 \ {11001}}
{
   11x1x01x1x \ {
   11x1101x10, 11x1001x11, 11x1x01x11, 11x1x0101x, 11x1x01x10, 11x1001x1x, 11x1101x1x}, 1101101x11 \ {
   1101101x11, 1101101011}}

{x10x0 \ {x1000, 11010, x1010}, x010x \ {x0100, 00100, x0101}}
{xx011 \ {01011, 0x011}}
{}

{x0x10 \ {00x10, 10x10, 10010}}
{xxx1x \ {x0111, 11111, x001x}, xx0x1 \ {11001, 110x1, xx001}, x001x \ {10011, 00010}}
{
   xxx10x0x10 \ {
   xxx1000x10, xxx1010x10, xxx1010010, x0010x0x10}, x0010x0x10 \ {
   x001000x10, x001010x10, x001010010, 00010x0x10}}

{0x110 \ {00110, 01110}, x11x0 \ {01110, 01100, x1100}}
{00xx1 \ {000x1, 00x11, 001x1}, 100x0 \ {10010, 10000}}
{
   100100x110 \ {
   1001000110, 1001001110, 100100x110}, 100x0x11x0 \ {
   10010x1100, 10000x1110, 100x001110, 100x001100, 100x0x1100, 10010x11x0, 10000x11x0}}

{1x10x \ {11100, 11101}, 0x1x0 \ {001x0, 0x100, 0x100}}
{}
{}

{xx0x1 \ {xx011, xx001, 110x1}, x1010 \ {01010, 11010}}
{x11xx \ {1111x, 11101, 11100}}
{
   x11x1xx0x1 \ {
   x1111xx001, x1101xx011, x11x1xx011, x11x1xx001, x11x1110x1, 11111xx0x1, 11101xx0x1}, x1110x1010 \ {
   x111001010, x111011010, 11110x1010}}

{x000x \ {00001, 10001}, 10xx1 \ {10x01, 10001, 10x11}}
{x10x0 \ {01000, 01010, 11000}, 0x110 \ {01110, 00110}}
{
   x1000x0000 \ {
   01000x0000, 11000x0000}}

{110xx \ {110x1, 11010}}
{0x110 \ {01110, 00110, 00110}, x1100 \ {11100, 01100}}
{
   0x11011010 \ {
   0x11011010, 0111011010, 0011011010, 0011011010}, x110011000 \ {
   1110011000, 0110011000}}

{1xx1x \ {11111, 1101x, 1x011}}
{}
{}

{1011x \ {10111}}
{0x1xx \ {011xx, 0011x}}
{
   0x11x1011x \ {
   0x11110110, 0x11010111, 0x11x10111, 0111x1011x, 0011x1011x}}

{110x1 \ {11011, 11001, 11001}}
{1xxx0 \ {10x00, 10000, 1xx00}}
{}

{x0x1x \ {00110, x0x10, x001x}}
{110xx \ {11010, 110x1, 1100x}, 1x11x \ {1x110, 1011x, 1011x}}
{
   1101xx0x1x \ {
   11011x0x10, 11010x0x11, 1101x00110, 1101xx0x10, 1101xx001x, 11010x0x1x, 11011x0x1x}, 1x11xx0x1x \ {
   1x111x0x10, 1x110x0x11, 1x11x00110, 1x11xx0x10, 1x11xx001x, 1x110x0x1x, 1011xx0x1x, 1011xx0x1x}}

{xx1x0 \ {0x1x0, 111x0, x0110}, 0x1x0 \ {001x0, 011x0, 01110}}
{x1111 \ {11111, 01111, 01111}}
{}

{}
{100x0 \ {10010, 10000, 10000}, x110x \ {01100, 01101, x1100}}
{}

{10xx1 \ {10101, 10011, 100x1}, 1x01x \ {10011, 1x010, 10010}}
{x0x10 \ {00x10, 10110, x0010}}
{
   x0x101x010 \ {
   x0x101x010, x0x1010010, 00x101x010, 101101x010, x00101x010}}

{x0xx1 \ {x0x01, 00011, 001x1}}
{x0x00 \ {10100, 00000, 00x00}}
{}

{0xxx1 \ {01x01, 010x1, 01011}}
{1x10x \ {1010x, 1x101, 11100}}
{
   1x1010xx01 \ {
   1x10101x01, 1x10101001, 101010xx01, 1x1010xx01}}

{x0xx0 \ {00100, 00xx0, 00000}}
{00x1x \ {00010, 0001x, 00x11}}
{
   00x10x0x10 \ {
   00x1000x10, 00010x0x10, 00010x0x10}}

{10xx0 \ {10110, 10x10, 10000}, x01x1 \ {001x1, 00111, 00111}}
{}
{}

{0x11x \ {00111}, 11xx0 \ {11000, 110x0, 11110}, xx100 \ {10100, 00100, 1x100}}
{}
{}

{x111x \ {0111x, x1110}, 00xx1 \ {00x11, 00111}, 1x001 \ {10001}}
{x00xx \ {000xx, x00x1, x0001}}
{
   x001xx111x \ {
   x0011x1110, x0010x1111, x001x0111x, x001xx1110, 0001xx111x, x0011x111x}, x00x100xx1 \ {
   x001100x01, x000100x11, x00x100x11, x00x100111, 000x100xx1, x00x100xx1, x000100xx1}, x00011x001 \ {
   x000110001, 000011x001, x00011x001, x00011x001}}

{xx0xx \ {xx000, 1x0x1, x0011}}
{xx000 \ {01000, 1x000, x0000}, x000x \ {1000x, 00001}}
{
   xx000xx000 \ {
   xx000xx000, 01000xx000, 1x000xx000, x0000xx000}, x000xxx00x \ {
   x0001xx000, x0000xx001, x000xxx000, x000x1x001, 1000xxx00x, 00001xx00x}}

{x10x0 \ {01000, 010x0}}
{x1101 \ {11101, 01101}}
{}

{}
{xx100 \ {01100, 00100, x0100}}
{}

{1x011 \ {10011, 11011, 11011}}
{1x1x1 \ {1x101, 11101}, 10xx1 \ {10011, 10001}}
{
   1x1111x011 \ {
   1x11110011, 1x11111011, 1x11111011}, 10x111x011 \ {
   10x1110011, 10x1111011, 10x1111011, 100111x011}}

{x1xxx \ {x1111, 11x10, 111x0}, 101x1 \ {10111, 10101}}
{x111x \ {1111x, x1111, x1110}}
{
   x111xx1x1x \ {
   x1111x1x10, x1110x1x11, x111xx1111, x111x11x10, x111x11110, 1111xx1x1x, x1111x1x1x, x1110x1x1x}, x111110111 \ {
   x111110111, 1111110111, x111110111}}

{0xxx1 \ {0x111, 01001, 01011}}
{xx001 \ {0x001, x0001}, x011x \ {0011x, x0110, 00110}}
{
   xx0010xx01 \ {
   xx00101001, 0x0010xx01, x00010xx01}, x01110xx11 \ {
   x01110x111, x011101011, 001110xx11}}

{1x10x \ {1110x, 1010x, 1010x}}
{x1xxx \ {01x01, 11x0x, x110x}, 110xx \ {1101x, 11000, 110x0}}
{
   x1x0x1x10x \ {
   x1x011x100, x1x001x101, x1x0x1110x, x1x0x1010x, x1x0x1010x, 01x011x10x, 11x0x1x10x, x110x1x10x}, 1100x1x10x \ {
   110011x100, 110001x101, 1100x1110x, 1100x1010x, 1100x1010x, 110001x10x, 110001x10x}}

{x1110 \ {01110, 11110, 11110}}
{11x10 \ {11010, 11110, 11110}}
{
   11x10x1110 \ {
   11x1001110, 11x1011110, 11x1011110, 11010x1110, 11110x1110, 11110x1110}}

{1011x \ {10111}, x1xx0 \ {01010, x1110, x11x0}, 1xx01 \ {10101, 11001, 10x01}}
{}
{}

{010xx \ {010x1, 01011, 010x0}, x1x01 \ {x1101, 11101}}
{x10x0 \ {x1010, 11000, 11010}}
{
   x10x0010x0 \ {
   x101001000, x100001010, x10x0010x0, x1010010x0, 11000010x0, 11010010x0}}

{x1111 \ {11111, 01111, 01111}}
{00x10 \ {00010, 00110, 00110}, xx010 \ {00010, x0010, 11010}}
{}

{x1x10 \ {01110, 11110}}
{xx1xx \ {111xx, x010x, 1x100}, 0x1x1 \ {00111, 001x1, 001x1}, 1xx1x \ {1x010, 10010, 1001x}}
{
   xx110x1x10 \ {
   xx11001110, xx11011110, 11110x1x10}, 1xx10x1x10 \ {
   1xx1001110, 1xx1011110, 1x010x1x10, 10010x1x10, 10010x1x10}}

{xx111 \ {1x111, 01111, x0111}}
{x0xx0 \ {00xx0, 10110, x0x00}, 0x0xx \ {00001, 0100x, 01001}}
{
   0x011xx111 \ {
   0x0111x111, 0x01101111, 0x011x0111}}

{1xx00 \ {11x00, 10x00}, 11xx0 \ {11x00, 11100}}
{1x111 \ {10111, 11111}, 10xx0 \ {10000, 10100, 10010}}
{
   10x001xx00 \ {
   10x0011x00, 10x0010x00, 100001xx00, 101001xx00}, 10xx011xx0 \ {
   10x1011x00, 10x0011x10, 10xx011x00, 10xx011100, 1000011xx0, 1010011xx0, 1001011xx0}}

{01xx1 \ {01001, 01101, 01x11}, 1xxx0 \ {11x00, 1xx00, 10x10}}
{0100x \ {01000, 01001}}
{
   0100101x01 \ {
   0100101001, 0100101101, 0100101x01}, 010001xx00 \ {
   0100011x00, 010001xx00, 010001xx00}}

{0x01x \ {0x011, 01011}}
{01xx1 \ {010x1, 01x01, 01x11}}
{
   01x110x011 \ {
   01x110x011, 01x1101011, 010110x011, 01x110x011}}

{1x1x1 \ {10101, 1x101}, 010xx \ {010x0, 01000, 01000}}
{x01x1 \ {x0101, 00111}, 11x0x \ {11100, 11x01, 1100x}, 1x10x \ {1110x, 1x101, 11101}}
{
   x01x11x1x1 \ {
   x01111x101, x01011x111, x01x110101, x01x11x101, x01011x1x1, 001111x1x1}, 11x011x101 \ {
   11x0110101, 11x011x101, 11x011x101, 110011x101}, 1x1011x101 \ {
   1x10110101, 1x1011x101, 111011x101, 1x1011x101, 111011x101}, x01x1010x1 \ {
   x011101001, x010101011, x0101010x1, 00111010x1}, 11x0x0100x \ {
   11x0101000, 11x0001001, 11x0x01000, 11x0x01000, 11x0x01000, 111000100x, 11x010100x, 1100x0100x}, 1x10x0100x \ {
   1x10101000, 1x10001001, 1x10x01000, 1x10x01000, 1x10x01000, 1110x0100x, 1x1010100x, 111010100x}}

{}
{x0111 \ {00111}}
{}

{xx011 \ {11011, 01011, 0x011}, 001x1 \ {00111}}
{x1x01 \ {11001, 01x01, 11101}, 10xx1 \ {10001, 10111, 10x01}}
{
   10x11xx011 \ {
   10x1111011, 10x1101011, 10x110x011, 10111xx011}, x1x0100101 \ {
   1100100101, 01x0100101, 1110100101}, 10xx1001x1 \ {
   10x1100101, 10x0100111, 10xx100111, 10001001x1, 10111001x1, 10x01001x1}}

{}
{xxxxx \ {011x1, x0x0x, 00x00}, x11x1 \ {01111}, 000x0 \ {00000}}
{}

{xx011 \ {00011, 11011, 01011}, x01xx \ {x01x1, x01x0, 101x0}}
{}
{}

{x0xx0 \ {x0100, 00xx0}, x11x0 \ {01110, 011x0, 011x0}}
{x0x10 \ {00010, 00110, x0110}, x1011 \ {11011, 01011, 01011}, 1111x \ {11110, 11111, 11111}}
{
   x0x10x0x10 \ {
   x0x1000x10, 00010x0x10, 00110x0x10, x0110x0x10}, 11110x0x10 \ {
   1111000x10, 11110x0x10}, x0x10x1110 \ {
   x0x1001110, x0x1001110, x0x1001110, 00010x1110, 00110x1110, x0110x1110}, 11110x1110 \ {
   1111001110, 1111001110, 1111001110, 11110x1110}}

{1xx1x \ {10x1x, 10x11, 1111x}, 0xx01 \ {01x01, 00101, 00001}}
{xxxx1 \ {10xx1, 1x0x1, x1x01}, x10xx \ {x100x, x10x1, 01011}, x0101 \ {10101, 00101}}
{
   xxx111xx11 \ {
   xxx1110x11, xxx1110x11, xxx1111111, 10x111xx11, 1x0111xx11}, x101x1xx1x \ {
   x10111xx10, x10101xx11, x101x10x1x, x101x10x11, x101x1111x, x10111xx1x, 010111xx1x}, xxx010xx01 \ {
   xxx0101x01, xxx0100101, xxx0100001, 10x010xx01, 1x0010xx01, x1x010xx01}, x10010xx01 \ {
   x100101x01, x100100101, x100100001, x10010xx01, x10010xx01}, x01010xx01 \ {
   x010101x01, x010100101, x010100001, 101010xx01, 001010xx01}}

{000xx \ {00011, 0000x, 00001}}
{1xxxx \ {1x110, 10x0x, 1xx01}, x11xx \ {111xx, 0110x, 11100}, 10xxx \ {1000x, 10000, 101xx}}
{
   1xxxx000xx \ {
   1xxx1000x0, 1xxx0000x1, 1xx1x0000x, 1xx0x0001x, 1xxxx00011, 1xxxx0000x, 1xxxx00001, 1x110000xx, 10x0x000xx, 1xx01000xx}, x11xx000xx \ {
   x11x1000x0, x11x0000x1, x111x0000x, x110x0001x, x11xx00011, x11xx0000x, x11xx00001, 111xx000xx, 0110x000xx, 11100000xx}, 10xxx000xx \ {
   10xx1000x0, 10xx0000x1, 10x1x0000x, 10x0x0001x, 10xxx00011, 10xxx0000x, 10xxx00001, 1000x000xx, 10000000xx, 101xx000xx}}

{}
{x010x \ {10100, 00101, 0010x}}
{}

{xxxx0 \ {100x0, 011x0, 11000}}
{xx0x0 \ {xx000, 1x010}, 0xxx1 \ {0xx01, 00xx1, 001x1}, 0x01x \ {0101x, 01010}}
{
   xx0x0xxxx0 \ {
   xx010xxx00, xx000xxx10, xx0x0100x0, xx0x0011x0, xx0x011000, xx000xxxx0, 1x010xxxx0}, 0x010xxx10 \ {
   0x01010010, 0x01001110, 01010xxx10, 01010xxx10}}

{1x111 \ {11111, 10111}}
{0x01x \ {01010, 01011}, 100xx \ {10010, 100x0, 1001x}, x11x0 \ {11110, 01110}}
{
   0x0111x111 \ {
   0x01111111, 0x01110111, 010111x111}, 100111x111 \ {
   1001111111, 1001110111, 100111x111}}

{x11x1 \ {111x1, 11101, 01101}}
{}
{}

{0x1x0 \ {011x0, 0x100, 0x100}, 1xxx0 \ {1x100, 1x0x0}}
{xx101 \ {1x101, 11101}, 1xx00 \ {10x00, 1x000, 11x00}, x110x \ {0110x, 01101, 11100}}
{
   1xx000x100 \ {
   1xx0001100, 1xx000x100, 1xx000x100, 10x000x100, 1x0000x100, 11x000x100}, x11000x100 \ {
   x110001100, x11000x100, x11000x100, 011000x100, 111000x100}, 1xx001xx00 \ {
   1xx001x100, 1xx001x000, 10x001xx00, 1x0001xx00, 11x001xx00}, x11001xx00 \ {
   x11001x100, x11001x000, 011001xx00, 111001xx00}}

{x0xx1 \ {x01x1, 00001, 00xx1}, 101xx \ {1010x, 101x0, 10111}}
{11x1x \ {1101x, 11111, 11011}, x11x1 \ {x1101, x1111}}
{
   11x11x0x11 \ {
   11x11x0111, 11x1100x11, 11011x0x11, 11111x0x11, 11011x0x11}, x11x1x0xx1 \ {
   x1111x0x01, x1101x0x11, x11x1x01x1, x11x100001, x11x100xx1, x1101x0xx1, x1111x0xx1}, 11x1x1011x \ {
   11x1110110, 11x1010111, 11x1x10110, 11x1x10111, 1101x1011x, 111111011x, 110111011x}, x11x1101x1 \ {
   x111110101, x110110111, x11x110101, x11x110111, x1101101x1, x1111101x1}}

{x0xx0 \ {000x0, 001x0, 00010}, x011x \ {00110, 1011x, 1011x}}
{}
{}

{x1100 \ {11100}, xx110 \ {x1110, 1x110}}
{x1xx0 \ {01010, 11010, x1110}, x111x \ {11110, x1111}}
{
   x1x00x1100 \ {
   x1x0011100}, x1x10xx110 \ {
   x1x10x1110, x1x101x110, 01010xx110, 11010xx110, x1110xx110}, x1110xx110 \ {
   x1110x1110, x11101x110, 11110xx110}}

{1x1x1 \ {10101, 11101, 101x1}}
{xx111 \ {0x111, 10111}, 0xxx1 \ {0x111, 001x1, 01101}, xxx01 \ {01x01, 0xx01, 11001}}
{
   xx1111x111 \ {
   xx11110111, 0x1111x111, 101111x111}, 0xxx11x1x1 \ {
   0xx111x101, 0xx011x111, 0xxx110101, 0xxx111101, 0xxx1101x1, 0x1111x1x1, 001x11x1x1, 011011x1x1}, xxx011x101 \ {
   xxx0110101, xxx0111101, xxx0110101, 01x011x101, 0xx011x101, 110011x101}}

{xxx10 \ {xx010, x1110, 11010}}
{xx1x0 \ {00110, x0110, x1110}}
{
   xx110xxx10 \ {
   xx110xx010, xx110x1110, xx11011010, 00110xxx10, x0110xxx10, x1110xxx10}}

{xxx01 \ {11001, 00x01, 10001}}
{00xxx \ {00x01, 0000x, 001x0}}
{
   00x01xxx01 \ {
   00x0111001, 00x0100x01, 00x0110001, 00x01xxx01, 00001xxx01}}

{x00x0 \ {00000, x0010, 00010}, xx110 \ {10110, 1x110, 00110}, 10xx0 \ {10100, 10x00, 10010}}
{}
{}

{10xx1 \ {10001, 10101, 10101}, 10x1x \ {10011, 10111, 10x10}, 10x1x \ {10010, 1011x}}
{01xx0 \ {011x0, 01x10}, 0x000 \ {00000, 01000, 01000}}
{
   01x1010x10 \ {
   01x1010x10, 0111010x10, 01x1010x10}}

{11xx0 \ {11x10, 11100, 11010}}
{}
{}

{}
{x0x01 \ {x0101, 00101, 10x01}, 11x1x \ {11011, 1101x, 11110}, 01xx1 \ {01011, 01111, 010x1}}
{}

{xx10x \ {1010x, 10100, 11100}, 101x0 \ {10110, 10100}, xx100 \ {10100, x1100, 00100}}
{xxxx1 \ {110x1, x1111, x1011}, xx100 \ {00100, x1100, x0100}}
{
   xxx01xx101 \ {
   xxx0110101, 11001xx101}, xx100xx100 \ {
   xx10010100, xx10010100, xx10011100, 00100xx100, x1100xx100, x0100xx100}, xx10010100 \ {
   xx10010100, 0010010100, x110010100, x010010100}}

{0xxx1 \ {010x1, 00xx1, 01x11}}
{x111x \ {11110, x1111, 01110}}
{
   x11110xx11 \ {
   x111101011, x111100x11, x111101x11, x11110xx11}}

{x001x \ {00011, 10011, x0011}}
{}
{}

{1001x \ {10011, 10010}, 01xxx \ {0101x, 011xx, 01x00}}
{x11x0 \ {01100, x1100, 01110}, x11x1 \ {011x1, 111x1, 111x1}}
{
   x111010010 \ {
   x111010010, 0111010010}, x111110011 \ {
   x111110011, 0111110011, 1111110011, 1111110011}, x11x001xx0 \ {
   x111001x00, x110001x10, x11x001010, x11x0011x0, x11x001x00, 0110001xx0, x110001xx0, 0111001xx0}, x11x101xx1 \ {
   x111101x01, x110101x11, x11x101011, x11x1011x1, 011x101xx1, 111x101xx1, 111x101xx1}}

{01x1x \ {01011, 01x11}, 1x00x \ {1x001, 1x000, 10001}}
{000x1 \ {00011}}
{
   0001101x11 \ {
   0001101011, 0001101x11, 0001101x11}, 000011x001 \ {
   000011x001, 0000110001}}

{00x1x \ {00011, 00110}, 0xx01 \ {0x001, 01101, 01101}}
{x011x \ {00110, x0110}}
{
   x011x00x1x \ {
   x011100x10, x011000x11, x011x00011, x011x00110, 0011000x1x, x011000x1x}}

{110xx \ {11010, 110x1, 110x0}, 10xx0 \ {10000, 10110, 101x0}}
{0x1x0 \ {01110, 011x0}}
{
   0x1x0110x0 \ {
   0x11011000, 0x10011010, 0x1x011010, 0x1x0110x0, 01110110x0, 011x0110x0}, 0x1x010xx0 \ {
   0x11010x00, 0x10010x10, 0x1x010000, 0x1x010110, 0x1x0101x0, 0111010xx0, 011x010xx0}}

{11x0x \ {11100, 1110x, 11001}, 10xx0 \ {101x0, 10110, 10100}, 000xx \ {000x0, 00010, 00000}}
{x0xx0 \ {00110, x00x0, x0x00}}
{
   x0x0011x00 \ {
   x0x0011100, x0x0011100, x000011x00, x0x0011x00}, x0xx010xx0 \ {
   x0x1010x00, x0x0010x10, x0xx0101x0, x0xx010110, x0xx010100, 0011010xx0, x00x010xx0, x0x0010xx0}, x0xx0000x0 \ {
   x0x1000000, x0x0000010, x0xx0000x0, x0xx000010, x0xx000000, 00110000x0, x00x0000x0, x0x00000x0}}

{x00x0 \ {100x0, 10000}, 0x0x1 \ {00001}}
{xx0xx \ {000xx, xx010, 1x010}, x00xx \ {x0000, x00x0, 00011}}
{
   xx0x0x00x0 \ {
   xx010x0000, xx000x0010, xx0x0100x0, xx0x010000, 000x0x00x0, xx010x00x0, 1x010x00x0}, x00x0x00x0 \ {
   x0010x0000, x0000x0010, x00x0100x0, x00x010000, x0000x00x0, x00x0x00x0}, xx0x10x0x1 \ {
   xx0110x001, xx0010x011, xx0x100001, 000x10x0x1}, x00x10x0x1 \ {
   x00110x001, x00010x011, x00x100001, 000110x0x1}}

{xxx01 \ {01001, 00001, 10001}}
{x01xx \ {10100, 0010x, 001x0}, x101x \ {x1010, 01010, 11011}}
{
   x0101xxx01 \ {
   x010101001, x010100001, x010110001, 00101xxx01}}

{100x1 \ {10001}}
{0x1x0 \ {001x0, 01100, 0x100}, x10x1 \ {11001, x1001, x1011}}
{
   x10x1100x1 \ {
   x101110001, x100110011, x10x110001, 11001100x1, x1001100x1, x1011100x1}}

{xx101 \ {1x101, 01101, x1101}, 0xx11 \ {00011, 01111}}
{00xx1 \ {00111, 00x11}, 011x1 \ {01111}}
{
   00x01xx101 \ {
   00x011x101, 00x0101101, 00x01x1101}, 01101xx101 \ {
   011011x101, 0110101101, 01101x1101}, 00x110xx11 \ {
   00x1100011, 00x1101111, 001110xx11, 00x110xx11}, 011110xx11 \ {
   0111100011, 0111101111, 011110xx11}}

{}
{1x100 \ {10100, 11100}, xx01x \ {11011, 10010, xx011}}
{}

{0001x \ {00011, 00010}}
{00xxx \ {00010, 0011x, 0011x}, xx1x1 \ {1x111, xx111, 1x1x1}}
{
   00x1x0001x \ {
   00x1100010, 00x1000011, 00x1x00011, 00x1x00010, 000100001x, 0011x0001x, 0011x0001x}, xx11100011 \ {
   xx11100011, 1x11100011, xx11100011, 1x11100011}}

{xx100 \ {11100, x0100, 0x100}, 00xxx \ {00100, 00000}}
{xxx11 \ {x1x11, x1111, 0xx11}, x110x \ {01101, x1101, 0110x}}
{
   x1100xx100 \ {
   x110011100, x1100x0100, x11000x100, 01100xx100}, xxx1100x11 \ {
   x1x1100x11, x111100x11, 0xx1100x11}, x110x00x0x \ {
   x110100x00, x110000x01, x110x00100, x110x00000, 0110100x0x, x110100x0x, 0110x00x0x}}

{x11x0 \ {01100, 111x0}, x1111 \ {11111, 01111}, xxx00 \ {1xx00, 01100}}
{1xx01 \ {10001, 11101, 1x101}}
{}

{x0100 \ {10100, 00100, 00100}}
{000x0 \ {00000, 00010}}
{
   00000x0100 \ {
   0000010100, 0000000100, 0000000100, 00000x0100}}

{0x0x1 \ {000x1, 0x011, 010x1}}
{1x0x1 \ {100x1, 11011, 1x011}, xx10x \ {x0101, x1100, 11101}}
{
   1x0x10x0x1 \ {
   1x0110x001, 1x0010x011, 1x0x1000x1, 1x0x10x011, 1x0x1010x1, 100x10x0x1, 110110x0x1, 1x0110x0x1}, xx1010x001 \ {
   xx10100001, xx10101001, x01010x001, 111010x001}}

{}
{0x11x \ {0011x, 00110, 00111}, 001x0 \ {00110, 00100, 00100}}
{}

{}
{xxx10 \ {01010, 1xx10}, 0x11x \ {0011x, 00111, 0111x}}
{}

{}
{1101x \ {11011}, 1xx10 \ {1x010, 1x110, 11010}}
{}

{}
{xxx11 \ {1xx11, 0x011, xx011}, 10x0x \ {1000x, 10100, 10001}, 00x1x \ {00x11, 00011, 00010}}
{}

{1x01x \ {11010, 1x011}, 1x0xx \ {1x001, 1x010, 1x0x1}}
{}
{}

{xx00x \ {0x000, 0x00x, 00000}}
{xx010 \ {00010, 0x010, 0x010}, 011xx \ {0110x, 01111, 0111x}}
{
   0110xxx00x \ {
   01101xx000, 01100xx001, 0110x0x000, 0110x0x00x, 0110x00000, 0110xxx00x}}

{xx1x1 \ {x1101, 1x111, 0x101}, xxx00 \ {x1000, x1100, 01x00}}
{1xx01 \ {11x01, 1x101, 11001}, 0x010 \ {01010, 00010}, 10x0x \ {10100, 10x01}}
{
   1xx01xx101 \ {
   1xx01x1101, 1xx010x101, 11x01xx101, 1x101xx101, 11001xx101}, 10x01xx101 \ {
   10x01x1101, 10x010x101, 10x01xx101}, 10x00xxx00 \ {
   10x00x1000, 10x00x1100, 10x0001x00, 10100xxx00}}

{0xx00 \ {01000, 00100, 0x100}}
{x1x01 \ {x1101, 01x01}}
{}

{1xx00 \ {10100, 11100, 10x00}, xx01x \ {1001x, x0011, 00010}}
{01xx0 \ {01100, 01010, 01x00}, 11x1x \ {1111x, 11011, 11010}}
{
   01x001xx00 \ {
   01x0010100, 01x0011100, 01x0010x00, 011001xx00, 01x001xx00}, 01x10xx010 \ {
   01x1010010, 01x1000010, 01010xx010}, 11x1xxx01x \ {
   11x11xx010, 11x10xx011, 11x1x1001x, 11x1xx0011, 11x1x00010, 1111xxx01x, 11011xx01x, 11010xx01x}}

{010x0 \ {01000, 01010, 01010}, xx10x \ {1010x, 0x10x, x110x}, x11xx \ {x110x, x11x0, x1110}}
{x1xx0 \ {011x0, 01010, 01010}}
{
   x1xx0010x0 \ {
   x1x1001000, x1x0001010, x1xx001000, x1xx001010, x1xx001010, 011x0010x0, 01010010x0, 01010010x0}, x1x00xx100 \ {
   x1x0010100, x1x000x100, x1x00x1100, 01100xx100}, x1xx0x11x0 \ {
   x1x10x1100, x1x00x1110, x1xx0x1100, x1xx0x11x0, x1xx0x1110, 011x0x11x0, 01010x11x0, 01010x11x0}}

{x10x0 \ {010x0, 110x0, 11000}, x0x1x \ {00x10, x001x, 00011}}
{xx0x0 \ {x10x0, xx000, 1x010}}
{
   xx0x0x10x0 \ {
   xx010x1000, xx000x1010, xx0x0010x0, xx0x0110x0, xx0x011000, x10x0x10x0, xx000x10x0, 1x010x10x0}, xx010x0x10 \ {
   xx01000x10, xx010x0010, x1010x0x10, 1x010x0x10}}

{xxx11 \ {01011, 10x11, 1x111}, 10xx1 \ {10x11, 101x1}, x00x1 \ {10011, 00011}}
{1x11x \ {10111, 1x111, 10110}, 1xx11 \ {10111, 11111, 1x111}}
{
   1x111xxx11 \ {
   1x11101011, 1x11110x11, 1x1111x111, 10111xxx11, 1x111xxx11}, 1xx11xxx11 \ {
   1xx1101011, 1xx1110x11, 1xx111x111, 10111xxx11, 11111xxx11, 1x111xxx11}, 1x11110x11 \ {
   1x11110x11, 1x11110111, 1011110x11, 1x11110x11}, 1xx1110x11 \ {
   1xx1110x11, 1xx1110111, 1011110x11, 1111110x11, 1x11110x11}, 1x111x0011 \ {
   1x11110011, 1x11100011, 10111x0011, 1x111x0011}, 1xx11x0011 \ {
   1xx1110011, 1xx1100011, 10111x0011, 11111x0011, 1x111x0011}}

{xx1x0 \ {1x110, x0100, xx100}}
{xx0x0 \ {x00x0, x1010, 110x0}}
{
   xx0x0xx1x0 \ {
   xx010xx100, xx000xx110, xx0x01x110, xx0x0x0100, xx0x0xx100, x00x0xx1x0, x1010xx1x0, 110x0xx1x0}}

{1xxx1 \ {10x11, 10111, 10x01}, 1110x \ {11101, 11100, 11100}}
{xx010 \ {x1010, 01010}}
{}

{}
{11x01 \ {11101, 11001, 11001}}
{}

{1xx0x \ {1x00x, 1110x, 11000}}
{}
{}

{xx10x \ {x110x, 00100, 0010x}, 11x0x \ {11000, 11100, 1100x}}
{01xxx \ {010xx, 01010, 0111x}}
{
   01x0xxx10x \ {
   01x01xx100, 01x00xx101, 01x0xx110x, 01x0x00100, 01x0x0010x, 0100xxx10x}, 01x0x11x0x \ {
   01x0111x00, 01x0011x01, 01x0x11000, 01x0x11100, 01x0x1100x, 0100x11x0x}}

{}
{0x0x0 \ {0x000, 00000, 010x0}, x0x00 \ {00x00, 10x00, 10x00}, xxxx0 \ {x0x10, 01110, 100x0}}
{}

{01x00 \ {01100}}
{xxx1x \ {x1x1x, xxx11, 00x10}}
{}

{0x1xx \ {0x11x, 0x110, 0x111}, 1xxx1 \ {11x11, 11x01, 10101}}
{10xxx \ {10111, 10x00, 10x01}, x10xx \ {1100x, x1011, 010xx}, 011x1 \ {01101}}
{
   10xxx0x1xx \ {
   10xx10x1x0, 10xx00x1x1, 10x1x0x10x, 10x0x0x11x, 10xxx0x11x, 10xxx0x110, 10xxx0x111, 101110x1xx, 10x000x1xx, 10x010x1xx}, x10xx0x1xx \ {
   x10x10x1x0, x10x00x1x1, x101x0x10x, x100x0x11x, x10xx0x11x, x10xx0x110, x10xx0x111, 1100x0x1xx, x10110x1xx, 010xx0x1xx}, 011x10x1x1 \ {
   011110x101, 011010x111, 011x10x111, 011x10x111, 011010x1x1}, 10xx11xxx1 \ {
   10x111xx01, 10x011xx11, 10xx111x11, 10xx111x01, 10xx110101, 101111xxx1, 10x011xxx1}, x10x11xxx1 \ {
   x10111xx01, x10011xx11, x10x111x11, x10x111x01, x10x110101, 110011xxx1, x10111xxx1, 010x11xxx1}, 011x11xxx1 \ {
   011111xx01, 011011xx11, 011x111x11, 011x111x01, 011x110101, 011011xxx1}}

{x1111 \ {11111, 01111}, 1x101 \ {10101}}
{1xx11 \ {10x11, 10011, 1x011}, x11x1 \ {01111, 111x1, 11101}, 10x0x \ {1010x, 10000, 10x01}}
{
   1xx11x1111 \ {
   1xx1111111, 1xx1101111, 10x11x1111, 10011x1111, 1x011x1111}, x1111x1111 \ {
   x111111111, x111101111, 01111x1111, 11111x1111}, x11011x101 \ {
   x110110101, 111011x101, 111011x101}, 10x011x101 \ {
   10x0110101, 101011x101, 10x011x101}}

{0xx0x \ {01101, 01x0x, 01x00}}
{x00x1 \ {00001, 000x1, x0011}, x01x0 \ {00100, x0110}}
{
   x00010xx01 \ {
   x000101101, x000101x01, 000010xx01, 000010xx01}, x01000xx00 \ {
   x010001x00, x010001x00, 001000xx00}}

{1x1xx \ {111x0, 10101, 11111}}
{x1xx1 \ {011x1, 01x11, x1x01}, x1x1x \ {01110, 11111, 0101x}, 1xxxx \ {1001x, 10010, 11x01}}
{
   x1xx11x1x1 \ {
   x1x111x101, x1x011x111, x1xx110101, x1xx111111, 011x11x1x1, 01x111x1x1, x1x011x1x1}, x1x1x1x11x \ {
   x1x111x110, x1x101x111, x1x1x11110, x1x1x11111, 011101x11x, 111111x11x, 0101x1x11x}, 1xxxx1x1xx \ {
   1xxx11x1x0, 1xxx01x1x1, 1xx1x1x10x, 1xx0x1x11x, 1xxxx111x0, 1xxxx10101, 1xxxx11111, 1001x1x1xx, 100101x1xx, 11x011x1xx}}

{1xxx1 \ {10111, 1x101, 1xx01}}
{110x1 \ {11011}, x0x01 \ {10101, 00001, 00001}}
{
   110x11xxx1 \ {
   110111xx01, 110011xx11, 110x110111, 110x11x101, 110x11xx01, 110111xxx1}, x0x011xx01 \ {
   x0x011x101, x0x011xx01, 101011xx01, 000011xx01, 000011xx01}}

{}
{0x100 \ {01100}, xx11x \ {11110, 0x110, xx111}}
{}

{x110x \ {01100, x1101, 1110x}}
{xxx0x \ {0010x, 0x001, 01100}}
{
   xxx0xx110x \ {
   xxx01x1100, xxx00x1101, xxx0x01100, xxx0xx1101, xxx0x1110x, 0010xx110x, 0x001x110x, 01100x110x}}

{xxx0x \ {0x101, 11x01, x0x0x}, 1xx00 \ {11000, 10000, 1x100}, x1010 \ {11010}}
{}
{}

{}
{10x0x \ {10100, 1000x, 10x01}}
{}

{10x0x \ {10100, 1010x}}
{x1xx1 \ {x1x11, 01111, x1111}, 00x11 \ {00011}}
{
   x1x0110x01 \ {
   x1x0110101}}

{0xxx1 \ {01x01, 000x1, 01x11}, xx11x \ {x1110, 10111, 1x11x}}
{1x11x \ {1x111, 11110, 1111x}, 110x0 \ {11010}}
{
   1x1110xx11 \ {
   1x11100011, 1x11101x11, 1x1110xx11, 111110xx11}, 1x11xxx11x \ {
   1x111xx110, 1x110xx111, 1x11xx1110, 1x11x10111, 1x11x1x11x, 1x111xx11x, 11110xx11x, 1111xxx11x}, 11010xx110 \ {
   11010x1110, 110101x110, 11010xx110}}

{xx0x0 \ {01010, 110x0, 000x0}, x1x0x \ {01x01, 01x00, x1000}, 10xx1 \ {10001, 10101, 10101}}
{001x0 \ {00110, 00100}}
{
   001x0xx0x0 \ {
   00110xx000, 00100xx010, 001x001010, 001x0110x0, 001x0000x0, 00110xx0x0, 00100xx0x0}, 00100x1x00 \ {
   0010001x00, 00100x1000, 00100x1x00}}

{}
{00xx1 \ {00001, 00x01, 00101}, x0xx1 \ {00xx1, x0x01}}
{}

{x11x1 \ {01101, 11111}}
{10xx1 \ {10101, 10x01, 10001}, 101x1 \ {10111, 10101}, x0x11 \ {x0111, x0011, x0011}}
{
   10xx1x11x1 \ {
   10x11x1101, 10x01x1111, 10xx101101, 10xx111111, 10101x11x1, 10x01x11x1, 10001x11x1}, 101x1x11x1 \ {
   10111x1101, 10101x1111, 101x101101, 101x111111, 10111x11x1, 10101x11x1}, x0x11x1111 \ {
   x0x1111111, x0111x1111, x0011x1111, x0011x1111}}

{1x1xx \ {111xx, 101x0, 1x11x}, x101x \ {0101x, x1010, 11010}, 0xxx0 \ {0xx10, 00000, 00x00}}
{10x11 \ {10011}, x010x \ {10100, 0010x}, 00xxx \ {00x01, 00xx1, 00101}}
{
   10x111x111 \ {
   10x1111111, 10x111x111, 100111x111}, x010x1x10x \ {
   x01011x100, x01001x101, x010x1110x, x010x10100, 101001x10x, 0010x1x10x}, 00xxx1x1xx \ {
   00xx11x1x0, 00xx01x1x1, 00x1x1x10x, 00x0x1x11x, 00xxx111xx, 00xxx101x0, 00xxx1x11x, 00x011x1xx, 00xx11x1xx, 001011x1xx}, 10x11x1011 \ {
   10x1101011, 10011x1011}, 00x1xx101x \ {
   00x11x1010, 00x10x1011, 00x1x0101x, 00x1xx1010, 00x1x11010, 00x11x101x}, x01000xx00 \ {
   x010000000, x010000x00, 101000xx00, 001000xx00}, 00xx00xxx0 \ {
   00x100xx00, 00x000xx10, 00xx00xx10, 00xx000000, 00xx000x00}}

{xxx1x \ {01x11, 00010, x0x1x}}
{x1110 \ {01110, 11110}}
{
   x1110xxx10 \ {
   x111000010, x1110x0x10, 01110xxx10, 11110xxx10}}

{x0x10 \ {10110, 00010, 10010}, x001x \ {x0010, 00011, 10010}, 0xx1x \ {0011x, 0xx10, 00010}}
{11x0x \ {11x00, 11100}, 01x1x \ {01011, 01010, 0111x}}
{
   01x10x0x10 \ {
   01x1010110, 01x1000010, 01x1010010, 01010x0x10, 01110x0x10}, 01x1xx001x \ {
   01x11x0010, 01x10x0011, 01x1xx0010, 01x1x00011, 01x1x10010, 01011x001x, 01010x001x, 0111xx001x}, 01x1x0xx1x \ {
   01x110xx10, 01x100xx11, 01x1x0011x, 01x1x0xx10, 01x1x00010, 010110xx1x, 010100xx1x, 0111x0xx1x}}

{}
{x0x01 \ {10x01, 00x01, x0101}, 01xx0 \ {01000, 010x0, 01110}}
{}

{0x1x0 \ {01100, 00100, 01110}, xxx11 \ {01111, x1x11, 0x011}}
{}
{}

{}
{}
{}

{0xx1x \ {01010, 0xx11, 01110}, 0x1xx \ {01110, 001x0, 0x110}}
{010x0 \ {01010}}
{
   010100xx10 \ {
   0101001010, 0101001110, 010100xx10}, 010x00x1x0 \ {
   010100x100, 010000x110, 010x001110, 010x0001x0, 010x00x110, 010100x1x0}}

{11xxx \ {111x1, 11101}}
{}
{}

{xx000 \ {01000, x0000, 10000}}
{x000x \ {00001, x0001, x0001}}
{
   x0000xx000 \ {
   x000001000, x0000x0000, x000010000}}

{00x1x \ {0001x, 00x11, 0011x}, xxx10 \ {0xx10, 0x010, 1xx10}}
{0xxx1 \ {010x1, 01111, 00xx1}, 1xx01 \ {11x01, 10101, 10001}, 00x1x \ {00111, 0001x, 00x10}}
{
   0xx1100x11 \ {
   0xx1100011, 0xx1100x11, 0xx1100111, 0101100x11, 0111100x11, 00x1100x11}, 00x1x00x1x \ {
   00x1100x10, 00x1000x11, 00x1x0001x, 00x1x00x11, 00x1x0011x, 0011100x1x, 0001x00x1x, 00x1000x1x}, 00x10xxx10 \ {
   00x100xx10, 00x100x010, 00x101xx10, 00010xxx10, 00x10xxx10}}

{1x1xx \ {10101, 1011x, 1x1x0}, 001xx \ {0010x, 0011x, 001x0}}
{01xxx \ {010x1, 011x1}, 10x11 \ {10011, 10111, 10111}}
{
   01xxx1x1xx \ {
   01xx11x1x0, 01xx01x1x1, 01x1x1x10x, 01x0x1x11x, 01xxx10101, 01xxx1011x, 01xxx1x1x0, 010x11x1xx, 011x11x1xx}, 10x111x111 \ {
   10x1110111, 100111x111, 101111x111, 101111x111}, 01xxx001xx \ {
   01xx1001x0, 01xx0001x1, 01x1x0010x, 01x0x0011x, 01xxx0010x, 01xxx0011x, 01xxx001x0, 010x1001xx, 011x1001xx}, 10x1100111 \ {
   10x1100111, 1001100111, 1011100111, 1011100111}}

{010xx \ {01011, 01010, 0100x}, x1xx0 \ {11010, 01010, x1000}, 1x110 \ {11110, 10110}}
{}
{}

{0x100 \ {01100}, 0x100 \ {01100, 00100}, 00x11 \ {00111, 00011}}
{101xx \ {10110, 10100, 10111}, xxx0x \ {1x101, x1001, x010x}, x10x0 \ {01000, 110x0, 010x0}}
{
   101000x100 \ {
   1010001100, 101000x100}, xxx000x100 \ {
   xxx0001100, x01000x100}, x10000x100 \ {
   x100001100, 010000x100, 110000x100, 010000x100}, 1011100x11 \ {
   1011100111, 1011100011, 1011100x11}}

{}
{0xx00 \ {00x00, 00100}, x01x1 \ {101x1, 10101, 001x1}}
{}

{1xx11 \ {11011, 10x11, 11111}}
{10x01 \ {10101, 10001}, xxx1x \ {10110, 00x11, 1x111}}
{
   xxx111xx11 \ {
   xxx1111011, xxx1110x11, xxx1111111, 00x111xx11, 1x1111xx11}}

{0x000 \ {01000, 00000}, 0x1x0 \ {0x110, 0x100, 01100}}
{}
{}

{xx0x1 \ {00011, 11011, 000x1}}
{xxx10 \ {11010, 0xx10, 0xx10}, 1x0x1 \ {11011, 110x1, 10001}, 0011x \ {00110, 00111}}
{
   1x0x1xx0x1 \ {
   1x011xx001, 1x001xx011, 1x0x100011, 1x0x111011, 1x0x1000x1, 11011xx0x1, 110x1xx0x1, 10001xx0x1}, 00111xx011 \ {
   0011100011, 0011111011, 0011100011, 00111xx011}}

{x0xxx \ {10011, x001x, x00x0}}
{1x010 \ {11010, 10010, 10010}, x1x1x \ {11010, x1110, x1110}}
{
   1x010x0x10 \ {
   1x010x0010, 1x010x0010, 11010x0x10, 10010x0x10, 10010x0x10}, x1x1xx0x1x \ {
   x1x11x0x10, x1x10x0x11, x1x1x10011, x1x1xx001x, x1x1xx0010, 11010x0x1x, x1110x0x1x, x1110x0x1x}}

{10xx1 \ {100x1, 10101, 10001}, 11x0x \ {11001, 11000, 1110x}, x111x \ {x1111, 11110}}
{0x1x0 \ {01100, 0x110, 011x0}, x10x1 \ {11011, 010x1, x1001}}
{
   x10x110xx1 \ {
   x101110x01, x100110x11, x10x1100x1, x10x110101, x10x110001, 1101110xx1, 010x110xx1, x100110xx1}, 0x10011x00 \ {
   0x10011000, 0x10011100, 0110011x00, 0110011x00}, x100111x01 \ {
   x100111001, x100111101, 0100111x01, x100111x01}, 0x110x1110 \ {
   0x11011110, 0x110x1110, 01110x1110}, x1011x1111 \ {
   x1011x1111, 11011x1111, 01011x1111}}

{1x1xx \ {111xx, 1x1x1, 10111}}
{xxxxx \ {x0x10, 001x0, x01x0}}
{
   xxxxx1x1xx \ {
   xxxx11x1x0, xxxx01x1x1, xxx1x1x10x, xxx0x1x11x, xxxxx111xx, xxxxx1x1x1, xxxxx10111, x0x101x1xx, 001x01x1xx, x01x01x1xx}}

{0xx10 \ {01010, 0x110}}
{xxxxx \ {01x0x, 111x0, 11000}}
{
   xxx100xx10 \ {
   xxx1001010, xxx100x110, 111100xx10}}

{100xx \ {10011, 1001x, 100x1}, x01x0 \ {x0100, 001x0, 00100}}
{1x10x \ {11100, 10100, 1010x}, x111x \ {x1111, 1111x, 01110}, x1x11 \ {01011, x1011, 11011}}
{
   1x10x1000x \ {
   1x10110000, 1x10010001, 1x10x10001, 111001000x, 101001000x, 1010x1000x}, x111x1001x \ {
   x111110010, x111010011, x111x10011, x111x1001x, x111x10011, x11111001x, 1111x1001x, 011101001x}, x1x1110011 \ {
   x1x1110011, x1x1110011, x1x1110011, 0101110011, x101110011, 1101110011}, 1x100x0100 \ {
   1x100x0100, 1x10000100, 1x10000100, 11100x0100, 10100x0100, 10100x0100}, x1110x0110 \ {
   x111000110, 11110x0110, 01110x0110}}

{xxx1x \ {11x1x, 00x11, 0x110}, 100xx \ {10010, 10001, 10000}}
{xxxx0 \ {11100, 11x00, 01xx0}, xxx0x \ {01x00, 1010x, x1000}}
{
   xxx10xxx10 \ {
   xxx1011x10, xxx100x110, 01x10xxx10}, xxxx0100x0 \ {
   xxx1010000, xxx0010010, xxxx010010, xxxx010000, 11100100x0, 11x00100x0, 01xx0100x0}, xxx0x1000x \ {
   xxx0110000, xxx0010001, xxx0x10001, xxx0x10000, 01x001000x, 1010x1000x, x10001000x}}

{}
{1x10x \ {11100, 1010x, 1010x}, 10x11 \ {10111}}
{}

{x01x1 \ {x0111, 101x1, 10101}, 1xxx0 \ {1x000, 1xx00, 11xx0}}
{0xxx0 \ {011x0, 0x0x0, 00000}}
{
   0xxx01xxx0 \ {
   0xx101xx00, 0xx001xx10, 0xxx01x000, 0xxx01xx00, 0xxx011xx0, 011x01xxx0, 0x0x01xxx0, 000001xxx0}}

{0011x \ {00111, 00110}, 11x0x \ {1100x, 11x00, 11x00}}
{1110x \ {11100, 11101, 11101}, 1x0xx \ {110x1, 1x000, 1x000}}
{
   1x01x0011x \ {
   1x01100110, 1x01000111, 1x01x00111, 1x01x00110, 110110011x}, 1110x11x0x \ {
   1110111x00, 1110011x01, 1110x1100x, 1110x11x00, 1110x11x00, 1110011x0x, 1110111x0x, 1110111x0x}, 1x00x11x0x \ {
   1x00111x00, 1x00011x01, 1x00x1100x, 1x00x11x00, 1x00x11x00, 1100111x0x, 1x00011x0x, 1x00011x0x}}

{1xx0x \ {11101, 10000, 10000}, 00x01 \ {00001, 00101}}
{0x11x \ {0x110, 0111x, 00110}}
{}

{}
{x111x \ {01111, 11111}, 0x0x0 \ {000x0, 010x0, 01000}, xx110 \ {0x110, 11110, 00110}}
{}

{01x0x \ {0100x, 01101, 01101}}
{101x0 \ {10110, 10100}}
{
   1010001x00 \ {
   1010001000, 1010001x00}}

{xx0xx \ {x100x, x1010, 0x000}}
{1xx1x \ {10x10, 11010, 1xx10}, 11x00 \ {11100, 11000, 11000}, 0x01x \ {01011, 00010, 01010}}
{
   1xx1xxx01x \ {
   1xx11xx010, 1xx10xx011, 1xx1xx1010, 10x10xx01x, 11010xx01x, 1xx10xx01x}, 11x00xx000 \ {
   11x00x1000, 11x000x000, 11100xx000, 11000xx000, 11000xx000}, 0x01xxx01x \ {
   0x011xx010, 0x010xx011, 0x01xx1010, 01011xx01x, 00010xx01x, 01010xx01x}}

{x100x \ {01000, x1000, 01001}, x0x11 \ {00011, x0111}}
{0111x \ {01111, 01110, 01110}, 0x01x \ {01010, 0001x, 0101x}}
{
   01111x0x11 \ {
   0111100011, 01111x0111, 01111x0x11}, 0x011x0x11 \ {
   0x01100011, 0x011x0111, 00011x0x11, 01011x0x11}}

{x1x1x \ {01x1x, 0111x, 1101x}}
{}
{}

{0xxx0 \ {0x0x0, 01010, 0x010}}
{xxx01 \ {10x01, 1x101, 0xx01}, 00x1x \ {00110, 00011, 0011x}}
{
   00x100xx10 \ {
   00x100x010, 00x1001010, 00x100x010, 001100xx10, 001100xx10}}

{0xxx0 \ {0x000, 000x0, 00xx0}, xx1xx \ {1x10x, 01111, 01111}}
{x1xx0 \ {110x0, x10x0, x1000}, x0xx0 \ {00100, 00000, 00110}}
{
   x1xx00xxx0 \ {
   x1x100xx00, x1x000xx10, x1xx00x000, x1xx0000x0, x1xx000xx0, 110x00xxx0, x10x00xxx0, x10000xxx0}, x0xx00xxx0 \ {
   x0x100xx00, x0x000xx10, x0xx00x000, x0xx0000x0, x0xx000xx0, 001000xxx0, 000000xxx0, 001100xxx0}, x1xx0xx1x0 \ {
   x1x10xx100, x1x00xx110, x1xx01x100, 110x0xx1x0, x10x0xx1x0, x1000xx1x0}, x0xx0xx1x0 \ {
   x0x10xx100, x0x00xx110, x0xx01x100, 00100xx1x0, 00000xx1x0, 00110xx1x0}}

{x0x0x \ {10101, 10x00, 00x00}, x1011 \ {11011, 01011}}
{11x00 \ {11000}, x11x0 \ {x1100, 01100, 01110}, 1x100 \ {10100}}
{
   11x00x0x00 \ {
   11x0010x00, 11x0000x00, 11000x0x00}, x1100x0x00 \ {
   x110010x00, x110000x00, x1100x0x00, 01100x0x00}, 1x100x0x00 \ {
   1x10010x00, 1x10000x00, 10100x0x00}}

{001xx \ {00101, 001x0, 00111}}
{01x0x \ {01000, 0110x, 01x01}, 100x0 \ {10000}}
{
   01x0x0010x \ {
   01x0100100, 01x0000101, 01x0x00101, 01x0x00100, 010000010x, 0110x0010x, 01x010010x}, 100x0001x0 \ {
   1001000100, 1000000110, 100x0001x0, 10000001x0}}

{110xx \ {110x1, 1101x}, 00xx1 \ {00001, 00x11}}
{11xxx \ {11101, 11110, 111x0}, x01x1 \ {10101, 001x1, 101x1}}
{
   11xxx110xx \ {
   11xx1110x0, 11xx0110x1, 11x1x1100x, 11x0x1101x, 11xxx110x1, 11xxx1101x, 11101110xx, 11110110xx, 111x0110xx}, x01x1110x1 \ {
   x011111001, x010111011, x01x1110x1, x01x111011, 10101110x1, 001x1110x1, 101x1110x1}, 11xx100xx1 \ {
   11x1100x01, 11x0100x11, 11xx100001, 11xx100x11, 1110100xx1}, x01x100xx1 \ {
   x011100x01, x010100x11, x01x100001, x01x100x11, 1010100xx1, 001x100xx1, 101x100xx1}}

{x01x0 \ {00100, 00110, 10110}}
{x11x0 \ {x1110, 01110}}
{
   x11x0x01x0 \ {
   x1110x0100, x1100x0110, x11x000100, x11x000110, x11x010110, x1110x01x0, 01110x01x0}}

{xx10x \ {11100, 10100, 1110x}, 1110x \ {11100, 11101}, 1110x \ {11101, 11100, 11100}}
{x1x10 \ {11x10, 11010, x1110}}
{}

{0x010 \ {00010}, 1x0x1 \ {10001, 110x1, 11011}}
{x101x \ {x1011, 01011, 11011}, x110x \ {1110x, 01101}}
{
   x10100x010 \ {
   x101000010}, x10111x011 \ {
   x101111011, x101111011, x10111x011, 010111x011, 110111x011}, x11011x001 \ {
   x110110001, x110111001, 111011x001, 011011x001}}

{01x1x \ {0111x, 01010, 01110}}
{}
{}

{00xxx \ {00x1x, 0000x}}
{x00x1 \ {00011, 00001}, x00x1 \ {000x1, 10011, 00001}}
{
   x00x100xx1 \ {
   x001100x01, x000100x11, x00x100x11, x00x100001, 0001100xx1, 0000100xx1}}

{1x101 \ {10101, 11101}}
{10xx1 \ {10111, 10001, 101x1}}
{
   10x011x101 \ {
   10x0110101, 10x0111101, 100011x101, 101011x101}}

{1x1xx \ {11100, 111xx, 10111}}
{xx0x1 \ {x0001, 110x1, x10x1}, 1x110 \ {11110}}
{
   xx0x11x1x1 \ {
   xx0111x101, xx0011x111, xx0x1111x1, xx0x110111, x00011x1x1, 110x11x1x1, x10x11x1x1}, 1x1101x110 \ {
   1x11011110, 111101x110}}

{xx0xx \ {110xx, x000x, 01010}}
{1x10x \ {1x101, 1010x, 1x100}}
{
   1x10xxx00x \ {
   1x101xx000, 1x100xx001, 1x10x1100x, 1x10xx000x, 1x101xx00x, 1010xxx00x, 1x100xx00x}}

{x111x \ {0111x, x1111, 01111}}
{xx1x0 \ {10100, 11100, 111x0}, xx0xx \ {010x1, 1001x, 10010}}
{
   xx110x1110 \ {
   xx11001110, 11110x1110}, xx01xx111x \ {
   xx011x1110, xx010x1111, xx01x0111x, xx01xx1111, xx01x01111, 01011x111x, 1001xx111x, 10010x111x}}

{1x10x \ {1110x, 1x100, 1010x}, xx0xx \ {01000, x10x0, x0011}}
{}
{}

{110x1 \ {11001, 11011, 11011}, 0xx10 \ {00110, 01110, 00x10}, 0x1x0 \ {011x0, 001x0, 00100}}
{1xx00 \ {10100, 11100, 11000}, xx10x \ {0x10x}}
{
   xx10111001 \ {
   xx10111001, 0x10111001}, 1xx000x100 \ {
   1xx0001100, 1xx0000100, 1xx0000100, 101000x100, 111000x100, 110000x100}, xx1000x100 \ {
   xx10001100, xx10000100, xx10000100, 0x1000x100}}

{xx011 \ {01011, x0011, 10011}}
{1xx11 \ {10x11, 11011, 11011}}
{
   1xx11xx011 \ {
   1xx1101011, 1xx11x0011, 1xx1110011, 10x11xx011, 11011xx011, 11011xx011}}

{xx110 \ {x0110, 01110, 11110}}
{00x01 \ {00101, 00001}}
{}

{x0xxx \ {10011, 001xx, 00xx0}}
{1xx0x \ {1000x, 1x000, 11x0x}}
{
   1xx0xx0x0x \ {
   1xx01x0x00, 1xx00x0x01, 1xx0x0010x, 1xx0x00x00, 1000xx0x0x, 1x000x0x0x, 11x0xx0x0x}}

{10xx1 \ {10101, 101x1}, 1010x \ {10100, 10101, 10101}}
{10xx0 \ {10x00, 10010, 10110}}
{
   10x0010100 \ {
   10x0010100, 10x0010100}}

{xxx1x \ {0xx1x, 10x1x, x0x1x}, 1xxx1 \ {1x111, 11x11, 11xx1}}
{01x1x \ {01110, 0111x, 01010}}
{
   01x1xxxx1x \ {
   01x11xxx10, 01x10xxx11, 01x1x0xx1x, 01x1x10x1x, 01x1xx0x1x, 01110xxx1x, 0111xxxx1x, 01010xxx1x}, 01x111xx11 \ {
   01x111x111, 01x1111x11, 01x1111x11, 011111xx11}}

{xx110 \ {x1110, 1x110, 00110}, 10xx0 \ {100x0, 10100, 10110}}
{x01xx \ {10111, 00101, x0110}}
{
   x0110xx110 \ {
   x0110x1110, x01101x110, x011000110, x0110xx110}, x01x010xx0 \ {
   x011010x00, x010010x10, x01x0100x0, x01x010100, x01x010110, x011010xx0}}

{0x10x \ {00101, 01101, 00100}, x011x \ {00111, x0110, 1011x}}
{0xxx0 \ {01000, 01xx0, 0x000}}
{
   0xx000x100 \ {
   0xx0000100, 010000x100, 01x000x100, 0x0000x100}, 0xx10x0110 \ {
   0xx10x0110, 0xx1010110, 01x10x0110}}

{xxx11 \ {00011, x0111, 1xx11}}
{x1x00 \ {01000}, x1xx1 \ {x10x1, 01111}}
{
   x1x11xxx11 \ {
   x1x1100011, x1x11x0111, x1x111xx11, x1011xxx11, 01111xxx11}}

{}
{111xx \ {111x1, 11111, 11110}}
{}

{xx0x1 \ {010x1, 11001, 000x1}, x11x0 \ {111x0, 11100, 01110}}
{00x1x \ {00x10, 00110, 00011}, 0xxx1 \ {01xx1, 0x111, 00001}}
{
   00x11xx011 \ {
   00x1101011, 00x1100011, 00011xx011}, 0xxx1xx0x1 \ {
   0xx11xx001, 0xx01xx011, 0xxx1010x1, 0xxx111001, 0xxx1000x1, 01xx1xx0x1, 0x111xx0x1, 00001xx0x1}, 00x10x1110 \ {
   00x1011110, 00x1001110, 00x10x1110, 00110x1110}}

{x1x01 \ {11101, 11001, x1001}, 1xxx0 \ {10100, 11xx0}}
{00xxx \ {000xx, 00xx1}, x100x \ {01000, x1001}}
{
   00x01x1x01 \ {
   00x0111101, 00x0111001, 00x01x1001, 00001x1x01, 00x01x1x01}, x1001x1x01 \ {
   x100111101, x100111001, x1001x1001, x1001x1x01}, 00xx01xxx0 \ {
   00x101xx00, 00x001xx10, 00xx010100, 00xx011xx0, 000x01xxx0}, x10001xx00 \ {
   x100010100, x100011x00, 010001xx00}}

{xx01x \ {00010, x001x, 11011}}
{10xx1 \ {101x1, 10101, 10111}, 1x11x \ {11111, 10111}}
{
   10x11xx011 \ {
   10x11x0011, 10x1111011, 10111xx011, 10111xx011}, 1x11xxx01x \ {
   1x111xx010, 1x110xx011, 1x11x00010, 1x11xx001x, 1x11x11011, 11111xx01x, 10111xx01x}}

{01x1x \ {0101x, 01010, 01111}, 10x0x \ {10000, 10101, 10001}}
{}
{}

{}
{xx01x \ {00010, 11010, 1x011}}
{}

{x1001 \ {11001, 01001}, xx100 \ {11100, 0x100, 01100}}
{x010x \ {10100, x0100, 10101}}
{
   x0101x1001 \ {
   x010111001, x010101001, 10101x1001}, x0100xx100 \ {
   x010011100, x01000x100, x010001100, 10100xx100, x0100xx100}}

{}
{x110x \ {01101, 0110x, 01100}, 11x0x \ {11101, 1100x}, xx10x \ {x010x, 1x100, x0100}}
{}

{0011x \ {00111}, x1x0x \ {01x0x, 01001, 01000}}
{110x0 \ {11010, 11000, 11000}, x1xx1 \ {11xx1, 01x01, 11001}, x1x01 \ {01001, x1101}}
{
   1101000110 \ {
   1101000110}, x1x1100111 \ {
   x1x1100111, 11x1100111}, 11000x1x00 \ {
   1100001x00, 1100001000, 11000x1x00, 11000x1x00}, x1x01x1x01 \ {
   x1x0101x01, x1x0101001, 11x01x1x01, 01x01x1x01, 11001x1x01}, x1x01x1x01 \ {
   x1x0101x01, x1x0101001, 01001x1x01, x1101x1x01}}

{x0xx1 \ {00x11, 00xx1, 10101}, 1xx11 \ {11011, 11x11, 11x11}}
{}
{}

{110xx \ {11000, 1101x}}
{xx1xx \ {001x1, 0x11x, 1x100}, 0x1xx \ {0x111, 0x10x, 01100}, 00xx1 \ {00x11, 00111, 00011}}
{
   xx1xx110xx \ {
   xx1x1110x0, xx1x0110x1, xx11x1100x, xx10x1101x, xx1xx11000, xx1xx1101x, 001x1110xx, 0x11x110xx, 1x100110xx}, 0x1xx110xx \ {
   0x1x1110x0, 0x1x0110x1, 0x11x1100x, 0x10x1101x, 0x1xx11000, 0x1xx1101x, 0x111110xx, 0x10x110xx, 01100110xx}, 00xx1110x1 \ {
   00x1111001, 00x0111011, 00xx111011, 00x11110x1, 00111110x1, 00011110x1}}

{x1x0x \ {11x01, x1000, x110x}, x010x \ {10100, x0100, 00101}, 01xxx \ {01011, 01x11, 0111x}}
{101xx \ {101x1, 1010x, 10110}, 11x1x \ {1101x, 11011}}
{
   1010xx1x0x \ {
   10101x1x00, 10100x1x01, 1010x11x01, 1010xx1000, 1010xx110x, 10101x1x0x, 1010xx1x0x}, 1010xx010x \ {
   10101x0100, 10100x0101, 1010x10100, 1010xx0100, 1010x00101, 10101x010x, 1010xx010x}, 101xx01xxx \ {
   101x101xx0, 101x001xx1, 1011x01x0x, 1010x01x1x, 101xx01011, 101xx01x11, 101xx0111x, 101x101xxx, 1010x01xxx, 1011001xxx}, 11x1x01x1x \ {
   11x1101x10, 11x1001x11, 11x1x01011, 11x1x01x11, 11x1x0111x, 1101x01x1x, 1101101x1x}}

{10x00 \ {10100, 10000}}
{x01xx \ {10101, 00111, 0011x}}
{
   x010010x00 \ {
   x010010100, x010010000}}

{10xxx \ {10111, 10001, 10x10}}
{x1111 \ {01111, 11111}}
{
   x111110x11 \ {
   x111110111, 0111110x11, 1111110x11}}

{1x000 \ {11000, 10000, 10000}}
{00x0x \ {0010x, 0000x, 0000x}}
{
   00x001x000 \ {
   00x0011000, 00x0010000, 00x0010000, 001001x000, 000001x000, 000001x000}}

{}
{xxx1x \ {01011, x0x11, 1x01x}, 0x10x \ {0110x, 0x100, 0010x}, 1x01x \ {1101x, 11010}}
{}

{x0x00 \ {00100, 10x00, x0000}, x01x1 \ {00101, 10101, 00111}}
{00x0x \ {0000x, 0010x}, 1x0x1 \ {10001, 1x001}}
{
   00x00x0x00 \ {
   00x0000100, 00x0010x00, 00x00x0000, 00000x0x00, 00100x0x00}, 00x01x0101 \ {
   00x0100101, 00x0110101, 00001x0101, 00101x0101}, 1x0x1x01x1 \ {
   1x011x0101, 1x001x0111, 1x0x100101, 1x0x110101, 1x0x100111, 10001x01x1, 1x001x01x1}}

{00xx1 \ {000x1, 00001}}
{x1100 \ {11100}}
{}

{1x10x \ {1x100, 10100, 1x101}, x1xx0 \ {01x10, x10x0, x1000}}
{xx00x \ {0100x, xx001, x100x}}
{
   xx00x1x10x \ {
   xx0011x100, xx0001x101, xx00x1x100, xx00x10100, xx00x1x101, 0100x1x10x, xx0011x10x, x100x1x10x}, xx000x1x00 \ {
   xx000x1000, xx000x1000, 01000x1x00, x1000x1x00}}

{}
{00x0x \ {00100, 00x00, 00x00}, x0x11 \ {x0011, 00111, 10011}}
{}

{x001x \ {00010, 10010, 00011}}
{xxxxx \ {x0010, 11x11, 1xx00}, xxx10 \ {1x010, x1110, 00110}}
{
   xxx1xx001x \ {
   xxx11x0010, xxx10x0011, xxx1x00010, xxx1x10010, xxx1x00011, x0010x001x, 11x11x001x}, xxx10x0010 \ {
   xxx1000010, xxx1010010, 1x010x0010, x1110x0010, 00110x0010}}

{xxx00 \ {x0x00, x1100, x1000}}
{xx1x1 \ {11101, 00111, 101x1}, x1x11 \ {11x11, 01x11}}
{}

{0110x \ {01100, 01101}}
{}
{}

{0x101 \ {01101}, 10x01 \ {10001, 10101}}
{01x1x \ {0111x, 01x11, 01111}}
{}

{xx0x1 \ {000x1, 10011}, 111xx \ {11101, 11111, 1111x}, x0x00 \ {00100, 10x00, 00000}}
{00x1x \ {00111, 0011x}}
{
   00x11xx011 \ {
   00x1100011, 00x1110011, 00111xx011, 00111xx011}, 00x1x1111x \ {
   00x1111110, 00x1011111, 00x1x11111, 00x1x1111x, 001111111x, 0011x1111x}}

{x1x10 \ {x1110, 11110, x1010}, x11x0 \ {01100, 01110}}
{0xx10 \ {0x110, 00x10, 00x10}}
{
   0xx10x1x10 \ {
   0xx10x1110, 0xx1011110, 0xx10x1010, 0x110x1x10, 00x10x1x10, 00x10x1x10}, 0xx10x1110 \ {
   0xx1001110, 0x110x1110, 00x10x1110, 00x10x1110}}

{x110x \ {11100, x1100, x1101}}
{1xx1x \ {10010, 1x011, 1x01x}}
{}

{0100x \ {01000, 01001, 01001}, 1x0xx \ {1000x, 1101x, 110x1}}
{x110x \ {11101, 0110x}, 11xxx \ {11x10, 11x11, 11011}}
{
   x110x0100x \ {
   x110101000, x110001001, x110x01000, x110x01001, x110x01001, 111010100x, 0110x0100x}, 11x0x0100x \ {
   11x0101000, 11x0001001, 11x0x01000, 11x0x01001, 11x0x01001}, x110x1x00x \ {
   x11011x000, x11001x001, x110x1000x, x110x11001, 111011x00x, 0110x1x00x}, 11xxx1x0xx \ {
   11xx11x0x0, 11xx01x0x1, 11x1x1x00x, 11x0x1x01x, 11xxx1000x, 11xxx1101x, 11xxx110x1, 11x101x0xx, 11x111x0xx, 110111x0xx}}

{01xxx \ {01010, 01x0x, 01111}}
{x00x1 \ {00011, 100x1, 00001}}
{
   x00x101xx1 \ {
   x001101x01, x000101x11, x00x101x01, x00x101111, 0001101xx1, 100x101xx1, 0000101xx1}}

{1x0x1 \ {10001, 1x011, 100x1}, x0110 \ {10110, 00110, 00110}}
{1xxxx \ {11100, 101xx, 101xx}, x1xx1 \ {111x1, 11001, 010x1}}
{
   1xxx11x0x1 \ {
   1xx111x001, 1xx011x011, 1xxx110001, 1xxx11x011, 1xxx1100x1, 101x11x0x1, 101x11x0x1}, x1xx11x0x1 \ {
   x1x111x001, x1x011x011, x1xx110001, x1xx11x011, x1xx1100x1, 111x11x0x1, 110011x0x1, 010x11x0x1}, 1xx10x0110 \ {
   1xx1010110, 1xx1000110, 1xx1000110, 10110x0110, 10110x0110}}

{xx111 \ {01111, 10111, 10111}, 0xx10 \ {00x10, 00010, 01110}, x0x0x \ {1010x, 10001, x000x}}
{101xx \ {1011x, 101x0, 10110}, x111x \ {11111, 01111, 01111}, x11x1 \ {x1111, x1101, x1101}}
{
   10111xx111 \ {
   1011101111, 1011110111, 1011110111, 10111xx111}, x1111xx111 \ {
   x111101111, x111110111, x111110111, 11111xx111, 01111xx111, 01111xx111}, 101100xx10 \ {
   1011000x10, 1011000010, 1011001110, 101100xx10, 101100xx10, 101100xx10}, x11100xx10 \ {
   x111000x10, x111000010, x111001110}, 1010xx0x0x \ {
   10101x0x00, 10100x0x01, 1010x1010x, 1010x10001, 1010xx000x, 10100x0x0x}, x1101x0x01 \ {
   x110110101, x110110001, x1101x0001, x1101x0x01, x1101x0x01}}

{}
{x0xx1 \ {100x1, 000x1, 00x01}, 100xx \ {100x0, 10001, 100x1}}
{}

{x11xx \ {x111x, 011x0, x11x1}, 1xxxx \ {11xxx, 1111x, 11111}, 00xx0 \ {00010, 00100, 00110}}
{01xxx \ {011x0, 01101, 010x1}, 11xx0 \ {11000, 11010}}
{
   01xxxx11xx \ {
   01xx1x11x0, 01xx0x11x1, 01x1xx110x, 01x0xx111x, 01xxxx111x, 01xxx011x0, 01xxxx11x1, 011x0x11xx, 01101x11xx, 010x1x11xx}, 11xx0x11x0 \ {
   11x10x1100, 11x00x1110, 11xx0x1110, 11xx0011x0, 11000x11x0, 11010x11x0}, 01xxx1xxxx \ {
   01xx11xxx0, 01xx01xxx1, 01x1x1xx0x, 01x0x1xx1x, 01xxx11xxx, 01xxx1111x, 01xxx11111, 011x01xxxx, 011011xxxx, 010x11xxxx}, 11xx01xxx0 \ {
   11x101xx00, 11x001xx10, 11xx011xx0, 11xx011110, 110001xxx0, 110101xxx0}, 01xx000xx0 \ {
   01x1000x00, 01x0000x10, 01xx000010, 01xx000100, 01xx000110, 011x000xx0}, 11xx000xx0 \ {
   11x1000x00, 11x0000x10, 11xx000010, 11xx000100, 11xx000110, 1100000xx0, 1101000xx0}}

{xxx01 \ {0x101, x0x01, 00001}, x01x0 \ {00100, 101x0}}
{xxx1x \ {x1x10, 01111, x0x10}}
{
   xxx10x0110 \ {
   xxx1010110, x1x10x0110, x0x10x0110}}

{x1xx0 \ {01x10, 11x10, x1x00}, x11x1 \ {011x1, 11101, 11101}}
{x010x \ {00101, x0101}, 01xxx \ {01011, 01x10, 0101x}, x00x1 \ {00001, 10011, 000x1}}
{
   x0100x1x00 \ {
   x0100x1x00}, 01xx0x1xx0 \ {
   01x10x1x00, 01x00x1x10, 01xx001x10, 01xx011x10, 01xx0x1x00, 01x10x1xx0, 01010x1xx0}, x0101x1101 \ {
   x010101101, x010111101, x010111101, 00101x1101, x0101x1101}, 01xx1x11x1 \ {
   01x11x1101, 01x01x1111, 01xx1011x1, 01xx111101, 01xx111101, 01011x11x1, 01011x11x1}, x00x1x11x1 \ {
   x0011x1101, x0001x1111, x00x1011x1, x00x111101, x00x111101, 00001x11x1, 10011x11x1, 000x1x11x1}}

{}
{x1x1x \ {x1110, 01010, 1101x}}
{}

{xx0x0 \ {x10x0, 10000, 01010}, 1x1x1 \ {11101, 11111, 10101}}
{x0xx0 \ {x0x00, 00x10}}
{
   x0xx0xx0x0 \ {
   x0x10xx000, x0x00xx010, x0xx0x10x0, x0xx010000, x0xx001010, x0x00xx0x0, 00x10xx0x0}}

{}
{xx0xx \ {x00x1, 11010, x1000}}
{}

{001xx \ {00100, 0010x, 0011x}, 01x0x \ {01100, 01x00, 01x00}}
{xx0xx \ {00001, 11011, 00010}}
{
   xx0xx001xx \ {
   xx0x1001x0, xx0x0001x1, xx01x0010x, xx00x0011x, xx0xx00100, xx0xx0010x, xx0xx0011x, 00001001xx, 11011001xx, 00010001xx}, xx00x01x0x \ {
   xx00101x00, xx00001x01, xx00x01100, xx00x01x00, xx00x01x00, 0000101x0x}}

{110x0 \ {11010, 11000}, x100x \ {01001, 1100x, 0100x}}
{1x001 \ {10001, 11001, 11001}, 1011x \ {10111, 10110, 10110}}
{
   1011011010 \ {
   1011011010, 1011011010, 1011011010}, 1x001x1001 \ {
   1x00101001, 1x00111001, 1x00101001, 10001x1001, 11001x1001, 11001x1001}}

{xx0x0 \ {x1000, 11010, 01010}}
{1x0xx \ {1x0x1, 1001x, 10000}, 011x1 \ {01101}, xx10x \ {xx101, 0110x, x010x}}
{
   1x0x0xx0x0 \ {
   1x010xx000, 1x000xx010, 1x0x0x1000, 1x0x011010, 1x0x001010, 10010xx0x0, 10000xx0x0}, xx100xx000 \ {
   xx100x1000, 01100xx000, x0100xx000}}

{x01x0 \ {x0110, 00100}}
{0x0xx \ {00000, 010x0, 01001}, 01x11 \ {01111, 01011}, 01xx0 \ {01100, 01010, 01010}}
{
   0x0x0x01x0 \ {
   0x010x0100, 0x000x0110, 0x0x0x0110, 0x0x000100, 00000x01x0, 010x0x01x0}, 01xx0x01x0 \ {
   01x10x0100, 01x00x0110, 01xx0x0110, 01xx000100, 01100x01x0, 01010x01x0, 01010x01x0}}

{1xx10 \ {10x10, 10110, 10110}, xxx1x \ {1001x, 0011x, x1010}, 1xx10 \ {10110, 1x110, 11010}}
{0x10x \ {01101, 00100, 01100}}
{}

{0x1x0 \ {01110, 011x0, 0x110}, x100x \ {11000, 0100x, 01001}, x11xx \ {011x0, 11111, x11x1}}
{011x0 \ {01110}, x1xxx \ {11x10, 01100, 110x0}}
{
   011x00x1x0 \ {
   011100x100, 011000x110, 011x001110, 011x0011x0, 011x00x110, 011100x1x0}, x1xx00x1x0 \ {
   x1x100x100, x1x000x110, x1xx001110, x1xx0011x0, x1xx00x110, 11x100x1x0, 011000x1x0, 110x00x1x0}, 01100x1000 \ {
   0110011000, 0110001000}, x1x0xx100x \ {
   x1x01x1000, x1x00x1001, x1x0x11000, x1x0x0100x, x1x0x01001, 01100x100x, 11000x100x}, 011x0x11x0 \ {
   01110x1100, 01100x1110, 011x0011x0, 01110x11x0}, x1xxxx11xx \ {
   x1xx1x11x0, x1xx0x11x1, x1x1xx110x, x1x0xx111x, x1xxx011x0, x1xxx11111, x1xxxx11x1, 11x10x11xx, 01100x11xx, 110x0x11xx}}

{0x10x \ {0010x, 01101, 00101}, x1000 \ {11000, 01000}}
{11xxx \ {11000, 11010, 11x00}, xx001 \ {00001, 1x001}}
{
   11x0x0x10x \ {
   11x010x100, 11x000x101, 11x0x0010x, 11x0x01101, 11x0x00101, 110000x10x, 11x000x10x}, xx0010x101 \ {
   xx00100101, xx00101101, xx00100101, 000010x101, 1x0010x101}, 11x00x1000 \ {
   11x0011000, 11x0001000, 11000x1000, 11x00x1000}}

{10x0x \ {10101, 10000}, 0xx0x \ {00x01, 01x00, 01100}}
{xx011 \ {01011, x1011}, x011x \ {x0110, 1011x, 10110}}
{}

{x0xx1 \ {10011, x01x1, 10101}, x1xxx \ {x10x1, 11011, 110x0}}
{xx0x0 \ {01010, 1x000, x1010}, 0xxx0 \ {01110, 00000, 001x0}, 10xx1 \ {10111, 101x1, 10101}}
{
   10xx1x0xx1 \ {
   10x11x0x01, 10x01x0x11, 10xx110011, 10xx1x01x1, 10xx110101, 10111x0xx1, 101x1x0xx1, 10101x0xx1}, xx0x0x1xx0 \ {
   xx010x1x00, xx000x1x10, xx0x0110x0, 01010x1xx0, 1x000x1xx0, x1010x1xx0}, 0xxx0x1xx0 \ {
   0xx10x1x00, 0xx00x1x10, 0xxx0110x0, 01110x1xx0, 00000x1xx0, 001x0x1xx0}, 10xx1x1xx1 \ {
   10x11x1x01, 10x01x1x11, 10xx1x10x1, 10xx111011, 10111x1xx1, 101x1x1xx1, 10101x1xx1}}

{x0x00 \ {10x00, 00x00, x0000}, 0xx00 \ {00000, 01000, 00100}}
{1000x \ {10001, 10000}}
{
   10000x0x00 \ {
   1000010x00, 1000000x00, 10000x0000, 10000x0x00}, 100000xx00 \ {
   1000000000, 1000001000, 1000000100, 100000xx00}}

{x101x \ {01010, 11011, 11011}, 10xxx \ {1001x, 100xx, 10000}}
{111xx \ {11110, 11111, 1111x}, 011xx \ {01110, 01101, 011x1}}
{
   1111xx101x \ {
   11111x1010, 11110x1011, 1111x01010, 1111x11011, 1111x11011, 11110x101x, 11111x101x, 1111xx101x}, 0111xx101x \ {
   01111x1010, 01110x1011, 0111x01010, 0111x11011, 0111x11011, 01110x101x, 01111x101x}, 111xx10xxx \ {
   111x110xx0, 111x010xx1, 1111x10x0x, 1110x10x1x, 111xx1001x, 111xx100xx, 111xx10000, 1111010xxx, 1111110xxx, 1111x10xxx}, 011xx10xxx \ {
   011x110xx0, 011x010xx1, 0111x10x0x, 0110x10x1x, 011xx1001x, 011xx100xx, 011xx10000, 0111010xxx, 0110110xxx, 011x110xxx}}

{x1x11 \ {01011, 01x11}, xxx01 \ {01x01, 00101, x0x01}}
{xx111 \ {10111, x1111, x1111}, x1xx1 \ {01x11, 11x11, x1x11}}
{
   xx111x1x11 \ {
   xx11101011, xx11101x11, 10111x1x11, x1111x1x11, x1111x1x11}, x1x11x1x11 \ {
   x1x1101011, x1x1101x11, 01x11x1x11, 11x11x1x11, x1x11x1x11}, x1x01xxx01 \ {
   x1x0101x01, x1x0100101, x1x01x0x01}}

{}
{x11xx \ {1110x, x11x0, 111x1}, 00x0x \ {00x01, 0010x, 00100}}
{}

{1xxx1 \ {1x001, 1xx01, 11x11}, x1xxx \ {01001, x100x, 11001}}
{xxx10 \ {x0010, x0x10, xx010}, 1xx10 \ {10110, 11110, 11110}}
{
   xxx10x1x10 \ {
   x0010x1x10, x0x10x1x10, xx010x1x10}, 1xx10x1x10 \ {
   10110x1x10, 11110x1x10, 11110x1x10}}

{x11x0 \ {01100, 011x0, 11110}, 0100x \ {01000, 01001}}
{010x0 \ {01000, 01010, 01010}, 0xx01 \ {0x001, 00101}}
{
   010x0x11x0 \ {
   01010x1100, 01000x1110, 010x001100, 010x0011x0, 010x011110, 01000x11x0, 01010x11x0, 01010x11x0}, 0100001000 \ {
   0100001000, 0100001000}, 0xx0101001 \ {
   0xx0101001, 0x00101001, 0010101001}}

{1x000 \ {10000, 11000}, x0x10 \ {00110, 10110}, 01xx0 \ {01000, 01010}}
{}
{}

{0xx1x \ {0001x, 00x10, 0x01x}, 1x1x1 \ {10111, 101x1, 10101}}
{x0xxx \ {10xx1, x0001, 101x1}, 00x1x \ {00x11, 00011, 00011}}
{
   x0x1x0xx1x \ {
   x0x110xx10, x0x100xx11, x0x1x0001x, x0x1x00x10, x0x1x0x01x, 10x110xx1x, 101110xx1x}, 00x1x0xx1x \ {
   00x110xx10, 00x100xx11, 00x1x0001x, 00x1x00x10, 00x1x0x01x, 00x110xx1x, 000110xx1x, 000110xx1x}, x0xx11x1x1 \ {
   x0x111x101, x0x011x111, x0xx110111, x0xx1101x1, x0xx110101, 10xx11x1x1, x00011x1x1, 101x11x1x1}, 00x111x111 \ {
   00x1110111, 00x1110111, 00x111x111, 000111x111, 000111x111}}

{x10x0 \ {11000, 010x0, 01000}, x11x0 \ {x1110, 01110, 11100}, x001x \ {x0011, 00011, 10010}}
{0x011 \ {01011}}
{
   0x011x0011 \ {
   0x011x0011, 0x01100011, 01011x0011}}

{111x1 \ {11111}}
{x111x \ {0111x, x1110, 11111}, 1xx10 \ {11010, 10x10, 1x110}}
{
   x111111111 \ {
   x111111111, 0111111111, 1111111111}}

{110x0 \ {11010, 11000}}
{x10xx \ {110x1, 010x0, x1000}}
{
   x10x0110x0 \ {
   x101011000, x100011010, x10x011010, x10x011000, 010x0110x0, x1000110x0}}

{x11xx \ {x1100, x1101}, x0xx1 \ {10001, 101x1, x0x11}, 11x0x \ {1110x, 11100, 11100}}
{x0xxx \ {00xx0, 000x0, 101x1}}
{
   x0xxxx11xx \ {
   x0xx1x11x0, x0xx0x11x1, x0x1xx110x, x0x0xx111x, x0xxxx1100, x0xxxx1101, 00xx0x11xx, 000x0x11xx, 101x1x11xx}, x0xx1x0xx1 \ {
   x0x11x0x01, x0x01x0x11, x0xx110001, x0xx1101x1, x0xx1x0x11, 101x1x0xx1}, x0x0x11x0x \ {
   x0x0111x00, x0x0011x01, x0x0x1110x, x0x0x11100, x0x0x11100, 00x0011x0x, 0000011x0x, 1010111x0x}}

{1000x \ {10001, 10000}}
{}
{}

{xx001 \ {x1001, 01001, 00001}, x1x11 \ {11x11, 01111}, 0xx00 \ {00000, 0x000, 00100}}
{x01xx \ {x0111, 00101, 10111}, 110xx \ {11001, 11011, 1101x}}
{
   x0101xx001 \ {
   x0101x1001, x010101001, x010100001, 00101xx001}, 11001xx001 \ {
   11001x1001, 1100101001, 1100100001, 11001xx001}, x0111x1x11 \ {
   x011111x11, x011101111, x0111x1x11, 10111x1x11}, 11011x1x11 \ {
   1101111x11, 1101101111, 11011x1x11, 11011x1x11}, x01000xx00 \ {
   x010000000, x01000x000, x010000100}, 110000xx00 \ {
   1100000000, 110000x000, 1100000100}}

{0xxx1 \ {010x1, 00x01, 000x1}, x0xxx \ {x0x00, 00101, 10x11}}
{00x00 \ {00100, 00000}, x11xx \ {11101, 011x1, 011xx}}
{
   x11x10xxx1 \ {
   x11110xx01, x11010xx11, x11x1010x1, x11x100x01, x11x1000x1, 111010xxx1, 011x10xxx1, 011x10xxx1}, 00x00x0x00 \ {
   00x00x0x00, 00100x0x00, 00000x0x00}, x11xxx0xxx \ {
   x11x1x0xx0, x11x0x0xx1, x111xx0x0x, x110xx0x1x, x11xxx0x00, x11xx00101, x11xx10x11, 11101x0xxx, 011x1x0xxx, 011xxx0xxx}}

{0xx01 \ {00001, 01001, 01001}, 10xx0 \ {10110, 10100}}
{11x01 \ {11001, 11101, 11101}}
{
   11x010xx01 \ {
   11x0100001, 11x0101001, 11x0101001, 110010xx01, 111010xx01, 111010xx01}}

{xxx1x \ {00x11, 1111x, 0001x}, xx0xx \ {x1001, 010x0, xx011}}
{}
{}

{xx1xx \ {00100, 011xx, x1101}, x1xxx \ {01xx0, 010x1, x11x1}, xxx10 \ {10010, 10110, 01010}}
{x01x1 \ {x0111, 101x1, 10111}}
{
   x01x1xx1x1 \ {
   x0111xx101, x0101xx111, x01x1011x1, x01x1x1101, x0111xx1x1, 101x1xx1x1, 10111xx1x1}, x01x1x1xx1 \ {
   x0111x1x01, x0101x1x11, x01x1010x1, x01x1x11x1, x0111x1xx1, 101x1x1xx1, 10111x1xx1}}

{11xx0 \ {110x0, 11000, 11x00}}
{x01xx \ {101x1, 0010x, 00101}}
{
   x01x011xx0 \ {
   x011011x00, x010011x10, x01x0110x0, x01x011000, x01x011x00, 0010011xx0}}

{0xx11 \ {01x11, 00x11, 00x11}, 011xx \ {01100, 011x0, 011x1}, 10xx1 \ {101x1, 10x01, 10101}}
{xx1x1 \ {111x1, 0x1x1, 0x1x1}, 0x1x0 \ {01100, 0x110}}
{
   xx1110xx11 \ {
   xx11101x11, xx11100x11, xx11100x11, 111110xx11, 0x1110xx11, 0x1110xx11}, xx1x1011x1 \ {
   xx11101101, xx10101111, xx1x1011x1, 111x1011x1, 0x1x1011x1, 0x1x1011x1}, 0x1x0011x0 \ {
   0x11001100, 0x10001110, 0x1x001100, 0x1x0011x0, 01100011x0, 0x110011x0}, xx1x110xx1 \ {
   xx11110x01, xx10110x11, xx1x1101x1, xx1x110x01, xx1x110101, 111x110xx1, 0x1x110xx1, 0x1x110xx1}}

{x1x00 \ {x1000, 11x00, x1100}}
{xx011 \ {0x011, x1011}, x11xx \ {01110, 01111, 111xx}}
{
   x1100x1x00 \ {
   x1100x1000, x110011x00, x1100x1100, 11100x1x00}}

{11xx0 \ {11x10, 11110, 11010}, 1x1x0 \ {10110, 1x100, 1x100}}
{x0x0x \ {00001, x000x, 00101}, xx1x1 \ {11111, xx111, 011x1}}
{
   x0x0011x00 \ {
   x000011x00}, x0x001x100 \ {
   x0x001x100, x0x001x100, x00001x100}}

{0xxx0 \ {0x010, 01010, 00110}}
{x101x \ {11010, 01011, 01010}}
{
   x10100xx10 \ {
   x10100x010, x101001010, x101000110, 110100xx10, 010100xx10}}

{1x00x \ {1100x, 10000, 11000}, 00x10 \ {00010, 00110}}
{xx1xx \ {x0101, 011xx, 101x1}, 101xx \ {10111, 10101, 101x1}, xx100 \ {01100, 1x100, 1x100}}
{
   xx10x1x00x \ {
   xx1011x000, xx1001x001, xx10x1100x, xx10x10000, xx10x11000, x01011x00x, 0110x1x00x, 101011x00x}, 1010x1x00x \ {
   101011x000, 101001x001, 1010x1100x, 1010x10000, 1010x11000, 101011x00x, 101011x00x}, xx1001x000 \ {
   xx10011000, xx10010000, xx10011000, 011001x000, 1x1001x000, 1x1001x000}, xx11000x10 \ {
   xx11000010, xx11000110, 0111000x10}, 1011000x10 \ {
   1011000010, 1011000110}}

{10xx1 \ {10011, 10111, 10001}}
{010x1 \ {01001, 01011}, 111x0 \ {11100, 11110}}
{
   010x110xx1 \ {
   0101110x01, 0100110x11, 010x110011, 010x110111, 010x110001, 0100110xx1, 0101110xx1}}

{1x1x1 \ {11111, 10111, 101x1}}
{1x11x \ {1011x, 10110, 1111x}}
{
   1x1111x111 \ {
   1x11111111, 1x11110111, 1x11110111, 101111x111, 111111x111}}

{x00x0 \ {00010, 10010, 100x0}}
{x00x1 \ {00011, 10011}, 00x0x \ {00000, 00x01, 00001}}
{
   00x00x0000 \ {
   00x0010000, 00000x0000}}

{x10x0 \ {11000, 11010, 01000}}
{1xxx1 \ {11111, 10101, 11x01}}
{}

{}
{0xx0x \ {00101, 0xx01, 00000}, 0x0x0 \ {0x010, 000x0, 00000}}
{}

{0xx01 \ {00101, 00001, 00x01}, 01x11 \ {01111, 01011}}
{}
{}

{x1xx1 \ {x1x01, 01011, x11x1}}
{0x1x0 \ {0x100, 01110, 01110}, x00x0 \ {10010, 100x0, 100x0}}
{}

{0xx10 \ {0x010, 00110, 01010}, 10x11 \ {10011, 10111}}
{}
{}

{xx011 \ {1x011, x0011}, 010x1 \ {01001, 01011}}
{xx0xx \ {100xx, 1x011, xx0x0}}
{
   xx011xx011 \ {
   xx0111x011, xx011x0011, 10011xx011, 1x011xx011}, xx0x1010x1 \ {
   xx01101001, xx00101011, xx0x101001, xx0x101011, 100x1010x1, 1x011010x1}}

{}
{xxxx0 \ {xx100, xx010, 10x10}}
{}

{xxxx0 \ {1x100, x1x10, x1110}}
{x010x \ {x0101, 10100}, x0011 \ {10011, 00011}, x11x0 \ {01100, 11100, x1100}}
{
   x0100xxx00 \ {
   x01001x100, 10100xxx00}, x11x0xxxx0 \ {
   x1110xxx00, x1100xxx10, x11x01x100, x11x0x1x10, x11x0x1110, 01100xxxx0, 11100xxxx0, x1100xxxx0}}

{x0x00 \ {x0000, 00x00, 00000}, 0x1xx \ {0x100, 0111x, 011x0}}
{1x1x1 \ {11101, 11111}, x1x10 \ {11010, 01x10, 01010}, x0x01 \ {00101, x0101}}
{
   1x1x10x1x1 \ {
   1x1110x101, 1x1010x111, 1x1x101111, 111010x1x1, 111110x1x1}, x1x100x110 \ {
   x1x1001110, x1x1001110, 110100x110, 01x100x110, 010100x110}, x0x010x101 \ {
   001010x101, x01010x101}}

{0x01x \ {00010, 0001x, 0001x}}
{0x0x1 \ {0x001, 010x1, 0x011}}
{
   0x0110x011 \ {
   0x01100011, 0x01100011, 010110x011, 0x0110x011}}

{}
{}
{}

{00xxx \ {000x1, 00101}, 01x0x \ {0110x, 01100}}
{01x10 \ {01010, 01110}, 1x00x \ {11001, 1100x, 10000}}
{
   01x1000x10 \ {
   0101000x10, 0111000x10}, 1x00x00x0x \ {
   1x00100x00, 1x00000x01, 1x00x00001, 1x00x00101, 1100100x0x, 1100x00x0x, 1000000x0x}, 1x00x01x0x \ {
   1x00101x00, 1x00001x01, 1x00x0110x, 1x00x01100, 1100101x0x, 1100x01x0x, 1000001x0x}}

{0x11x \ {0x111, 00111, 0x110}, 1xxx0 \ {10x10, 10x00, 1x0x0}, 0xxx1 \ {01001, 00x11, 0xx11}}
{1xx10 \ {10010, 1x110, 10x10}, 111xx \ {111x0, 11110, 111x1}}
{
   1xx100x110 \ {
   1xx100x110, 100100x110, 1x1100x110, 10x100x110}, 1111x0x11x \ {
   111110x110, 111100x111, 1111x0x111, 1111x00111, 1111x0x110, 111100x11x, 111100x11x, 111110x11x}, 1xx101xx10 \ {
   1xx1010x10, 1xx101x010, 100101xx10, 1x1101xx10, 10x101xx10}, 111x01xxx0 \ {
   111101xx00, 111001xx10, 111x010x10, 111x010x00, 111x01x0x0, 111x01xxx0, 111101xxx0}, 111x10xxx1 \ {
   111110xx01, 111010xx11, 111x101001, 111x100x11, 111x10xx11, 111x10xxx1}}

{x1x00 \ {01x00, 11x00, x1000}}
{01xxx \ {0111x, 011x1, 01x0x}}
{
   01x00x1x00 \ {
   01x0001x00, 01x0011x00, 01x00x1000, 01x00x1x00}}

{010xx \ {01000, 0101x, 01011}}
{1x110 \ {11110, 10110}, 0011x \ {00111, 00110}}
{
   1x11001010 \ {
   1x11001010, 1111001010, 1011001010}, 0011x0101x \ {
   0011101010, 0011001011, 0011x0101x, 0011x01011, 001110101x, 001100101x}}

{x01x0 \ {x0110, x0100}, 1x101 \ {10101}}
{x0x1x \ {x001x, 10x11, 00111}}
{
   x0x10x0110 \ {
   x0x10x0110, x0010x0110}}

{101x1 \ {10101, 10111, 10111}, 0010x \ {00101, 00100, 00100}}
{0x1x1 \ {01101, 00111}, xxx00 \ {xx100, 11000, 10000}}
{
   0x1x1101x1 \ {
   0x11110101, 0x10110111, 0x1x110101, 0x1x110111, 0x1x110111, 01101101x1, 00111101x1}, 0x10100101 \ {
   0x10100101, 0110100101}, xxx0000100 \ {
   xxx0000100, xxx0000100, xx10000100, 1100000100, 1000000100}}

{}
{01x10 \ {01110, 01010}}
{}

{11xxx \ {11x1x, 11001, 11x01}, 011x0 \ {01110, 01100}}
{0xx10 \ {00010, 01x10, 00110}}
{
   0xx1011x10 \ {
   0xx1011x10, 0001011x10, 01x1011x10, 0011011x10}, 0xx1001110 \ {
   0xx1001110, 0001001110, 01x1001110, 0011001110}}

{1x10x \ {11100, 1010x, 1x101}, 1xx1x \ {10011, 1xx10, 1101x}}
{10x10 \ {10110}, 01xxx \ {010xx, 01010, 01xx1}, xx1xx \ {0x1xx, x01xx, xx11x}}
{
   01x0x1x10x \ {
   01x011x100, 01x001x101, 01x0x11100, 01x0x1010x, 01x0x1x101, 0100x1x10x, 01x011x10x}, xx10x1x10x \ {
   xx1011x100, xx1001x101, xx10x11100, xx10x1010x, xx10x1x101, 0x10x1x10x, x010x1x10x}, 10x101xx10 \ {
   10x101xx10, 10x1011010, 101101xx10}, 01x1x1xx1x \ {
   01x111xx10, 01x101xx11, 01x1x10011, 01x1x1xx10, 01x1x1101x, 0101x1xx1x, 010101xx1x, 01x111xx1x}, xx11x1xx1x \ {
   xx1111xx10, xx1101xx11, xx11x10011, xx11x1xx10, xx11x1101x, 0x11x1xx1x, x011x1xx1x, xx11x1xx1x}}

{01x0x \ {01101, 0110x, 01x01}, 00x10 \ {00010, 00110, 00110}}
{001x1 \ {00101, 00111}, x0xx1 \ {00x01, x0011, 10x01}}
{
   0010101x01 \ {
   0010101101, 0010101101, 0010101x01, 0010101x01}, x0x0101x01 \ {
   x0x0101101, x0x0101101, x0x0101x01, 00x0101x01, 10x0101x01}}

{xx101 \ {01101, x1101, x0101}, 101x0 \ {10110, 10100}, 11x00 \ {11000}}
{}
{}

{10x11 \ {10111, 10011, 10011}, xx001 \ {x0001, 01001, 01001}}
{}
{}

{0xx0x \ {01x01, 0x10x}}
{}
{}

{10xx0 \ {10100, 10110, 10010}, xx0xx \ {000x1, 10001, x00xx}}
{}
{}

{0xxx0 \ {01x10, 00100, 0xx10}, 0110x \ {01100, 01101}}
{01x1x \ {0101x, 01110, 01x11}, 1x01x \ {1x011, 1001x, 1001x}}
{
   01x100xx10 \ {
   01x1001x10, 01x100xx10, 010100xx10, 011100xx10}, 1x0100xx10 \ {
   1x01001x10, 1x0100xx10, 100100xx10, 100100xx10}}

{0x0xx \ {010x0, 010x1, 01001}, 0x0xx \ {0x0x1, 01000, 0100x}, 11x10 \ {11110, 11010}}
{011x0 \ {01100}, 110x0 \ {11000}}
{
   011x00x0x0 \ {
   011100x000, 011000x010, 011x001000, 011x001000, 011000x0x0}, 110x00x0x0 \ {
   110100x000, 110000x010, 110x001000, 110x001000, 110000x0x0}, 0111011x10 \ {
   0111011110, 0111011010}, 1101011x10 \ {
   1101011110, 1101011010}}

{x11x0 \ {011x0, x1110, 111x0}, 0xx01 \ {00001, 01101, 00101}}
{x000x \ {10000, 10001, 00001}}
{
   x0000x1100 \ {
   x000001100, x000011100, 10000x1100}, x00010xx01 \ {
   x000100001, x000101101, x000100101, 100010xx01, 000010xx01}}

{10xxx \ {10001, 10x0x, 10100}, xx0x1 \ {0x0x1, xx001, x0011}}
{0xx1x \ {0x11x, 0x010, 0111x}, 000xx \ {0000x, 00001, 0001x}}
{
   0xx1x10x1x \ {
   0xx1110x10, 0xx1010x11, 0x11x10x1x, 0x01010x1x, 0111x10x1x}, 000xx10xxx \ {
   000x110xx0, 000x010xx1, 0001x10x0x, 0000x10x1x, 000xx10001, 000xx10x0x, 000xx10100, 0000x10xxx, 0000110xxx, 0001x10xxx}, 0xx11xx011 \ {
   0xx110x011, 0xx11x0011, 0x111xx011, 01111xx011}, 000x1xx0x1 \ {
   00011xx001, 00001xx011, 000x10x0x1, 000x1xx001, 000x1x0011, 00001xx0x1, 00001xx0x1, 00011xx0x1}}

{x00xx \ {1000x, x001x, 100xx}, xxx10 \ {01x10, 10x10, 00x10}}
{01xxx \ {01010, 01101, 01110}, x100x \ {01001, 01000, 11001}}
{
   01xxxx00xx \ {
   01xx1x00x0, 01xx0x00x1, 01x1xx000x, 01x0xx001x, 01xxx1000x, 01xxxx001x, 01xxx100xx, 01010x00xx, 01101x00xx, 01110x00xx}, x100xx000x \ {
   x1001x0000, x1000x0001, x100x1000x, x100x1000x, 01001x000x, 01000x000x, 11001x000x}, 01x10xxx10 \ {
   01x1001x10, 01x1010x10, 01x1000x10, 01010xxx10, 01110xxx10}}

{00x10 \ {00110, 00010}}
{00xxx \ {00101, 0010x, 001x0}}
{
   00x1000x10 \ {
   00x1000110, 00x1000010, 0011000x10}}

{111xx \ {111x0, 11100}}
{x101x \ {x1011, 01011}, x11xx \ {x11x0, 11100, x110x}}
{
   x101x1111x \ {
   x101111110, x101011111, x101x11110, x10111111x, 010111111x}, x11xx111xx \ {
   x11x1111x0, x11x0111x1, x111x1110x, x110x1111x, x11xx111x0, x11xx11100, x11x0111xx, 11100111xx, x110x111xx}}

{x00xx \ {10000, x0011, x00x0}, xx1x0 \ {0x1x0, xx110, xx100}}
{10x1x \ {10110, 10x11}, x110x \ {x1101, 0110x, 1110x}}
{
   10x1xx001x \ {
   10x11x0010, 10x10x0011, 10x1xx0011, 10x1xx0010, 10110x001x, 10x11x001x}, x110xx000x \ {
   x1101x0000, x1100x0001, x110x10000, x110xx0000, x1101x000x, 0110xx000x, 1110xx000x}, 10x10xx110 \ {
   10x100x110, 10x10xx110, 10110xx110}, x1100xx100 \ {
   x11000x100, x1100xx100, 01100xx100, 11100xx100}}

{x011x \ {10110, 00111, x0111}}
{0x1x1 \ {001x1, 00101, 011x1}, 000x1 \ {00001}}
{
   0x111x0111 \ {
   0x11100111, 0x111x0111, 00111x0111, 01111x0111}, 00011x0111 \ {
   0001100111, 00011x0111}}

{xxxxx \ {10101, x1xx1, xx1xx}, 0xx10 \ {0x110, 01110, 01010}}
{10x01 \ {10101}, x1x0x \ {x1100, 1110x, x110x}}
{
   10x01xxx01 \ {
   10x0110101, 10x01x1x01, 10x01xx101, 10101xxx01}, x1x0xxxx0x \ {
   x1x01xxx00, x1x00xxx01, x1x0x10101, x1x0xx1x01, x1x0xxx10x, x1100xxx0x, 1110xxxx0x, x110xxxx0x}}

{1x1x1 \ {11111, 11101, 10111}}
{x110x \ {0110x, 11101}}
{
   x11011x101 \ {
   x110111101, 011011x101, 111011x101}}

{}
{xx001 \ {1x001, 11001, 11001}}
{}

{00x0x \ {00x00, 00x01, 0010x}, 0110x \ {01101}, x01x0 \ {x0110, 10110, 10110}}
{}
{}

{1x0xx \ {100x1, 1x000}}
{xxx01 \ {11001, 10x01, 01101}, x0x0x \ {10000, 00101, x0101}, 0x10x \ {00100, 0010x, 0010x}}
{
   xxx011x001 \ {
   xxx0110001, 110011x001, 10x011x001, 011011x001}, x0x0x1x00x \ {
   x0x011x000, x0x001x001, x0x0x10001, x0x0x1x000, 100001x00x, 001011x00x, x01011x00x}, 0x10x1x00x \ {
   0x1011x000, 0x1001x001, 0x10x10001, 0x10x1x000, 001001x00x, 0010x1x00x, 0010x1x00x}}

{xx10x \ {x110x, 10101, 11100}}
{1011x \ {10111, 10110, 10110}, x0xxx \ {x0100, 00100, 00001}}
{
   x0x0xxx10x \ {
   x0x01xx100, x0x00xx101, x0x0xx110x, x0x0x10101, x0x0x11100, x0100xx10x, 00100xx10x, 00001xx10x}}

{x1x11 \ {x1011, 11011, 11x11}, xx10x \ {1110x, 1x100, 0x100}}
{xxx1x \ {x1110, 00111, 01x1x}}
{
   xxx11x1x11 \ {
   xxx11x1011, xxx1111011, xxx1111x11, 00111x1x11, 01x11x1x11}}

{x0x11 \ {10011, x0111, 00x11}}
{xxxx1 \ {0x101, 000x1, 00101}}
{
   xxx11x0x11 \ {
   xxx1110011, xxx11x0111, xxx1100x11, 00011x0x11}}

{01xxx \ {011x0, 01x00, 01x01}, x1xxx \ {11101, 11011, x1x11}}
{xx111 \ {x1111, 1x111, x0111}, x0xx1 \ {10001, 10111, 001x1}}
{
   xx11101x11 \ {
   x111101x11, 1x11101x11, x011101x11}, x0xx101xx1 \ {
   x0x1101x01, x0x0101x11, x0xx101x01, 1000101xx1, 1011101xx1, 001x101xx1}, xx111x1x11 \ {
   xx11111011, xx111x1x11, x1111x1x11, 1x111x1x11, x0111x1x11}, x0xx1x1xx1 \ {
   x0x11x1x01, x0x01x1x11, x0xx111101, x0xx111011, x0xx1x1x11, 10001x1xx1, 10111x1xx1, 001x1x1xx1}}

{xx001 \ {1x001, 0x001, 10001}, 011xx \ {0110x, 01101, 0111x}}
{100xx \ {10001, 100x1}}
{
   10001xx001 \ {
   100011x001, 100010x001, 1000110001, 10001xx001, 10001xx001}, 100xx011xx \ {
   100x1011x0, 100x0011x1, 1001x0110x, 1000x0111x, 100xx0110x, 100xx01101, 100xx0111x, 10001011xx, 100x1011xx}}

{01xx1 \ {01111, 01001}}
{x0xx1 \ {00001, x00x1, x0001}}
{
   x0xx101xx1 \ {
   x0x1101x01, x0x0101x11, x0xx101111, x0xx101001, 0000101xx1, x00x101xx1, x000101xx1}}

{x110x \ {1110x, 01101, x1101}, x11x0 \ {11100, 011x0}}
{x011x \ {00110, 0011x, 1011x}, 01xxx \ {010x1, 01100}}
{
   01x0xx110x \ {
   01x01x1100, 01x00x1101, 01x0x1110x, 01x0x01101, 01x0xx1101, 01001x110x, 01100x110x}, x0110x1110 \ {
   x011001110, 00110x1110, 00110x1110, 10110x1110}, 01xx0x11x0 \ {
   01x10x1100, 01x00x1110, 01xx011100, 01xx0011x0, 01100x11x0}}

{11xx1 \ {11101, 11111, 111x1}}
{1x001 \ {11001, 10001}, xxxx0 \ {101x0, 0xx10, 1x100}, 1xxx1 \ {10xx1, 10101, 1xx01}}
{
   1x00111x01 \ {
   1x00111101, 1x00111101, 1100111x01, 1000111x01}, 1xxx111xx1 \ {
   1xx1111x01, 1xx0111x11, 1xxx111101, 1xxx111111, 1xxx1111x1, 10xx111xx1, 1010111xx1, 1xx0111xx1}}

{x011x \ {x0111, 1011x, 00110}}
{x0010 \ {10010, 00010, 00010}, 00x1x \ {00010, 00011, 00110}}
{
   x0010x0110 \ {
   x001010110, x001000110, 10010x0110, 00010x0110, 00010x0110}, 00x1xx011x \ {
   00x11x0110, 00x10x0111, 00x1xx0111, 00x1x1011x, 00x1x00110, 00010x011x, 00011x011x, 00110x011x}}

{x010x \ {00100, x0100, 10100}, 01x10 \ {01110, 01010}}
{0xx0x \ {0xx01, 0000x, 0x100}}
{
   0xx0xx010x \ {
   0xx01x0100, 0xx00x0101, 0xx0x00100, 0xx0xx0100, 0xx0x10100, 0xx01x010x, 0000xx010x, 0x100x010x}}

{011xx \ {011x0, 01101, 0111x}, xx1xx \ {x110x, x01x0, 0111x}}
{00x01 \ {00101, 00001}, 0xxx1 \ {00111, 00001, 00011}}
{
   00x0101101 \ {
   00x0101101, 0010101101, 0000101101}, 0xxx1011x1 \ {
   0xx1101101, 0xx0101111, 0xxx101101, 0xxx101111, 00111011x1, 00001011x1, 00011011x1}, 00x01xx101 \ {
   00x01x1101, 00101xx101, 00001xx101}, 0xxx1xx1x1 \ {
   0xx11xx101, 0xx01xx111, 0xxx1x1101, 0xxx101111, 00111xx1x1, 00001xx1x1, 00011xx1x1}}

{111xx \ {111x1, 1111x, 1111x}, x011x \ {x0111, 00110}}
{xx11x \ {xx110, x1111, 01111}, x10xx \ {01001, 1101x, 11010}}
{
   xx11x1111x \ {
   xx11111110, xx11011111, xx11x11111, xx11x1111x, xx11x1111x, xx1101111x, x11111111x, 011111111x}, x10xx111xx \ {
   x10x1111x0, x10x0111x1, x101x1110x, x100x1111x, x10xx111x1, x10xx1111x, x10xx1111x, 01001111xx, 1101x111xx, 11010111xx}, xx11xx011x \ {
   xx111x0110, xx110x0111, xx11xx0111, xx11x00110, xx110x011x, x1111x011x, 01111x011x}, x101xx011x \ {
   x1011x0110, x1010x0111, x101xx0111, x101x00110, 1101xx011x, 11010x011x}}

{x1xx1 \ {010x1, 11x01, x1111}}
{0x10x \ {0x101, 00101, 00100}}
{
   0x101x1x01 \ {
   0x10101001, 0x10111x01, 0x101x1x01, 00101x1x01}}

{}
{11x1x \ {11010, 11x10, 1111x}}
{}

{1001x \ {10011, 10010}}
{x000x \ {10000, x0000, 1000x}, 1x001 \ {10001, 11001}, 0xxxx \ {0000x, 0x10x, 0x0xx}}
{
   0xx1x1001x \ {
   0xx1110010, 0xx1010011, 0xx1x10011, 0xx1x10010, 0x01x1001x}}

{xx0xx \ {x0001, 0x01x, x000x}, xx00x \ {x1000, x100x, 1x001}, xx1x0 \ {11110, 01100, 11100}}
{xx101 \ {1x101, 01101, 0x101}, 01xxx \ {011x1, 01001, 0101x}}
{
   xx101xx001 \ {
   xx101x0001, xx101x0001, 1x101xx001, 01101xx001, 0x101xx001}, 01xxxxx0xx \ {
   01xx1xx0x0, 01xx0xx0x1, 01x1xxx00x, 01x0xxx01x, 01xxxx0001, 01xxx0x01x, 01xxxx000x, 011x1xx0xx, 01001xx0xx, 0101xxx0xx}, xx101xx001 \ {
   xx101x1001, xx1011x001, 1x101xx001, 01101xx001, 0x101xx001}, 01x0xxx00x \ {
   01x01xx000, 01x00xx001, 01x0xx1000, 01x0xx100x, 01x0x1x001, 01101xx00x, 01001xx00x}, 01xx0xx1x0 \ {
   01x10xx100, 01x00xx110, 01xx011110, 01xx001100, 01xx011100, 01010xx1x0}}

{1xxx0 \ {10010, 10000, 110x0}, 0x001 \ {01001, 00001}}
{x1x11 \ {01011, 11x11, 11x11}}
{}

{111xx \ {11110, 11100, 11111}, x110x \ {01100, 1110x, x1100}}
{}
{}

{1x0x1 \ {10001, 110x1, 110x1}}
{10xx0 \ {100x0, 10x10}, xx11x \ {1x110, 0111x, 11110}, 01x00 \ {01100, 01000, 01000}}
{
   xx1111x011 \ {
   xx11111011, xx11111011, 011111x011}}

{1001x \ {10010, 10011}}
{}
{}

{101x0 \ {10100, 10110}, 1x1x1 \ {11111, 10101, 10111}}
{1x0xx \ {1x000, 1001x, 1000x}}
{
   1x0x0101x0 \ {
   1x01010100, 1x00010110, 1x0x010100, 1x0x010110, 1x000101x0, 10010101x0, 10000101x0}, 1x0x11x1x1 \ {
   1x0111x101, 1x0011x111, 1x0x111111, 1x0x110101, 1x0x110111, 100111x1x1, 100011x1x1}}

{x11x0 \ {11110, 111x0, x1100}, xx0xx \ {1000x, 0x00x, 00001}, 1xxxx \ {1x11x, 101xx, 10000}}
{1xx01 \ {10x01, 11x01, 10101}, 0x1xx \ {0110x, 001xx, 0x101}, x101x \ {11010, x1011, 01011}}
{
   0x1x0x11x0 \ {
   0x110x1100, 0x100x1110, 0x1x011110, 0x1x0111x0, 0x1x0x1100, 01100x11x0, 001x0x11x0}, x1010x1110 \ {
   x101011110, x101011110, 11010x1110}, 1xx01xx001 \ {
   1xx0110001, 1xx010x001, 1xx0100001, 10x01xx001, 11x01xx001, 10101xx001}, 0x1xxxx0xx \ {
   0x1x1xx0x0, 0x1x0xx0x1, 0x11xxx00x, 0x10xxx01x, 0x1xx1000x, 0x1xx0x00x, 0x1xx00001, 0110xxx0xx, 001xxxx0xx, 0x101xx0xx}, x101xxx01x \ {
   x1011xx010, x1010xx011, 11010xx01x, x1011xx01x, 01011xx01x}, 1xx011xx01 \ {
   1xx0110101, 10x011xx01, 11x011xx01, 101011xx01}, 0x1xx1xxxx \ {
   0x1x11xxx0, 0x1x01xxx1, 0x11x1xx0x, 0x10x1xx1x, 0x1xx1x11x, 0x1xx101xx, 0x1xx10000, 0110x1xxxx, 001xx1xxxx, 0x1011xxxx}, x101x1xx1x \ {
   x10111xx10, x10101xx11, x101x1x11x, x101x1011x, 110101xx1x, x10111xx1x, 010111xx1x}}

{0111x \ {01111, 01110}}
{0x00x \ {00000, 0x001, 0100x}, x1x0x \ {01101, 01001, x100x}, x0xxx \ {00100, 001x1, 00x01}}
{
   x0x1x0111x \ {
   x0x1101110, x0x1001111, x0x1x01111, x0x1x01110, 001110111x}}

{x11x0 \ {011x0, 11100}, xxx0x \ {xx001, x000x, xxx00}, x1x1x \ {x1111, 1101x, x1110}}
{01x0x \ {0100x, 01001, 01101}}
{
   01x00x1100 \ {
   01x0001100, 01x0011100, 01000x1100}, 01x0xxxx0x \ {
   01x01xxx00, 01x00xxx01, 01x0xxx001, 01x0xx000x, 01x0xxxx00, 0100xxxx0x, 01001xxx0x, 01101xxx0x}}

{}
{xx1xx \ {0x101, 101xx, 0x110}, 0xx00 \ {0x100, 01000, 01000}}
{}

{}
{00x1x \ {00010, 0011x, 00110}, x0x1x \ {x0110, 10111, 10x10}}
{}

{}
{10xxx \ {10001, 10011, 10xx0}, x1xxx \ {1101x, x1001, 11xx0}, x1xx1 \ {01111, 11101, 11x11}}
{}

{x1x11 \ {11x11, 11011, 11111}, xxx10 \ {x0110, 00x10, 11x10}}
{xx100 \ {11100, x1100, 1x100}, 1x01x \ {11011, 10010, 1001x}}
{
   1x011x1x11 \ {
   1x01111x11, 1x01111011, 1x01111111, 11011x1x11, 10011x1x11}, 1x010xxx10 \ {
   1x010x0110, 1x01000x10, 1x01011x10, 10010xxx10, 10010xxx10}}

{10xx1 \ {10011, 10001, 10x01}}
{01x1x \ {0101x, 01110}}
{
   01x1110x11 \ {
   01x1110011, 0101110x11}}

{xx010 \ {1x010, 10010, 11010}, xx10x \ {11101, 0x100, 11100}}
{x0x10 \ {x0010, x0110, 00110}, 00xx1 \ {00101, 001x1, 000x1}}
{
   x0x10xx010 \ {
   x0x101x010, x0x1010010, x0x1011010, x0010xx010, x0110xx010, 00110xx010}, 00x01xx101 \ {
   00x0111101, 00101xx101, 00101xx101, 00001xx101}}

{x1xxx \ {01000, x1xx1, 01x00}, 00x01 \ {00001, 00101}}
{x110x \ {11100, 11101, x1100}, 1xx1x \ {11x11, 1x010, 1x011}}
{
   x110xx1x0x \ {
   x1101x1x00, x1100x1x01, x110x01000, x110xx1x01, x110x01x00, 11100x1x0x, 11101x1x0x, x1100x1x0x}, 1xx1xx1x1x \ {
   1xx11x1x10, 1xx10x1x11, 1xx1xx1x11, 11x11x1x1x, 1x010x1x1x, 1x011x1x1x}, x110100x01 \ {
   x110100001, x110100101, 1110100x01}}

{1x00x \ {11000, 10001, 11001}, 10xx1 \ {101x1, 10111}, 10x1x \ {10x10, 10x11, 10111}}
{00xx0 \ {001x0, 00000, 00110}}
{
   00x001x000 \ {
   00x0011000, 001001x000, 000001x000}, 00x1010x10 \ {
   00x1010x10, 0011010x10, 0011010x10}}

{x0x1x \ {00x10, 00x1x}, 11x1x \ {1111x}}
{01xx0 \ {01x00, 010x0}, xx111 \ {11111, 0x111, 1x111}}
{
   01x10x0x10 \ {
   01x1000x10, 01x1000x10, 01010x0x10}, xx111x0x11 \ {
   xx11100x11, 11111x0x11, 0x111x0x11, 1x111x0x11}, 01x1011x10 \ {
   01x1011110, 0101011x10}, xx11111x11 \ {
   xx11111111, 1111111x11, 0x11111x11, 1x11111x11}}

{x1xx1 \ {010x1, 01011, x1x01}}
{0x0x0 \ {0x010, 01000, 0x000}, 011xx \ {01100, 01110, 01110}}
{
   011x1x1xx1 \ {
   01111x1x01, 01101x1x11, 011x1010x1, 011x101011, 011x1x1x01}}

{0xx10 \ {00110, 01110, 0x010}, 01x0x \ {0100x, 01000, 01000}}
{xx1xx \ {x010x, 0110x, 101xx}, 00xx1 \ {00x01, 00011}}
{
   xx1100xx10 \ {
   xx11000110, xx11001110, xx1100x010, 101100xx10}, xx10x01x0x \ {
   xx10101x00, xx10001x01, xx10x0100x, xx10x01000, xx10x01000, x010x01x0x, 0110x01x0x, 1010x01x0x}, 00x0101x01 \ {
   00x0101001, 00x0101x01}}

{x0x1x \ {00x11, 10011, 00x10}, x1xxx \ {x1100, 11011, x1x01}}
{010xx \ {010x0, 01010, 01011}, xx100 \ {00100, 1x100, 11100}}
{
   0101xx0x1x \ {
   01011x0x10, 01010x0x11, 0101x00x11, 0101x10011, 0101x00x10, 01010x0x1x, 01010x0x1x, 01011x0x1x}, 010xxx1xxx \ {
   010x1x1xx0, 010x0x1xx1, 0101xx1x0x, 0100xx1x1x, 010xxx1100, 010xx11011, 010xxx1x01, 010x0x1xxx, 01010x1xxx, 01011x1xxx}, xx100x1x00 \ {
   xx100x1100, 00100x1x00, 1x100x1x00, 11100x1x00}}

{1x0x0 \ {100x0, 11010, 11000}, 00x0x \ {00101, 00x00, 0010x}, x1x11 \ {01111, 01011, 01011}}
{0111x \ {01110, 01111}}
{
   011101x010 \ {
   0111010010, 0111011010, 011101x010}, 01111x1x11 \ {
   0111101111, 0111101011, 0111101011, 01111x1x11}}

{xx1x1 \ {x1101, x01x1, 00101}}
{0011x \ {00110, 00111}}
{
   00111xx111 \ {
   00111x0111, 00111xx111}}

{}
{x1x0x \ {x1101, x100x, 11x01}}
{}

{xx011 \ {x0011, 10011, 0x011}, xx00x \ {1x000, 01000, 01000}}
{}
{}

{1x001 \ {11001, 10001}, 10xx0 \ {10x00, 10100, 100x0}}
{1x011 \ {11011, 10011, 10011}}
{}

{xxx1x \ {x1x11, xx11x, 1011x}, x1x11 \ {11111, 11011, 01111}}
{x01x0 \ {x0100, x0110, 10110}}
{
   x0110xxx10 \ {
   x0110xx110, x011010110, x0110xxx10, 10110xxx10}}

{x0xx0 \ {10000, 00100, x0x00}}
{00xx1 \ {00001, 001x1, 00011}, 1101x \ {11010}, 01x0x \ {01001, 01x01, 0100x}}
{
   11010x0x10 \ {
   11010x0x10}, 01x00x0x00 \ {
   01x0010000, 01x0000100, 01x00x0x00, 01000x0x00}}

{x1x10 \ {11x10, x1110, 01x10}, 110xx \ {1101x, 11000, 11010}}
{1011x \ {10110}}
{
   10110x1x10 \ {
   1011011x10, 10110x1110, 1011001x10, 10110x1x10}, 1011x1101x \ {
   1011111010, 1011011011, 1011x1101x, 1011x11010, 101101101x}}

{1xxx1 \ {11111, 1x011, 10xx1}, 110xx \ {11000, 1101x, 110x1}}
{1xx0x \ {11x00, 10x0x, 10x01}}
{
   1xx011xx01 \ {
   1xx0110x01, 10x011xx01, 10x011xx01}, 1xx0x1100x \ {
   1xx0111000, 1xx0011001, 1xx0x11000, 1xx0x11001, 11x001100x, 10x0x1100x, 10x011100x}}

{x1xxx \ {11x10, 11100, 010xx}}
{}
{}

{01x00 \ {01100, 01000}}
{1xx1x \ {11x10, 11010, 1x111}, 10x10 \ {10110}}
{}

{}
{0x010 \ {01010}, xx101 \ {11101, 00101, 01101}}
{}

{000xx \ {000x0, 0001x, 00011}}
{x11xx \ {x1110, 111xx, x11x0}, x101x \ {x1011, 11011}}
{
   x11xx000xx \ {
   x11x1000x0, x11x0000x1, x111x0000x, x110x0001x, x11xx000x0, x11xx0001x, x11xx00011, x1110000xx, 111xx000xx, x11x0000xx}, x101x0001x \ {
   x101100010, x101000011, x101x00010, x101x0001x, x101x00011, x10110001x, 110110001x}}

{01x1x \ {0111x, 01011}}
{0xxx0 \ {00100, 01110, 0x010}, xx000 \ {0x000, 10000, 10000}}
{
   0xx1001x10 \ {
   0xx1001110, 0111001x10, 0x01001x10}}

{x100x \ {01000, 0100x, 11001}}
{11xx1 \ {11111, 111x1}, x1xx0 \ {11x00, 11100, x1110}}
{
   11x01x1001 \ {
   11x0101001, 11x0111001, 11101x1001}, x1x00x1000 \ {
   x1x0001000, x1x0001000, 11x00x1000, 11100x1000}}

{x1xxx \ {11xxx, 1101x, 0111x}, 1xxx1 \ {1x0x1, 10001, 11x01}}
{x00x1 \ {000x1, 00001, x0001}, xx11x \ {x111x, 0x11x, 0x111}}
{
   x00x1x1xx1 \ {
   x0011x1x01, x0001x1x11, x00x111xx1, x00x111011, x00x101111, 000x1x1xx1, 00001x1xx1, x0001x1xx1}, xx11xx1x1x \ {
   xx111x1x10, xx110x1x11, xx11x11x1x, xx11x1101x, xx11x0111x, x111xx1x1x, 0x11xx1x1x, 0x111x1x1x}, x00x11xxx1 \ {
   x00111xx01, x00011xx11, x00x11x0x1, x00x110001, x00x111x01, 000x11xxx1, 000011xxx1, x00011xxx1}, xx1111xx11 \ {
   xx1111x011, x11111xx11, 0x1111xx11, 0x1111xx11}}

{11xx0 \ {11x10, 11110}, x0010 \ {00010, 10010}}
{x0xx0 \ {x0000, x0100, 10110}, x0xx0 \ {10000, x0100, 10x00}}
{
   x0xx011xx0 \ {
   x0x1011x00, x0x0011x10, x0xx011x10, x0xx011110, x000011xx0, x010011xx0, 1011011xx0}, x0xx011xx0 \ {
   x0x1011x00, x0x0011x10, x0xx011x10, x0xx011110, 1000011xx0, x010011xx0, 10x0011xx0}, x0x10x0010 \ {
   x0x1000010, x0x1010010}}

{x110x \ {x1100, 11100, 0110x}, xxx01 \ {xx101, 00001, 1xx01}}
{xx101 \ {x0101, x1101, 11101}, x101x \ {11010, x1010}}
{
   xx101x1101 \ {
   xx10101101, x0101x1101, x1101x1101, 11101x1101}, xx101xxx01 \ {
   xx101xx101, xx10100001, xx1011xx01, x0101xxx01, x1101xxx01, 11101xxx01}}

{x000x \ {x0001, 1000x, 0000x}, x0xxx \ {00101, 00x0x, x000x}}
{10xx0 \ {10010, 101x0, 101x0}}
{
   10x00x0000 \ {
   10x0010000, 10x0000000, 10100x0000, 10100x0000}, 10xx0x0xx0 \ {
   10x10x0x00, 10x00x0x10, 10xx000x00, 10xx0x0000, 10010x0xx0, 101x0x0xx0, 101x0x0xx0}}

{01xxx \ {01x00, 01x0x, 01000}, x11xx \ {01101, 0111x, 1110x}}
{1xxx1 \ {10x01, 100x1, 1x101}}
{
   1xxx101xx1 \ {
   1xx1101x01, 1xx0101x11, 1xxx101x01, 10x0101xx1, 100x101xx1, 1x10101xx1}, 1xxx1x11x1 \ {
   1xx11x1101, 1xx01x1111, 1xxx101101, 1xxx101111, 1xxx111101, 10x01x11x1, 100x1x11x1, 1x101x11x1}}

{}
{x001x \ {00010, 10011, 0001x}, 0x0x1 \ {0x011, 0x001, 01001}}
{}

{01xx1 \ {011x1, 010x1}, 0xxx0 \ {01110, 00100, 01000}}
{}
{}

{1xxx0 \ {100x0, 10010, 110x0}}
{x0110 \ {00110}}
{
   x01101xx10 \ {
   x011010010, x011010010, x011011010, 001101xx10}}

{10x1x \ {10x11, 10011, 10111}, 0xx0x \ {0xx01, 0x001, 0x000}}
{x0x11 \ {10x11, 10011, x0011}}
{
   x0x1110x11 \ {
   x0x1110x11, x0x1110011, x0x1110111, 10x1110x11, 1001110x11, x001110x11}}

{10x00 \ {10000, 10100}, 11xxx \ {11001, 11111, 111xx}}
{1x1x1 \ {11111, 11101, 10101}}
{
   1x1x111xx1 \ {
   1x11111x01, 1x10111x11, 1x1x111001, 1x1x111111, 1x1x1111x1, 1111111xx1, 1110111xx1, 1010111xx1}}

{0x01x \ {00011, 0101x, 0101x}, 0xx01 \ {01001, 0x001}}
{10xxx \ {10111, 100xx, 10x01}}
{
   10x1x0x01x \ {
   10x110x010, 10x100x011, 10x1x00011, 10x1x0101x, 10x1x0101x, 101110x01x, 1001x0x01x}, 10x010xx01 \ {
   10x0101001, 10x010x001, 100010xx01, 10x010xx01}}

{}
{11xxx \ {11110, 1110x, 11x1x}, x101x \ {x1011, 0101x, 11011}, 01x1x \ {01x10, 0101x, 0111x}}
{}

{01x0x \ {0100x, 01101, 01101}}
{11xx0 \ {11100, 11010, 11110}, xx1x0 \ {00100, 00110, 00110}, 110xx \ {11010, 110x1, 1101x}}
{
   11x0001x00 \ {
   11x0001000, 1110001x00}, xx10001x00 \ {
   xx10001000, 0010001x00}, 1100x01x0x \ {
   1100101x00, 1100001x01, 1100x0100x, 1100x01101, 1100x01101, 1100101x0x}}

{1001x \ {10010, 10011}, x110x \ {01100, x1101}, xx1xx \ {0x10x, 1x11x, 0x101}}
{}
{}

{xx10x \ {00100, 10101, xx101}}
{1x01x \ {1x011, 1001x}}
{}

{xx0x0 \ {01010, 010x0, xx010}}
{1x1x0 \ {1x100, 111x0}}
{
   1x1x0xx0x0 \ {
   1x110xx000, 1x100xx010, 1x1x001010, 1x1x0010x0, 1x1x0xx010, 1x100xx0x0, 111x0xx0x0}}

{00xx0 \ {000x0}}
{}
{}

{}
{xxx11 \ {01111, 10111, 11x11}, x00x1 \ {000x1, 10001, 00011}, x0xx0 \ {00000, x0x10, 10x00}}
{}

{}
{xxx01 \ {0x001, x1x01, 11x01}, 11x0x \ {11000, 11101, 11x00}}
{}

{1x001 \ {10001, 11001}, 011x1 \ {01111}}
{}
{}

{01x0x \ {01x01, 01000}}
{xxx10 \ {xx110, 01010, 01010}}
{}

{0x000 \ {01000, 00000}}
{0x1x0 \ {00100, 01110, 00110}, xx11x \ {x1111, 10110, 0x111}}
{
   0x1000x000 \ {
   0x10001000, 0x10000000, 001000x000}}

{11x0x \ {1110x, 11101, 11000}, 0xx11 \ {01x11, 0x111}}
{10x00 \ {10100}, x0xx0 \ {00x00, x0110, 00000}}
{
   10x0011x00 \ {
   10x0011100, 10x0011000, 1010011x00}, x0x0011x00 \ {
   x0x0011100, x0x0011000, 00x0011x00, 0000011x00}}

{}
{x1x10 \ {11x10, x1110}, 0xx01 \ {00101, 0x101, 01001}, x001x \ {10010, 1001x, x0010}}
{}

{0xx1x \ {00010, 01x10, 0xx10}, 00xx1 \ {00101, 001x1, 00x01}}
{x1x01 \ {11101, 11001, x1001}, xx1xx \ {111x0, 01111, 0x100}}
{
   xx11x0xx1x \ {
   xx1110xx10, xx1100xx11, xx11x00010, xx11x01x10, xx11x0xx10, 111100xx1x, 011110xx1x}, x1x0100x01 \ {
   x1x0100101, x1x0100101, x1x0100x01, 1110100x01, 1100100x01, x100100x01}, xx1x100xx1 \ {
   xx11100x01, xx10100x11, xx1x100101, xx1x1001x1, xx1x100x01, 0111100xx1}}

{xxxxx \ {x1xxx, 1x111, 010x1}, xx0xx \ {11010, 1x01x, 0x0xx}, 01xx1 \ {01101, 01011, 01x01}}
{10x0x \ {10001, 1010x}, 01x0x \ {01100, 01101}}
{
   10x0xxxx0x \ {
   10x01xxx00, 10x00xxx01, 10x0xx1x0x, 10x0x01001, 10001xxx0x, 1010xxxx0x}, 01x0xxxx0x \ {
   01x01xxx00, 01x00xxx01, 01x0xx1x0x, 01x0x01001, 01100xxx0x, 01101xxx0x}, 10x0xxx00x \ {
   10x01xx000, 10x00xx001, 10x0x0x00x, 10001xx00x, 1010xxx00x}, 01x0xxx00x \ {
   01x01xx000, 01x00xx001, 01x0x0x00x, 01100xx00x, 01101xx00x}, 10x0101x01 \ {
   10x0101101, 10x0101x01, 1000101x01, 1010101x01}, 01x0101x01 \ {
   01x0101101, 01x0101x01, 0110101x01}}

{}
{}
{}

{}
{10x10 \ {10110, 10010, 10010}, x10xx \ {110xx, x1000, 11011}}
{}

{00x1x \ {00x10, 0011x, 00011}, 01x01 \ {01001, 01101}, xxxx0 \ {11010, 01x00, 1xx00}}
{xx11x \ {1x110, 0x11x, x0110}, x1x10 \ {11010, x1010, x1010}}
{
   xx11x00x1x \ {
   xx11100x10, xx11000x11, xx11x00x10, xx11x0011x, xx11x00011, 1x11000x1x, 0x11x00x1x, x011000x1x}, x1x1000x10 \ {
   x1x1000x10, x1x1000110, 1101000x10, x101000x10, x101000x10}, xx110xxx10 \ {
   xx11011010, 1x110xxx10, 0x110xxx10, x0110xxx10}, x1x10xxx10 \ {
   x1x1011010, 11010xxx10, x1010xxx10, x1010xxx10}}

{x10x1 \ {01011, 01001, 010x1}, xx110 \ {00110, x1110, 11110}}
{x0x0x \ {00001, 00x0x, 0010x}, xxx11 \ {1xx11, x1111}}
{
   x0x01x1001 \ {
   x0x0101001, x0x0101001, 00001x1001, 00x01x1001, 00101x1001}, xxx11x1011 \ {
   xxx1101011, xxx1101011, 1xx11x1011, x1111x1011}}

{x001x \ {1001x, 00011}, 1x0x0 \ {11010, 10010, 10010}}
{x1xxx \ {01110, 010x0, 01x0x}, 00x01 \ {00101, 00001}, 0xx01 \ {00001}}
{
   x1x1xx001x \ {
   x1x11x0010, x1x10x0011, x1x1x1001x, x1x1x00011, 01110x001x, 01010x001x}, x1xx01x0x0 \ {
   x1x101x000, x1x001x010, x1xx011010, x1xx010010, x1xx010010, 011101x0x0, 010x01x0x0, 01x001x0x0}}

{xx110 \ {11110, x0110}, x101x \ {0101x, x1011, 1101x}}
{xx00x \ {1x000, 11001, 10001}}
{}

{110xx \ {11000, 110x0}, 1xxx0 \ {1x110, 1x100, 1x0x0}}
{0x0x0 \ {0x000, 01010, 010x0}, xx010 \ {1x010, 11010}}
{
   0x0x0110x0 \ {
   0x01011000, 0x00011010, 0x0x011000, 0x0x0110x0, 0x000110x0, 01010110x0, 010x0110x0}, xx01011010 \ {
   xx01011010, 1x01011010, 1101011010}, 0x0x01xxx0 \ {
   0x0101xx00, 0x0001xx10, 0x0x01x110, 0x0x01x100, 0x0x01x0x0, 0x0001xxx0, 010101xxx0, 010x01xxx0}, xx0101xx10 \ {
   xx0101x110, xx0101x010, 1x0101xx10, 110101xx10}}

{x0010 \ {10010}, 011xx \ {01110, 011x1, 011x1}}
{}
{}

{xx100 \ {11100, x0100, 10100}}
{1xx01 \ {11x01, 11001, 1x101}, x0000 \ {10000}}
{
   x0000xx100 \ {
   x000011100, x0000x0100, x000010100, 10000xx100}}

{01xx1 \ {01101, 01111, 01111}, 0x0xx \ {00010, 010x0, 00001}, 10x0x \ {10x01, 1000x, 1000x}}
{xxx00 \ {01x00, 11100, 01000}, 1xxxx \ {1xx01, 1xxx0, 1x101}}
{
   1xxx101xx1 \ {
   1xx1101x01, 1xx0101x11, 1xxx101101, 1xxx101111, 1xxx101111, 1xx0101xx1, 1x10101xx1}, xxx000x000 \ {
   xxx0001000, 01x000x000, 111000x000, 010000x000}, 1xxxx0x0xx \ {
   1xxx10x0x0, 1xxx00x0x1, 1xx1x0x00x, 1xx0x0x01x, 1xxxx00010, 1xxxx010x0, 1xxxx00001, 1xx010x0xx, 1xxx00x0xx, 1x1010x0xx}, xxx0010x00 \ {
   xxx0010000, xxx0010000, 01x0010x00, 1110010x00, 0100010x00}, 1xx0x10x0x \ {
   1xx0110x00, 1xx0010x01, 1xx0x10x01, 1xx0x1000x, 1xx0x1000x, 1xx0110x0x, 1xx0010x0x, 1x10110x0x}}

{1xxxx \ {10001, 11001, 1x101}}
{0x100 \ {01100}}
{
   0x1001xx00 \ {
   011001xx00}}

{00xx1 \ {000x1, 00001, 00111}}
{}
{}

{x1x00 \ {01000, 11100, 11000}}
{0x1x0 \ {01110, 011x0}}
{
   0x100x1x00 \ {
   0x10001000, 0x10011100, 0x10011000, 01100x1x00}}

{0xx10 \ {01010, 00010, 00x10}, 1x00x \ {1100x, 10000, 1000x}}
{xxxx1 \ {00011, 010x1, 1x1x1}}
{
   xxx011x001 \ {
   xxx0111001, xxx0110001, 010011x001, 1x1011x001}}

{xxxxx \ {x1xx0, 11x01, xx1x0}}
{111xx \ {1110x, 111x0, 111x0}}
{
   111xxxxxxx \ {
   111x1xxxx0, 111x0xxxx1, 1111xxxx0x, 1110xxxx1x, 111xxx1xx0, 111xx11x01, 111xxxx1x0, 1110xxxxxx, 111x0xxxxx, 111x0xxxxx}}

{xx00x \ {1x000, 0x000, 1000x}}
{xx10x \ {0110x, x110x, 00101}, xxxxx \ {x11x0, 0x111, xx1xx}}
{
   xx10xxx00x \ {
   xx101xx000, xx100xx001, xx10x1x000, xx10x0x000, xx10x1000x, 0110xxx00x, x110xxx00x, 00101xx00x}, xxx0xxx00x \ {
   xxx01xx000, xxx00xx001, xxx0x1x000, xxx0x0x000, xxx0x1000x, x1100xx00x, xx10xxx00x}}

{1x011 \ {11011, 10011}, 1x0xx \ {110x1, 1x00x, 1x011}}
{x1xxx \ {x1111, x1xx0, 01110}}
{
   x1x111x011 \ {
   x1x1111011, x1x1110011, x11111x011}, x1xxx1x0xx \ {
   x1xx11x0x0, x1xx01x0x1, x1x1x1x00x, x1x0x1x01x, x1xxx110x1, x1xxx1x00x, x1xxx1x011, x11111x0xx, x1xx01x0xx, 011101x0xx}}

{x00x0 \ {00000, x0010}, 0xxx1 \ {00x11, 00011, 01011}}
{x100x \ {1100x, 0100x, x1000}}
{
   x1000x0000 \ {
   x100000000, 11000x0000, 01000x0000, x1000x0000}, x10010xx01 \ {
   110010xx01, 010010xx01}}

{x011x \ {10111, 0011x, 10110}, xx100 \ {1x100, x1100, 11100}}
{x0100 \ {10100, 00100, 00100}}
{
   x0100xx100 \ {
   x01001x100, x0100x1100, x010011100, 10100xx100, 00100xx100, 00100xx100}}

{1x010 \ {11010, 10010, 10010}, xxxxx \ {0x0xx, x1xx1, x0001}}
{xxx01 \ {00x01, x0x01, x1x01}}
{
   xxx01xxx01 \ {
   xxx010x001, xxx01x1x01, xxx01x0001, 00x01xxx01, x0x01xxx01, x1x01xxx01}}

{}
{1xx0x \ {1x10x, 11000, 1xx00}, x0x00 \ {10x00, x0000}}
{}

{xxx01 \ {0xx01, 00101, 01101}}
{xx0x0 \ {x1010, 10000, 1x000}, 0x11x \ {0x110, 01111, 01111}}
{}

{11x10 \ {11010, 11110}, 0010x \ {00101, 00100, 00100}, 11x11 \ {11011}}
{xxx10 \ {10x10, 0xx10, 11010}, x11xx \ {01110, x11x1, 1111x}, xx1xx \ {1x11x, 1x101, x0100}}
{
   xxx1011x10 \ {
   xxx1011010, xxx1011110, 10x1011x10, 0xx1011x10, 1101011x10}, x111011x10 \ {
   x111011010, x111011110, 0111011x10, 1111011x10}, xx11011x10 \ {
   xx11011010, xx11011110, 1x11011x10}, x110x0010x \ {
   x110100100, x110000101, x110x00101, x110x00100, x110x00100, x11010010x}, xx10x0010x \ {
   xx10100100, xx10000101, xx10x00101, xx10x00100, xx10x00100, 1x1010010x, x01000010x}, x111111x11 \ {
   x111111011, x111111x11, 1111111x11}, xx11111x11 \ {
   xx11111011, 1x11111x11}}

{1xx10 \ {1x110, 11110, 11x10}, xx10x \ {x0101, 01101, 0010x}}
{01xxx \ {01x0x, 01100, 0101x}}
{
   01x101xx10 \ {
   01x101x110, 01x1011110, 01x1011x10, 010101xx10}, 01x0xxx10x \ {
   01x01xx100, 01x00xx101, 01x0xx0101, 01x0x01101, 01x0x0010x, 01x0xxx10x, 01100xx10x}}

{}
{10xxx \ {10001, 100x1}}
{}

{11x1x \ {11111, 11011, 11010}, xx000 \ {00000, 10000}}
{xx101 \ {00101, 11101}, 0x100 \ {00100}, x0x1x \ {0011x, x001x, x0010}}
{
   x0x1x11x1x \ {
   x0x1111x10, x0x1011x11, x0x1x11111, x0x1x11011, x0x1x11010, 0011x11x1x, x001x11x1x, x001011x1x}, 0x100xx000 \ {
   0x10000000, 0x10010000, 00100xx000}}

{xxx00 \ {01100, 00x00, 00000}}
{x10x1 \ {11001, x1001, 11011}}
{}

{000xx \ {0000x, 000x1, 000x0}, 11xxx \ {1100x, 11001, 11x00}}
{1xxxx \ {10xxx, 110x0, 111x0}}
{
   1xxxx000xx \ {
   1xxx1000x0, 1xxx0000x1, 1xx1x0000x, 1xx0x0001x, 1xxxx0000x, 1xxxx000x1, 1xxxx000x0, 10xxx000xx, 110x0000xx, 111x0000xx}, 1xxxx11xxx \ {
   1xxx111xx0, 1xxx011xx1, 1xx1x11x0x, 1xx0x11x1x, 1xxxx1100x, 1xxxx11001, 1xxxx11x00, 10xxx11xxx, 110x011xxx, 111x011xxx}}

{0x10x \ {01100, 00101, 0x101}, 1xx10 \ {11110, 1x010, 1x010}}
{1x11x \ {1111x, 10111, 10110}}
{
   1x1101xx10 \ {
   1x11011110, 1x1101x010, 1x1101x010, 111101xx10, 101101xx10}}

{0xx0x \ {01100, 00x01, 00x00}, x01xx \ {10101, 10110, 1010x}}
{011xx \ {0111x, 0110x, 011x1}}
{
   0110x0xx0x \ {
   011010xx00, 011000xx01, 0110x01100, 0110x00x01, 0110x00x00, 0110x0xx0x, 011010xx0x}, 011xxx01xx \ {
   011x1x01x0, 011x0x01x1, 0111xx010x, 0110xx011x, 011xx10101, 011xx10110, 011xx1010x, 0111xx01xx, 0110xx01xx, 011x1x01xx}}

{001x0 \ {00100, 00110}, 1x0xx \ {10011, 11000, 1000x}}
{x011x \ {0011x, 00111}}
{
   x011000110 \ {
   x011000110, 0011000110}, x011x1x01x \ {
   x01111x010, x01101x011, x011x10011, 0011x1x01x, 001111x01x}}

{01xxx \ {01xx1, 01110, 01110}, 0xxx1 \ {01x01, 000x1, 001x1}}
{00xx1 \ {001x1, 00001}}
{
   00xx101xx1 \ {
   00x1101x01, 00x0101x11, 00xx101xx1, 001x101xx1, 0000101xx1}, 00xx10xxx1 \ {
   00x110xx01, 00x010xx11, 00xx101x01, 00xx1000x1, 00xx1001x1, 001x10xxx1, 000010xxx1}}

{0x10x \ {0110x, 00100, 00101}}
{1x00x \ {10000, 11000, 10001}, x1x0x \ {01101, 11000, 01x0x}}
{
   1x00x0x10x \ {
   1x0010x100, 1x0000x101, 1x00x0110x, 1x00x00100, 1x00x00101, 100000x10x, 110000x10x, 100010x10x}, x1x0x0x10x \ {
   x1x010x100, x1x000x101, x1x0x0110x, x1x0x00100, x1x0x00101, 011010x10x, 110000x10x, 01x0x0x10x}}

{xxxx0 \ {0xx10, 01x00, x0xx0}, x1x0x \ {01101, 11001, 01000}}
{0xx10 \ {01010, 01110, 00110}, xx110 \ {01110, 11110, 10110}}
{
   0xx10xxx10 \ {
   0xx100xx10, 0xx10x0x10, 01010xxx10, 01110xxx10, 00110xxx10}, xx110xxx10 \ {
   xx1100xx10, xx110x0x10, 01110xxx10, 11110xxx10, 10110xxx10}}

{xxxxx \ {1xxxx, x0111, 0x0x1}, 0x01x \ {0001x, 01010, 01010}}
{x0x11 \ {10x11, 00111, 10011}}
{
   x0x11xxx11 \ {
   x0x111xx11, x0x11x0111, x0x110x011, 10x11xxx11, 00111xxx11, 10011xxx11}, x0x110x011 \ {
   x0x1100011, 10x110x011, 001110x011, 100110x011}}

{11xx1 \ {11x11, 110x1}}
{00x1x \ {00x10, 0011x, 00111}}
{
   00x1111x11 \ {
   00x1111x11, 00x1111011, 0011111x11, 0011111x11}}

{110x1 \ {11011}, 001x0 \ {00110, 00100, 00100}}
{xx01x \ {x1010, x101x, xx010}, 1x01x \ {1x011, 1x010, 10010}, xxx0x \ {11001, 01000, 01x00}}
{
   xx01111011 \ {
   xx01111011, x101111011}, 1x01111011 \ {
   1x01111011, 1x01111011}, xxx0111001 \ {
   1100111001}, xx01000110 \ {
   xx01000110, x101000110, x101000110, xx01000110}, 1x01000110 \ {
   1x01000110, 1x01000110, 1001000110}, xxx0000100 \ {
   xxx0000100, xxx0000100, 0100000100, 01x0000100}}

{x1xx0 \ {11x00, 01x00}, xx101 \ {0x101, 10101, 00101}}
{001x0 \ {00100, 00110, 00110}, x1x10 \ {01010, 11110}}
{
   001x0x1xx0 \ {
   00110x1x00, 00100x1x10, 001x011x00, 001x001x00, 00100x1xx0, 00110x1xx0, 00110x1xx0}, x1x10x1x10 \ {
   01010x1x10, 11110x1x10}}

{x1x01 \ {11x01, 11001, 11001}, 11xx0 \ {11x00, 11000, 110x0}, xx10x \ {11101, 01100, 00100}}
{xxxx1 \ {1x1x1, 011x1, xxx11}, x11x1 \ {11101, 01101, 11111}}
{
   xxx01x1x01 \ {
   xxx0111x01, xxx0111001, xxx0111001, 1x101x1x01, 01101x1x01}, x1101x1x01 \ {
   x110111x01, x110111001, x110111001, 11101x1x01, 01101x1x01}, xxx01xx101 \ {
   xxx0111101, 1x101xx101, 01101xx101}, x1101xx101 \ {
   x110111101, 11101xx101, 01101xx101}}

{xx1x0 \ {111x0, 1x100, 0x1x0}, 1x0xx \ {1100x, 1x0x0, 11011}, xxxx1 \ {01011, 10111, 01xx1}}
{1xxxx \ {1x1xx, 1111x, 10x00}}
{
   1xxx0xx1x0 \ {
   1xx10xx100, 1xx00xx110, 1xxx0111x0, 1xxx01x100, 1xxx00x1x0, 1x1x0xx1x0, 11110xx1x0, 10x00xx1x0}, 1xxxx1x0xx \ {
   1xxx11x0x0, 1xxx01x0x1, 1xx1x1x00x, 1xx0x1x01x, 1xxxx1100x, 1xxxx1x0x0, 1xxxx11011, 1x1xx1x0xx, 1111x1x0xx, 10x001x0xx}, 1xxx1xxxx1 \ {
   1xx11xxx01, 1xx01xxx11, 1xxx101011, 1xxx110111, 1xxx101xx1, 1x1x1xxxx1, 11111xxxx1}}

{xx011 \ {01011, x1011, 00011}, x01xx \ {001xx, 0011x, 1010x}}
{x11xx \ {x11x1, 111xx, 011x0}, x0x1x \ {10x11, 10010}}
{
   x1111xx011 \ {
   x111101011, x1111x1011, x111100011, x1111xx011, 11111xx011}, x0x11xx011 \ {
   x0x1101011, x0x11x1011, x0x1100011, 10x11xx011}, x11xxx01xx \ {
   x11x1x01x0, x11x0x01x1, x111xx010x, x110xx011x, x11xx001xx, x11xx0011x, x11xx1010x, x11x1x01xx, 111xxx01xx, 011x0x01xx}, x0x1xx011x \ {
   x0x11x0110, x0x10x0111, x0x1x0011x, x0x1x0011x, 10x11x011x, 10010x011x}}

{x000x \ {0000x, 00001, x0000}, 0000x \ {00000}}
{00x1x \ {00011, 00111}}
{}

{x111x \ {11111}}
{011xx \ {011x0, 0111x, 0111x}, x1xx1 \ {x1x11, x1111, 11111}}
{
   0111xx111x \ {
   01111x1110, 01110x1111, 0111x11111, 01110x111x, 0111xx111x, 0111xx111x}, x1x11x1111 \ {
   x1x1111111, x1x11x1111, x1111x1111, 11111x1111}}

{1xx1x \ {11x1x, 10111}, x011x \ {0011x, 1011x, 10111}, x110x \ {x1100, x1101, 01100}}
{0xx11 \ {01x11, 01111, 00111}, x1001 \ {11001, 01001}}
{
   0xx111xx11 \ {
   0xx1111x11, 0xx1110111, 01x111xx11, 011111xx11, 001111xx11}, 0xx11x0111 \ {
   0xx1100111, 0xx1110111, 0xx1110111, 01x11x0111, 01111x0111, 00111x0111}, x1001x1101 \ {
   x1001x1101, 11001x1101, 01001x1101}}

{1x10x \ {10101, 10100, 11100}, 00xx0 \ {00100, 00x00, 00x00}}
{xx110 \ {11110, 1x110, 00110}, 0x0xx \ {01000, 010xx, 010x1}, x01x0 \ {001x0, 101x0}}
{
   0x00x1x10x \ {
   0x0011x100, 0x0001x101, 0x00x10101, 0x00x10100, 0x00x11100, 010001x10x, 0100x1x10x, 010011x10x}, x01001x100 \ {
   x010010100, x010011100, 001001x100, 101001x100}, xx11000x10 \ {
   1111000x10, 1x11000x10, 0011000x10}, 0x0x000xx0 \ {
   0x01000x00, 0x00000x10, 0x0x000100, 0x0x000x00, 0x0x000x00, 0100000xx0, 010x000xx0}, x01x000xx0 \ {
   x011000x00, x010000x10, x01x000100, x01x000x00, x01x000x00, 001x000xx0, 101x000xx0}}

{xxx10 \ {11x10, 10110, x0010}}
{01x00 \ {01000}}
{}

{}
{xx111 \ {x1111, 1x111, 11111}}
{}

{x0101 \ {00101, 10101}, x1x01 \ {01101, x1101, x1101}}
{xxx1x \ {1xx1x, xxx10, x0x1x}, 0xx10 \ {01110, 00110, 00110}}
{}

{0x11x \ {0111x, 0x111, 0011x}, 0xx0x \ {0010x, 00000, 01100}}
{}
{}

{1xxx1 \ {10x11, 1xx11, 100x1}, x0011 \ {10011, 00011}}
{}
{}

{}
{01x11 \ {01111, 01011}, 0x11x \ {0111x}}
{}

{1xx10 \ {1x010, 1x110, 10010}, xx00x \ {0x00x, 10000, 0x000}}
{x1x0x \ {01000, x1001, x100x}}
{
   x1x0xxx00x \ {
   x1x01xx000, x1x00xx001, x1x0x0x00x, x1x0x10000, x1x0x0x000, 01000xx00x, x1001xx00x, x100xxx00x}}

{0xx11 \ {00111, 01011, 01x11}, 0x1xx \ {00110, 00100, 001x1}}
{01xx1 \ {01111, 01011, 01x11}, xxx10 \ {11x10, 0x110, x1110}}
{
   01x110xx11 \ {
   01x1100111, 01x1101011, 01x1101x11, 011110xx11, 010110xx11, 01x110xx11}, 01xx10x1x1 \ {
   01x110x101, 01x010x111, 01xx1001x1, 011110x1x1, 010110x1x1, 01x110x1x1}, xxx100x110 \ {
   xxx1000110, 11x100x110, 0x1100x110, x11100x110}}

{1x000 \ {11000, 10000, 10000}, 00xxx \ {00100, 0000x}}
{xxx1x \ {x0011, 10x11, x001x}, x1xx1 \ {x1111, x11x1, 01101}}
{
   xxx1x00x1x \ {
   xxx1100x10, xxx1000x11, x001100x1x, 10x1100x1x, x001x00x1x}, x1xx100xx1 \ {
   x1x1100x01, x1x0100x11, x1xx100001, x111100xx1, x11x100xx1, 0110100xx1}}

{1100x \ {11001, 11000}, 0x1x1 \ {01111, 001x1, 00111}}
{xx01x \ {x101x, 11011, x0010}, xx1x0 \ {1x110, 0x110}}
{
   xx10011000 \ {
   xx10011000}, xx0110x111 \ {
   xx01101111, xx01100111, xx01100111, x10110x111, 110110x111}}

{1110x \ {11101, 11100, 11100}}
{010x1 \ {01011, 01001}, 1xx1x \ {11110, 11011, 1x110}}
{
   0100111101 \ {
   0100111101, 0100111101}}

{10x01 \ {10001}}
{x00xx \ {x0010, 000xx, 10011}, x1x00 \ {11100, 01x00}}
{
   x000110x01 \ {
   x000110001, 0000110x01}}

{001x0 \ {00100, 00110}}
{11xxx \ {11100, 1101x}, xx101 \ {x1101, 1x101, 10101}, 10x10 \ {10110}}
{
   11xx0001x0 \ {
   11x1000100, 11x0000110, 11xx000100, 11xx000110, 11100001x0, 11010001x0}, 10x1000110 \ {
   10x1000110, 1011000110}}

{}
{01x01 \ {01001}}
{}

{x0xx1 \ {x01x1, x0001, 00xx1}, xx1x1 \ {00111, 10111, 1x1x1}}
{x11xx \ {x1111, 0111x, 0110x}, 11x0x \ {1100x, 11101}}
{
   x11x1x0xx1 \ {
   x1111x0x01, x1101x0x11, x11x1x01x1, x11x1x0001, x11x100xx1, x1111x0xx1, 01111x0xx1, 01101x0xx1}, 11x01x0x01 \ {
   11x01x0101, 11x01x0001, 11x0100x01, 11001x0x01, 11101x0x01}, x11x1xx1x1 \ {
   x1111xx101, x1101xx111, x11x100111, x11x110111, x11x11x1x1, x1111xx1x1, 01111xx1x1, 01101xx1x1}, 11x01xx101 \ {
   11x011x101, 11001xx101, 11101xx101}}

{00xx1 \ {00001, 00x01, 00111}}
{100xx \ {10010, 1000x, 10000}, 0xx00 \ {00000, 00100, 01000}, xxxx1 \ {x1x01, 00101, 11xx1}}
{
   100x100xx1 \ {
   1001100x01, 1000100x11, 100x100001, 100x100x01, 100x100111, 1000100xx1}, xxxx100xx1 \ {
   xxx1100x01, xxx0100x11, xxxx100001, xxxx100x01, xxxx100111, x1x0100xx1, 0010100xx1, 11xx100xx1}}

{x00xx \ {x0010, 1001x, x0000}, 010x1 \ {01011, 01001}}
{x0x1x \ {10x1x, x0010, x001x}, 0111x \ {01110, 01111}}
{
   x0x1xx001x \ {
   x0x11x0010, x0x10x0011, x0x1xx0010, x0x1x1001x, 10x1xx001x, x0010x001x, x001xx001x}, 0111xx001x \ {
   01111x0010, 01110x0011, 0111xx0010, 0111x1001x, 01110x001x, 01111x001x}, x0x1101011 \ {
   x0x1101011, 10x1101011, x001101011}, 0111101011 \ {
   0111101011, 0111101011}}

{1xxx1 \ {10101, 100x1, 11xx1}, x0101 \ {10101, 00101}}
{0x00x \ {01000, 0x001, 0100x}}
{
   0x0011xx01 \ {
   0x00110101, 0x00110001, 0x00111x01, 0x0011xx01, 010011xx01}, 0x001x0101 \ {
   0x00110101, 0x00100101, 0x001x0101, 01001x0101}}

{10x0x \ {10x01, 10001}}
{0x1x1 \ {01101, 0x101, 0x101}}
{
   0x10110x01 \ {
   0x10110x01, 0x10110001, 0110110x01, 0x10110x01, 0x10110x01}}

{11xx1 \ {11001, 11011}, xx0x0 \ {1x0x0, x0010, x00x0}}
{1xx01 \ {11x01, 10x01, 10101}, x0xxx \ {10101, x000x, 10xx1}, xx10x \ {01100, 01101, 0110x}}
{
   1xx0111x01 \ {
   1xx0111001, 11x0111x01, 10x0111x01, 1010111x01}, x0xx111xx1 \ {
   x0x1111x01, x0x0111x11, x0xx111001, x0xx111011, 1010111xx1, x000111xx1, 10xx111xx1}, xx10111x01 \ {
   xx10111001, 0110111x01, 0110111x01}, x0xx0xx0x0 \ {
   x0x10xx000, x0x00xx010, x0xx01x0x0, x0xx0x0010, x0xx0x00x0, x0000xx0x0}, xx100xx000 \ {
   xx1001x000, xx100x0000, 01100xx000, 01100xx000}}

{xxx1x \ {00110, xx111, x001x}}
{00x11 \ {00111, 00011}, 0xxx0 \ {01x10, 00100}, x010x \ {10101, x0100, 00100}}
{
   00x11xxx11 \ {
   00x11xx111, 00x11x0011, 00111xxx11, 00011xxx11}, 0xx10xxx10 \ {
   0xx1000110, 0xx10x0010, 01x10xxx10}}

{0xxx0 \ {00000, 0x110, 00110}}
{x11x0 \ {x1110, 01110, x1100}, x00x1 \ {00001, 10001}}
{
   x11x00xxx0 \ {
   x11100xx00, x11000xx10, x11x000000, x11x00x110, x11x000110, x11100xxx0, 011100xxx0, x11000xxx0}}

{}
{0x1x0 \ {011x0, 01110, 00100}}
{}

{1x0x1 \ {110x1, 100x1, 10001}}
{00x10 \ {00010, 00110}, x10xx \ {x1011, 11001, 01010}}
{
   x10x11x0x1 \ {
   x10111x001, x10011x011, x10x1110x1, x10x1100x1, x10x110001, x10111x0x1, 110011x0x1}}

{111x0 \ {11100}, 0x1xx \ {0010x, 01101, 011x0}}
{xx0x0 \ {x0000, 0x010, x1000}}
{
   xx0x0111x0 \ {
   xx01011100, xx00011110, xx0x011100, x0000111x0, 0x010111x0, x1000111x0}, xx0x00x1x0 \ {
   xx0100x100, xx0000x110, xx0x000100, xx0x0011x0, x00000x1x0, 0x0100x1x0, x10000x1x0}}

{x0x1x \ {x0111, 0001x, 1011x}, 111x0 \ {11110, 11100, 11100}}
{}
{}

{x0x00 \ {00x00, x0000, x0100}, 0x101 \ {01101}}
{1xxxx \ {10x11, 1x101, 10x1x}, 0x1x0 \ {011x0, 0x110}}
{
   1xx00x0x00 \ {
   1xx0000x00, 1xx00x0000, 1xx00x0100}, 0x100x0x00 \ {
   0x10000x00, 0x100x0000, 0x100x0100, 01100x0x00}, 1xx010x101 \ {
   1xx0101101, 1x1010x101}}

{xx110 \ {10110, 01110, 0x110}}
{1111x \ {11110, 11111}}
{
   11110xx110 \ {
   1111010110, 1111001110, 111100x110, 11110xx110}}

{x10xx \ {110xx, 1100x, 110x0}, xx0xx \ {x00x1, xx010, x10x1}}
{0011x \ {00111}, xx0x0 \ {100x0, 01000, 1x010}, 0xx0x \ {0x101, 01100, 00001}}
{
   0011xx101x \ {
   00111x1010, 00110x1011, 0011x1101x, 0011x11010, 00111x101x}, xx0x0x10x0 \ {
   xx010x1000, xx000x1010, xx0x0110x0, xx0x011000, xx0x0110x0, 100x0x10x0, 01000x10x0, 1x010x10x0}, 0xx0xx100x \ {
   0xx01x1000, 0xx00x1001, 0xx0x1100x, 0xx0x1100x, 0xx0x11000, 0x101x100x, 01100x100x, 00001x100x}, 0011xxx01x \ {
   00111xx010, 00110xx011, 0011xx0011, 0011xxx010, 0011xx1011, 00111xx01x}, xx0x0xx0x0 \ {
   xx010xx000, xx000xx010, xx0x0xx010, 100x0xx0x0, 01000xx0x0, 1x010xx0x0}, 0xx0xxx00x \ {
   0xx01xx000, 0xx00xx001, 0xx0xx0001, 0xx0xx1001, 0x101xx00x, 01100xx00x, 00001xx00x}}

{x1x10 \ {01110, 11110, x1010}, x1xxx \ {1111x, x1xx0, x1011}}
{x1011 \ {11011, 01011}, 10x0x \ {1000x, 10001, 10x00}, 10x1x \ {10x11, 10x10, 10111}}
{
   10x10x1x10 \ {
   10x1001110, 10x1011110, 10x10x1010, 10x10x1x10}, x1011x1x11 \ {
   x101111111, x1011x1011, 11011x1x11, 01011x1x11}, 10x0xx1x0x \ {
   10x01x1x00, 10x00x1x01, 10x0xx1x00, 1000xx1x0x, 10001x1x0x, 10x00x1x0x}, 10x1xx1x1x \ {
   10x11x1x10, 10x10x1x11, 10x1x1111x, 10x1xx1x10, 10x1xx1011, 10x11x1x1x, 10x10x1x1x, 10111x1x1x}}

{0110x \ {01100, 01101}, x1x00 \ {x1100, 01000}}
{00xx0 \ {001x0, 00010, 00x00}, 00xx1 \ {00x11, 00111, 00001}}
{
   00x0001100 \ {
   00x0001100, 0010001100, 00x0001100}, 00x0101101 \ {
   00x0101101, 0000101101}, 00x00x1x00 \ {
   00x00x1100, 00x0001000, 00100x1x00, 00x00x1x00}}

{x11xx \ {1110x, 111xx, x11x0}, 1x1x1 \ {11101, 11111, 10111}}
{x011x \ {00110, 0011x, x0111}, 011x1 \ {01101}}
{
   x011xx111x \ {
   x0111x1110, x0110x1111, x011x1111x, x011xx1110, 00110x111x, 0011xx111x, x0111x111x}, 011x1x11x1 \ {
   01111x1101, 01101x1111, 011x111101, 011x1111x1, 01101x11x1}, x01111x111 \ {
   x011111111, x011110111, 001111x111, x01111x111}, 011x11x1x1 \ {
   011111x101, 011011x111, 011x111101, 011x111111, 011x110111, 011011x1x1}}

{1x0x1 \ {11001, 1x011, 1x011}, x001x \ {10010, 0001x}}
{0001x \ {00011, 00010}, 00x10 \ {00010, 00110}}
{
   000111x011 \ {
   000111x011, 000111x011, 000111x011}, 0001xx001x \ {
   00011x0010, 00010x0011, 0001x10010, 0001x0001x, 00011x001x, 00010x001x}, 00x10x0010 \ {
   00x1010010, 00x1000010, 00010x0010, 00110x0010}}

{01x01 \ {01001, 01101}}
{01x0x \ {01101, 0100x}}
{
   01x0101x01 \ {
   01x0101001, 01x0101101, 0110101x01, 0100101x01}}

{xx11x \ {x1111, 1x11x, x0111}, x00x1 \ {x0001, 10011, 00001}, x10xx \ {0100x, x100x, x1010}}
{xx0xx \ {10010, 0x00x, x100x}, 0x00x \ {0x000, 0x001, 01000}, 11xx0 \ {11010, 111x0, 11110}}
{
   xx01xxx11x \ {
   xx011xx110, xx010xx111, xx01xx1111, xx01x1x11x, xx01xx0111, 10010xx11x}, 11x10xx110 \ {
   11x101x110, 11010xx110, 11110xx110, 11110xx110}, xx0x1x00x1 \ {
   xx011x0001, xx001x0011, xx0x1x0001, xx0x110011, xx0x100001, 0x001x00x1, x1001x00x1}, 0x001x0001 \ {
   0x001x0001, 0x00100001, 0x001x0001}, xx0xxx10xx \ {
   xx0x1x10x0, xx0x0x10x1, xx01xx100x, xx00xx101x, xx0xx0100x, xx0xxx100x, xx0xxx1010, 10010x10xx, 0x00xx10xx, x100xx10xx}, 0x00xx100x \ {
   0x001x1000, 0x000x1001, 0x00x0100x, 0x00xx100x, 0x000x100x, 0x001x100x, 01000x100x}, 11xx0x10x0 \ {
   11x10x1000, 11x00x1010, 11xx001000, 11xx0x1000, 11xx0x1010, 11010x10x0, 111x0x10x0, 11110x10x0}}

{}
{100xx \ {10011, 10001, 1001x}}
{}

{10x1x \ {10010, 10x11, 10011}, 010x1 \ {01011, 01001}}
{10x10 \ {10110, 10010}}
{
   10x1010x10 \ {
   10x1010010, 1011010x10, 1001010x10}}

{}
{0x0x0 \ {00010, 01000, 010x0}}
{}

{x1001 \ {01001, 11001, 11001}, xx001 \ {01001, x0001, 1x001}}
{0x01x \ {0x011, 01010}}
{}

{x1x1x \ {1111x, 11110, 01011}}
{0x1x0 \ {01100, 01110, 011x0}, x0xxx \ {x00x1, 10010, 000xx}}
{
   0x110x1x10 \ {
   0x11011110, 0x11011110, 01110x1x10, 01110x1x10}, x0x1xx1x1x \ {
   x0x11x1x10, x0x10x1x11, x0x1x1111x, x0x1x11110, x0x1x01011, x0011x1x1x, 10010x1x1x, 0001xx1x1x}}

{xx0x0 \ {0x0x0, 01000, xx010}}
{1x001 \ {11001, 10001, 10001}}
{}

{x000x \ {x0000, x0001, x0001}, 1x0x1 \ {10001, 11001, 1x001}}
{0xx01 \ {01x01, 00001, 01101}, x1xx0 \ {11x10, 01100, x11x0}, xx10x \ {0x101, 1x10x, 11101}}
{
   0xx01x0001 \ {
   0xx01x0001, 0xx01x0001, 01x01x0001, 00001x0001, 01101x0001}, x1x00x0000 \ {
   x1x00x0000, 01100x0000, x1100x0000}, xx10xx000x \ {
   xx101x0000, xx100x0001, xx10xx0000, xx10xx0001, xx10xx0001, 0x101x000x, 1x10xx000x, 11101x000x}, 0xx011x001 \ {
   0xx0110001, 0xx0111001, 0xx011x001, 01x011x001, 000011x001, 011011x001}, xx1011x001 \ {
   xx10110001, xx10111001, xx1011x001, 0x1011x001, 1x1011x001, 111011x001}}

{00xx0 \ {00110, 00x00}}
{00xx0 \ {001x0, 00100, 000x0}, 1010x \ {10100, 10101}, x10xx \ {x1000, x10x0, 110x0}}
{
   00xx000xx0 \ {
   00x1000x00, 00x0000x10, 00xx000110, 00xx000x00, 001x000xx0, 0010000xx0, 000x000xx0}, 1010000x00 \ {
   1010000x00, 1010000x00}, x10x000xx0 \ {
   x101000x00, x100000x10, x10x000110, x10x000x00, x100000xx0, x10x000xx0, 110x000xx0}}

{x00xx \ {1000x, 100x0, 0001x}, x1xx1 \ {111x1, x1011, 11xx1}, 00xx1 \ {00101, 000x1, 001x1}}
{0x10x \ {0110x, 0010x, 00100}, x0101 \ {10101, 00101}, x10xx \ {11011, 11010, x10x0}}
{
   0x10xx000x \ {
   0x101x0000, 0x100x0001, 0x10x1000x, 0x10x10000, 0110xx000x, 0010xx000x, 00100x000x}, x0101x0001 \ {
   x010110001, 10101x0001, 00101x0001}, x10xxx00xx \ {
   x10x1x00x0, x10x0x00x1, x101xx000x, x100xx001x, x10xx1000x, x10xx100x0, x10xx0001x, 11011x00xx, 11010x00xx, x10x0x00xx}, 0x101x1x01 \ {
   0x10111101, 0x10111x01, 01101x1x01, 00101x1x01}, x0101x1x01 \ {
   x010111101, x010111x01, 10101x1x01, 00101x1x01}, x10x1x1xx1 \ {
   x1011x1x01, x1001x1x11, x10x1111x1, x10x1x1011, x10x111xx1, 11011x1xx1}, 0x10100x01 \ {
   0x10100101, 0x10100001, 0x10100101, 0110100x01, 0010100x01}, x010100x01 \ {
   x010100101, x010100001, x010100101, 1010100x01, 0010100x01}, x10x100xx1 \ {
   x101100x01, x100100x11, x10x100101, x10x1000x1, x10x1001x1, 1101100xx1}}

{}
{x0x10 \ {00110, x0110}, 0xx11 \ {00011, 01x11}}
{}

{}
{x10x1 \ {01001, x1011, 01011}, 0xx01 \ {0x001, 00101, 01101}}
{}

{1x110 \ {10110, 11110, 11110}}
{x11x1 \ {11101, x1101, x1101}}
{}

{1x11x \ {11110, 10111, 11111}}
{1xxx0 \ {1x000, 10x00, 110x0}}
{
   1xx101x110 \ {
   1xx1011110, 110101x110}}

{}
{x0xx1 \ {10101, 100x1, x0101}, 1x0xx \ {1001x, 11010}}
{}

{xxxx1 \ {01101, 01001, xx0x1}, 00x10 \ {00110, 00010, 00010}}
{0xx10 \ {00010, 01x10, 01010}, 1x010 \ {11010, 10010}}
{
   0xx1000x10 \ {
   0xx1000110, 0xx1000010, 0xx1000010, 0001000x10, 01x1000x10, 0101000x10}, 1x01000x10 \ {
   1x01000110, 1x01000010, 1x01000010, 1101000x10, 1001000x10}}

{01x1x \ {01x11, 01011}}
{00xx1 \ {001x1, 00101, 00111}, x101x \ {11010, 11011}}
{
   00x1101x11 \ {
   00x1101x11, 00x1101011, 0011101x11, 0011101x11}, x101x01x1x \ {
   x101101x10, x101001x11, x101x01x11, x101x01011, 1101001x1x, 1101101x1x}}

{}
{}
{}

{}
{x000x \ {10001, 1000x, 10000}}
{}

{00xxx \ {00111, 00011, 00x1x}, 010x1 \ {01001, 01011}}
{xxx11 \ {x1111, x0x11, 0x011}, 1x0x1 \ {100x1, 110x1, 10001}}
{
   xxx1100x11 \ {
   xxx1100111, xxx1100011, xxx1100x11, x111100x11, x0x1100x11, 0x01100x11}, 1x0x100xx1 \ {
   1x01100x01, 1x00100x11, 1x0x100111, 1x0x100011, 1x0x100x11, 100x100xx1, 110x100xx1, 1000100xx1}, xxx1101011 \ {
   xxx1101011, x111101011, x0x1101011, 0x01101011}, 1x0x1010x1 \ {
   1x01101001, 1x00101011, 1x0x101001, 1x0x101011, 100x1010x1, 110x1010x1, 10001010x1}}

{x0x1x \ {00110, 1011x, x0011}}
{}
{}

{01x1x \ {01x10, 01111, 01111}, x0x01 \ {10001, 10101, x0101}}
{x110x \ {11101, 01100}, xxx01 \ {11001, 0x101, 01101}}
{
   x1101x0x01 \ {
   x110110001, x110110101, x1101x0101, 11101x0x01}, xxx01x0x01 \ {
   xxx0110001, xxx0110101, xxx01x0101, 11001x0x01, 0x101x0x01, 01101x0x01}}

{1xx0x \ {1x000, 11100, 10000}, 1x01x \ {10011, 1001x}}
{x11xx \ {111xx, x110x, x11x0}}
{
   x110x1xx0x \ {
   x11011xx00, x11001xx01, x110x1x000, x110x11100, x110x10000, 1110x1xx0x, x110x1xx0x, x11001xx0x}, x111x1x01x \ {
   x11111x010, x11101x011, x111x10011, x111x1001x, 1111x1x01x, x11101x01x}}

{}
{}
{}

{xx010 \ {11010, 0x010}}
{xxx10 \ {10110, 10x10, x1010}, 1x011 \ {11011, 10011}}
{
   xxx10xx010 \ {
   xxx1011010, xxx100x010, 10110xx010, 10x10xx010, x1010xx010}}

{0x0xx \ {0101x, 01011, 010x0}, 1x001 \ {10001, 11001, 11001}}
{xx0x1 \ {x10x1, 010x1, 01001}}
{
   xx0x10x0x1 \ {
   xx0110x001, xx0010x011, xx0x101011, xx0x101011, x10x10x0x1, 010x10x0x1, 010010x0x1}, xx0011x001 \ {
   xx00110001, xx00111001, xx00111001, x10011x001, 010011x001, 010011x001}}

{x0010 \ {10010, 00010}, 10x00 \ {10100, 10000}}
{x1x1x \ {0111x, 01011}, x1xx0 \ {x11x0, 01000, 01110}}
{
   x1x10x0010 \ {
   x1x1010010, x1x1000010, 01110x0010}, x1x0010x00 \ {
   x1x0010100, x1x0010000, x110010x00, 0100010x00}}

{x11x1 \ {111x1, 011x1, 11101}, x0x01 \ {10101, 10x01, x0001}}
{xx10x \ {x010x, x1101, 1x10x}, x11x0 \ {011x0, 11100}}
{
   xx101x1101 \ {
   xx10111101, xx10101101, xx10111101, x0101x1101, x1101x1101, 1x101x1101}, xx101x0x01 \ {
   xx10110101, xx10110x01, xx101x0001, x0101x0x01, x1101x0x01, 1x101x0x01}}

{x1x11 \ {11111, x1111, 11x11}, x1x01 \ {01101, x1101, 01x01}}
{10xx1 \ {10011, 10001, 101x1}}
{
   10x11x1x11 \ {
   10x1111111, 10x11x1111, 10x1111x11, 10011x1x11, 10111x1x11}, 10x01x1x01 \ {
   10x0101101, 10x01x1101, 10x0101x01, 10001x1x01, 10101x1x01}}

{xxxx1 \ {0x1x1, 0xxx1, xx0x1}, 1xxxx \ {11xxx, 1x101, 110xx}, 10xx1 \ {10x11, 101x1, 101x1}}
{1101x \ {11011, 11010, 11010}}
{
   11011xxx11 \ {
   110110x111, 110110xx11, 11011xx011, 11011xxx11}, 1101x1xx1x \ {
   110111xx10, 110101xx11, 1101x11x1x, 1101x1101x, 110111xx1x, 110101xx1x, 110101xx1x}, 1101110x11 \ {
   1101110x11, 1101110111, 1101110111, 1101110x11}}

{xxxx0 \ {xxx00, 00010, 01110}, 0x0x0 \ {01000, 00010, 010x0}}
{x1xx0 \ {x1100, 01100, 11x00}, x1010 \ {11010}}
{
   x1xx0xxxx0 \ {
   x1x10xxx00, x1x00xxx10, x1xx0xxx00, x1xx000010, x1xx001110, x1100xxxx0, 01100xxxx0, 11x00xxxx0}, x1010xxx10 \ {
   x101000010, x101001110, 11010xxx10}, x1xx00x0x0 \ {
   x1x100x000, x1x000x010, x1xx001000, x1xx000010, x1xx0010x0, x11000x0x0, 011000x0x0, 11x000x0x0}, x10100x010 \ {
   x101000010, x101001010, 110100x010}}

{}
{x0100 \ {00100}, 00xxx \ {00011, 0011x, 000x1}}
{}

{x10xx \ {010xx, 11010, x1010}, xx100 \ {x0100, 01100}}
{x000x \ {00001, 1000x}, x10x0 \ {11010, x1010, 01010}, xx11x \ {1x11x, 0x110, 1x110}}
{
   x000xx100x \ {
   x0001x1000, x0000x1001, x000x0100x, 00001x100x, 1000xx100x}, x10x0x10x0 \ {
   x1010x1000, x1000x1010, x10x0010x0, x10x011010, x10x0x1010, 11010x10x0, x1010x10x0, 01010x10x0}, xx11xx101x \ {
   xx111x1010, xx110x1011, xx11x0101x, xx11x11010, xx11xx1010, 1x11xx101x, 0x110x101x, 1x110x101x}, x0000xx100 \ {
   x0000x0100, x000001100, 10000xx100}, x1000xx100 \ {
   x1000x0100, x100001100}}

{10xx1 \ {10101, 10x01, 10001}}
{x0xx0 \ {x0110, x0000, 10100}}
{}

{11xxx \ {1110x, 11111, 11100}, 1011x \ {10111, 10110}}
{0x101 \ {00101, 01101}, 10x1x \ {10110, 10010, 10x10}}
{
   0x10111x01 \ {
   0x10111101, 0010111x01, 0110111x01}, 10x1x11x1x \ {
   10x1111x10, 10x1011x11, 10x1x11111, 1011011x1x, 1001011x1x, 10x1011x1x}, 10x1x1011x \ {
   10x1110110, 10x1010111, 10x1x10111, 10x1x10110, 101101011x, 100101011x, 10x101011x}}

{x0xx0 \ {00010, 10000, 00100}, xx0x0 \ {00000, xx000, 010x0}}
{}
{}

{xx1xx \ {10111, x0110, 111x0}}
{00xxx \ {00xx0, 00010}, xxx01 \ {1x001, 01001, 1xx01}}
{
   00xxxxx1xx \ {
   00xx1xx1x0, 00xx0xx1x1, 00x1xxx10x, 00x0xxx11x, 00xxx10111, 00xxxx0110, 00xxx111x0, 00xx0xx1xx, 00010xx1xx}, xxx01xx101 \ {
   1x001xx101, 01001xx101, 1xx01xx101}}

{x1x11 \ {x1011, 01111, 11011}, xx01x \ {10010, 0001x, 0x01x}}
{0x1x1 \ {0x111, 01111, 011x1}, 0xxxx \ {01x0x, 0x10x, 01x00}}
{
   0x111x1x11 \ {
   0x111x1011, 0x11101111, 0x11111011, 0x111x1x11, 01111x1x11, 01111x1x11}, 0xx11x1x11 \ {
   0xx11x1011, 0xx1101111, 0xx1111011}, 0x111xx011 \ {
   0x11100011, 0x1110x011, 0x111xx011, 01111xx011, 01111xx011}, 0xx1xxx01x \ {
   0xx11xx010, 0xx10xx011, 0xx1x10010, 0xx1x0001x, 0xx1x0x01x}}

{xxx00 \ {0xx00, 00000, 10x00}}
{0010x \ {00101, 00100}}
{
   00100xxx00 \ {
   001000xx00, 0010000000, 0010010x00, 00100xxx00}}

{}
{0xx1x \ {0xx10, 00111, 00x1x}, 10x1x \ {1001x}}
{}

{xx100 \ {00100, 0x100, 01100}, 1x011 \ {10011, 11011}}
{11x1x \ {11011, 1111x}}
{
   11x111x011 \ {
   11x1110011, 11x1111011, 110111x011, 111111x011}}

{1x01x \ {10011, 1101x, 1101x}, 0100x \ {01001, 01000}}
{x0xx1 \ {10001, x0011, x0111}, 0xx00 \ {01x00, 00000, 0x000}}
{
   x0x111x011 \ {
   x0x1110011, x0x1111011, x0x1111011, x00111x011, x01111x011}, x0x0101001 \ {
   x0x0101001, 1000101001}, 0xx0001000 \ {
   0xx0001000, 01x0001000, 0000001000, 0x00001000}}

{xxx11 \ {0x011, 00011, xx011}, 1xxx1 \ {1xx11, 10xx1, 11111}}
{x1000 \ {11000, 01000}}
{}

{00xxx \ {0001x, 00110, 001x1}, 1x010 \ {11010, 10010}}
{0110x \ {01100, 01101, 01101}, x1x00 \ {01x00, 01100, 11000}}
{
   0110x00x0x \ {
   0110100x00, 0110000x01, 0110x00101, 0110000x0x, 0110100x0x, 0110100x0x}, x1x0000x00 \ {
   01x0000x00, 0110000x00, 1100000x00}}

{10x1x \ {10x10, 10010, 1011x}, xx00x \ {0x00x, 11001, 01001}, 010x1 \ {01001, 01011, 01011}}
{x010x \ {x0101, 00101}, 110xx \ {11000, 11011}}
{
   1101x10x1x \ {
   1101110x10, 1101010x11, 1101x10x10, 1101x10010, 1101x1011x, 1101110x1x}, x010xxx00x \ {
   x0101xx000, x0100xx001, x010x0x00x, x010x11001, x010x01001, x0101xx00x, 00101xx00x}, 1100xxx00x \ {
   11001xx000, 11000xx001, 1100x0x00x, 1100x11001, 1100x01001, 11000xx00x}, x010101001 \ {
   x010101001, x010101001, 0010101001}, 110x1010x1 \ {
   1101101001, 1100101011, 110x101001, 110x101011, 110x101011, 11011010x1}}

{0x0x0 \ {01010, 00010, 0x010}, 000xx \ {00011, 00000, 0001x}, 1x100 \ {10100, 11100}}
{x1x11 \ {01x11, x1011, 11011}, x111x \ {11110, x1111, 01111}}
{
   x11100x010 \ {
   x111001010, x111000010, x11100x010, 111100x010}, x1x1100011 \ {
   x1x1100011, x1x1100011, 01x1100011, x101100011, 1101100011}, x111x0001x \ {
   x111100010, x111000011, x111x00011, x111x0001x, 111100001x, x11110001x, 011110001x}}

{x1x1x \ {01110, x1110, x1011}}
{x01x0 \ {10110, x0100, 10100}}
{
   x0110x1x10 \ {
   x011001110, x0110x1110, 10110x1x10}}

{}
{}
{}

{1xxx0 \ {1x000, 10110, 10000}}
{1xx10 \ {10x10, 10010, 10010}, x10x0 \ {01000, 110x0, 01010}, x1xx0 \ {111x0, 01000, x1000}}
{
   1xx101xx10 \ {
   1xx1010110, 10x101xx10, 100101xx10, 100101xx10}, x10x01xxx0 \ {
   x10101xx00, x10001xx10, x10x01x000, x10x010110, x10x010000, 010001xxx0, 110x01xxx0, 010101xxx0}, x1xx01xxx0 \ {
   x1x101xx00, x1x001xx10, x1xx01x000, x1xx010110, x1xx010000, 111x01xxx0, 010001xxx0, x10001xxx0}}

{x10xx \ {0101x, 11000, x1000}, 00xxx \ {000x0, 001x1, 001x1}}
{0x1xx \ {00111, 0110x, 0x101}}
{
   0x1xxx10xx \ {
   0x1x1x10x0, 0x1x0x10x1, 0x11xx100x, 0x10xx101x, 0x1xx0101x, 0x1xx11000, 0x1xxx1000, 00111x10xx, 0110xx10xx, 0x101x10xx}, 0x1xx00xxx \ {
   0x1x100xx0, 0x1x000xx1, 0x11x00x0x, 0x10x00x1x, 0x1xx000x0, 0x1xx001x1, 0x1xx001x1, 0011100xxx, 0110x00xxx, 0x10100xxx}}

{x0000 \ {10000, 00000, 00000}, 0x10x \ {01101, 0110x, 0110x}}
{x1xxx \ {01111, 11x1x, 1110x}}
{
   x1x00x0000 \ {
   x1x0010000, x1x0000000, x1x0000000, 11100x0000}, x1x0x0x10x \ {
   x1x010x100, x1x000x101, x1x0x01101, x1x0x0110x, x1x0x0110x, 1110x0x10x}}

{01x1x \ {01x10, 01110, 01110}}
{0100x \ {01000, 01001, 01001}, 1x000 \ {11000, 10000}, 0x110 \ {00110}}
{
   0x11001x10 \ {
   0x11001x10, 0x11001110, 0x11001110, 0011001x10}}

{x00x0 \ {100x0, 00000, x0010}, 1x110 \ {11110}}
{001xx \ {00110, 001x0}, xxx01 \ {0xx01, 11x01, 11001}}
{
   001x0x00x0 \ {
   00110x0000, 00100x0010, 001x0100x0, 001x000000, 001x0x0010, 00110x00x0, 001x0x00x0}, 001101x110 \ {
   0011011110, 001101x110, 001101x110}}

{xxx1x \ {1x11x, 1xx1x, 01010}, 0x0xx \ {00010, 0x00x, 00011}}
{x1xx0 \ {01xx0, x1000, 111x0}}
{
   x1x10xxx10 \ {
   x1x101x110, x1x101xx10, x1x1001010, 01x10xxx10, 11110xxx10}, x1xx00x0x0 \ {
   x1x100x000, x1x000x010, x1xx000010, x1xx00x000, 01xx00x0x0, x10000x0x0, 111x00x0x0}}

{xxx01 \ {x0001, 0xx01, 1x101}, 00x10 \ {00110, 00010}}
{1x1x1 \ {10101, 101x1, 10111}}
{
   1x101xxx01 \ {
   1x101x0001, 1x1010xx01, 1x1011x101, 10101xxx01, 10101xxx01}}

{1x1x1 \ {10111, 10101, 11111}}
{0xx01 \ {01001, 0x001, 01x01}}
{
   0xx011x101 \ {
   0xx0110101, 010011x101, 0x0011x101, 01x011x101}}

{1x1x1 \ {10101, 10111, 10111}, x0xx1 \ {00101, 00x11, 10111}}
{x11x1 \ {x1111, 01111, 01101}}
{
   x11x11x1x1 \ {
   x11111x101, x11011x111, x11x110101, x11x110111, x11x110111, x11111x1x1, 011111x1x1, 011011x1x1}, x11x1x0xx1 \ {
   x1111x0x01, x1101x0x11, x11x100101, x11x100x11, x11x110111, x1111x0xx1, 01111x0xx1, 01101x0xx1}}

{10x1x \ {10010, 10x11, 10x10}, xxxx1 \ {0xxx1, 10xx1, 1x011}}
{110xx \ {11010, 11001}}
{
   1101x10x1x \ {
   1101110x10, 1101010x11, 1101x10010, 1101x10x11, 1101x10x10, 1101010x1x}, 110x1xxxx1 \ {
   11011xxx01, 11001xxx11, 110x10xxx1, 110x110xx1, 110x11x011, 11001xxxx1}}

{}
{10xx0 \ {10000, 10110}, xxx11 \ {01x11, 01011, x0011}, 0xxx0 \ {01xx0, 0xx10, 0x1x0}}
{}

{00xx1 \ {001x1, 00x01, 000x1}, 0x00x \ {0000x, 01000, 0100x}}
{00x0x \ {00001, 00100}, 01xx1 \ {01101, 01x11, 01x11}}
{
   00x0100x01 \ {
   00x0100101, 00x0100x01, 00x0100001, 0000100x01}, 01xx100xx1 \ {
   01x1100x01, 01x0100x11, 01xx1001x1, 01xx100x01, 01xx1000x1, 0110100xx1, 01x1100xx1, 01x1100xx1}, 00x0x0x00x \ {
   00x010x000, 00x000x001, 00x0x0000x, 00x0x01000, 00x0x0100x, 000010x00x, 001000x00x}, 01x010x001 \ {
   01x0100001, 01x0101001, 011010x001}}

{x1x0x \ {01x01, 11x0x, 11x0x}, x1001 \ {01001}}
{00xx1 \ {00111, 00001, 00011}}
{
   00x01x1x01 \ {
   00x0101x01, 00x0111x01, 00x0111x01, 00001x1x01}, 00x01x1001 \ {
   00x0101001, 00001x1001}}

{x1101 \ {01101, 11101}, 101xx \ {101x0, 10110, 10100}}
{001x0 \ {00100}}
{
   001x0101x0 \ {
   0011010100, 0010010110, 001x0101x0, 001x010110, 001x010100, 00100101x0}}

{xx101 \ {11101, x0101, 00101}}
{1011x \ {10111}, x0x10 \ {x0110, x0010, 10x10}}
{}

{0xx10 \ {01110, 00x10, 01010}}
{100xx \ {1000x, 1001x, 10000}, 0x0x1 \ {00001, 010x1, 00011}, 00xxx \ {0010x, 00xx0, 00001}}
{
   100100xx10 \ {
   1001001110, 1001000x10, 1001001010, 100100xx10}, 00x100xx10 \ {
   00x1001110, 00x1000x10, 00x1001010, 00x100xx10}}

{x01x1 \ {101x1, 001x1, 001x1}}
{xx01x \ {x101x, 1x011, 10011}, 0001x \ {00010, 00011, 00011}}
{
   xx011x0111 \ {
   xx01110111, xx01100111, xx01100111, x1011x0111, 1x011x0111, 10011x0111}, 00011x0111 \ {
   0001110111, 0001100111, 0001100111, 00011x0111, 00011x0111}}

{xx011 \ {11011, 0x011, 01011}}
{x10xx \ {110x1, 01010}}
{
   x1011xx011 \ {
   x101111011, x10110x011, x101101011, 11011xx011}}

{x0x01 \ {00001, 00101, 10101}, 1x011 \ {11011, 10011, 10011}, 11xxx \ {11x1x, 11100, 11011}}
{}
{}

{11x0x \ {1110x, 11x00, 11x01}}
{11x00 \ {11100}}
{
   11x0011x00 \ {
   11x0011100, 11x0011x00, 1110011x00}}

{x0xx0 \ {x00x0, x0010, 00000}}
{xx111 \ {01111, 10111, 00111}}
{}

{xxx10 \ {11110, 1x110, 01010}}
{}
{}

{010xx \ {01010, 0101x}, xxxx0 \ {x1010, 10x10, 01x10}}
{}
{}

{1x1x0 \ {11110, 111x0, 10110}, 000xx \ {000x0, 00001}, x0xx0 \ {10110, 10x10, 101x0}}
{1xxx0 \ {11000, 100x0, 11110}}
{
   1xxx01x1x0 \ {
   1xx101x100, 1xx001x110, 1xxx011110, 1xxx0111x0, 1xxx010110, 110001x1x0, 100x01x1x0, 111101x1x0}, 1xxx0000x0 \ {
   1xx1000000, 1xx0000010, 1xxx0000x0, 11000000x0, 100x0000x0, 11110000x0}, 1xxx0x0xx0 \ {
   1xx10x0x00, 1xx00x0x10, 1xxx010110, 1xxx010x10, 1xxx0101x0, 11000x0xx0, 100x0x0xx0, 11110x0xx0}}

{}
{x10xx \ {x10x1, 110x0, 010x1}, x001x \ {x0011, 10010, 10010}}
{}

{xxx1x \ {x111x, 10111, 1x11x}, 01x11 \ {01011}}
{xxx10 \ {0x010, xx110, xx010}, 010x0 \ {01000, 01010}}
{
   xxx10xxx10 \ {
   xxx10x1110, xxx101x110, 0x010xxx10, xx110xxx10, xx010xxx10}, 01010xxx10 \ {
   01010x1110, 010101x110, 01010xxx10}}

{1xx01 \ {10x01, 10101}}
{1011x \ {10110, 10111, 10111}, x1x1x \ {1101x, x111x, 01x10}}
{}

{}
{0x1x0 \ {001x0, 01110, 0x100}, 0xx11 \ {00x11, 00111, 0x011}}
{}

{xxx1x \ {1011x, 1xx1x, 0x110}, x0x11 \ {x0111, 10x11, 00111}}
{0x10x \ {0010x, 01100, 00101}}
{}

{1xx00 \ {10100, 1x100, 11100}}
{1x0xx \ {10010, 100xx, 110xx}, x00x1 \ {x0011, 00001, 00011}}
{
   1x0001xx00 \ {
   1x00010100, 1x0001x100, 1x00011100, 100001xx00, 110001xx00}}

{001x0 \ {00110, 00100, 00100}}
{0xx11 \ {00x11, 01111, 00111}, xx01x \ {x101x, 10011, 1001x}}
{
   xx01000110 \ {
   xx01000110, x101000110, 1001000110}}

{xxx00 \ {1xx00, 00x00, 00100}}
{111xx \ {111x0, 11101, 11101}, 01x0x \ {01000, 0110x, 0100x}}
{
   11100xxx00 \ {
   111001xx00, 1110000x00, 1110000100, 11100xxx00}, 01x00xxx00 \ {
   01x001xx00, 01x0000x00, 01x0000100, 01000xxx00, 01100xxx00, 01000xxx00}}

{xx10x \ {x010x, x0101, 0010x}}
{1x0xx \ {1101x, 10001, 10010}, x1xx1 \ {01x11, 01xx1, 11101}}
{
   1x00xxx10x \ {
   1x001xx100, 1x000xx101, 1x00xx010x, 1x00xx0101, 1x00x0010x, 10001xx10x}, x1x01xx101 \ {
   x1x01x0101, x1x01x0101, x1x0100101, 01x01xx101, 11101xx101}}

{1x11x \ {10111, 11111, 1x110}}
{1x011 \ {10011, 11011}, 1xxxx \ {10xx0, 101x0, 10011}}
{
   1x0111x111 \ {
   1x01110111, 1x01111111, 100111x111, 110111x111}, 1xx1x1x11x \ {
   1xx111x110, 1xx101x111, 1xx1x10111, 1xx1x11111, 1xx1x1x110, 10x101x11x, 101101x11x, 100111x11x}}

{01xx0 \ {011x0, 01x00, 01100}, x00x1 \ {00001, 10011}}
{0x10x \ {0010x, 0x100, 00100}, 1000x \ {10000, 10001, 10001}}
{
   0x10001x00 \ {
   0x10001100, 0x10001x00, 0x10001100, 0010001x00, 0x10001x00, 0010001x00}, 1000001x00 \ {
   1000001100, 1000001x00, 1000001100, 1000001x00}, 0x101x0001 \ {
   0x10100001, 00101x0001}, 10001x0001 \ {
   1000100001, 10001x0001, 10001x0001}}

{00x0x \ {00101, 00x00, 0000x}, 10x01 \ {10101, 10001}}
{1xx01 \ {11101, 1x001}}
{
   1xx0100x01 \ {
   1xx0100101, 1xx0100001, 1110100x01, 1x00100x01}, 1xx0110x01 \ {
   1xx0110101, 1xx0110001, 1110110x01, 1x00110x01}}

{}
{xx00x \ {xx001, x000x, 1000x}}
{}

{111x1 \ {11111}, 1x010 \ {11010, 10010}}
{x1x00 \ {01000, 11100, x1000}, 100xx \ {1001x, 10001, 10001}}
{
   100x1111x1 \ {
   1001111101, 1000111111, 100x111111, 10011111x1, 10001111x1, 10001111x1}, 100101x010 \ {
   1001011010, 1001010010, 100101x010}}

{111xx \ {1110x, 11110, 111x1}, 0xx11 \ {00111, 01011, 00011}, xx00x \ {0x001, x0001, 0100x}}
{x10xx \ {0101x, 1100x}}
{
   x10xx111xx \ {
   x10x1111x0, x10x0111x1, x101x1110x, x100x1111x, x10xx1110x, x10xx11110, x10xx111x1, 0101x111xx, 1100x111xx}, x10110xx11 \ {
   x101100111, x101101011, x101100011, 010110xx11}, x100xxx00x \ {
   x1001xx000, x1000xx001, x100x0x001, x100xx0001, x100x0100x, 1100xxx00x}}

{xxx10 \ {10x10, 0xx10, 00010}}
{x1101 \ {01101, 11101}}
{}

{
   11000110000000000001}

{
   00000000000100011011}

{
   00000000000100011011}

{
   11000110000000000001}

{
   00000000000100011011}

{
   11000000000001000110}

empty
{
   }

false
full
{
   xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}

true
{
   xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx \ {
   xxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxx, 
   xxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxx, 
   xxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxx, 
   xxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxx, 
   xxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxx, 
   xxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxx, 
   xxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxx, 
   xxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxx, 
   xxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxx, 
   xxxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxx, 
   xxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxx0xxxxxxxxxxxxxxxxx, 
   xxxxxxxxxxxx0xxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxx}}

{
   }

{
   }

project
{
   xxxxxxxxxxxxxxxxxx}

{
   }

{
   000000111000000110000000000001, 
   000000100000010000000000001000, 
   000000000100010000000000100000}

{
   000000111000000110, 
   000000100000010000, 
   000000000100010000}

t1 before:{
   000000000100010000000000100000}

t1 after:{
   000000000100010000000000100000, 
   000000111000000110000000000001, 
   000000100000010000000000001000}

delta:{
   xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}

{
   001001001000001001, 
   010001001000001001}

{
   001001001000001001}

filter: (= (:var 0) (:var 1)) {xxx \ {x01, x10}}

filter: (or (= (:var 0) (:var 1)) (= (:var 0) (:var 2))) {xxx \ {001, 110}}

filter: (or (= (:var 0) (:var 1)) (= (:var 0) (:var 2))) {xxx \ {001, 110}}

filter interpreted
filter: true {
   xxxxxxxxxxxxxxxxxx}

filter: false {
   }

filter: (= (:var 0) (:var 2)) {
   xxxxxxxxxxxxxxxxxx \ {
   xxxxxxxx0xxxxxxxx1, 
   xxxxxxxx1xxxxxxxx0, 
   xxxxxxx0xxxxxxxx1x, 
   xxxxxxx1xxxxxxxx0x, 
   xxxxxx0xxxxxxxx1xx, 
   xxxxxx1xxxxxxxx0xx}}

filter: (not (= (:var 0) (:var 2))) {
   xxxxxxxx0xxxxxxxx1, 
   xxxxxxxx1xxxxxxxx0, 
   xxxxxxx0xxxxxxxx1x, 
   xxxxxxx1xxxxxxxx0x, 
   xxxxxx0xxxxxxxx1xx, 
   xxxxxx1xxxxxxxx0xx}

filter: (= (:var 0) #b010) {
   xxxxxxxxxxxxxxx010}

filter: (= ((_ extract 2 1) (:var 0)) #b11) {
   xxxxxxxxxxxxxxx11x}

filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= (:var 3) (:var 4))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0xx1xxxxxxxxxxxx, 
   xx1xx0xxxxxxxxxxxx, 
   x0xx1xxxxxxxxxxxxx, 
   x1xx0xxxxxxxxxxxxx, 
   0xx1xxxxxxxxxxxxxx, 
   1xx0xxxxxxxxxxxxxx}, 
   1xx0xxxxxxxxxxx11x \ {
   1x00x1xxxxxxxxx11x, 
   1x10x0xxxxxxxxx11x, 
   10x01xxxxxxxxxx11x, 
   11x00xxxxxxxxxx11x}, 
   0xx1xxxxxxxxxxx11x \ {
   0x01x1xxxxxxxxx11x, 
   0x11x0xxxxxxxxx11x, 
   00x11xxxxxxxxxx11x, 
   01x10xxxxxxxxxx11x}, 
   x1xx0xxxxxxxxxx11x \ {
   x10x01xxxxxxxxx11x, 
   x11x00xxxxxxxxx11x, 
   01x10xxxxxxxxxx11x, 
   11x00xxxxxxxxxx11x}, 
   11x00xxxxxxxxxx11x \ {
   110001xxxxxxxxx11x, 
   111000xxxxxxxxx11x}, 
   01x10xxxxxxxxxx11x \ {
   010101xxxxxxxxx11x, 
   011100xxxxxxxxx11x}, 
   x0xx1xxxxxxxxxx11x \ {
   x00x11xxxxxxxxx11x, 
   x01x10xxxxxxxxx11x, 
   00x11xxxxxxxxxx11x, 
   10x01xxxxxxxxxx11x}, 
   10x01xxxxxxxxxx11x \ {
   100011xxxxxxxxx11x, 
   101010xxxxxxxxx11x}, 
   00x11xxxxxxxxxx11x \ {
   000111xxxxxxxxx11x, 
   001110xxxxxxxxx11x}, 
   xx1xx0xxxxxxxxx11x \ {
   x01x10xxxxxxxxx11x, 
   x11x00xxxxxxxxx11x, 
   0x11x0xxxxxxxxx11x, 
   1x10x0xxxxxxxxx11x}, 
   1x10x0xxxxxxxxx11x \ {
   101010xxxxxxxxx11x, 
   111000xxxxxxxxx11x}, 
   0x11x0xxxxxxxxx11x \ {
   001110xxxxxxxxx11x, 
   011100xxxxxxxxx11x}, 
   x11x00xxxxxxxxx11x \ {
   011100xxxxxxxxx11x, 
   111000xxxxxxxxx11x}, 
   111000xxxxxxxxx11x, 
   011100xxxxxxxxx11x, 
   x01x10xxxxxxxxx11x \ {
   001110xxxxxxxxx11x, 
   101010xxxxxxxxx11x}, 
   101010xxxxxxxxx11x, 
   001110xxxxxxxxx11x, 
   xx0xx1xxxxxxxxx11x \ {
   x00x11xxxxxxxxx11x, 
   x10x01xxxxxxxxx11x, 
   0x01x1xxxxxxxxx11x, 
   1x00x1xxxxxxxxx11x}, 
   1x00x1xxxxxxxxx11x \ {
   100011xxxxxxxxx11x, 
   110001xxxxxxxxx11x}, 
   0x01x1xxxxxxxxx11x \ {
   000111xxxxxxxxx11x, 
   010101xxxxxxxxx11x}, 
   x10x01xxxxxxxxx11x \ {
   010101xxxxxxxxx11x, 
   110001xxxxxxxxx11x}, 
   110001xxxxxxxxx11x, 
   010101xxxxxxxxx11x, 
   x00x11xxxxxxxxx11x \ {
   000111xxxxxxxxx11x, 
   100011xxxxxxxxx11x}, 
   100011xxxxxxxxx11x, 
   000111xxxxxxxxx11x}

filter: (= ((_ extract 2 1) (:var 3)) ((_ extract 1 0) (:var 4))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0x1xxxxxxxxxxxxx, 
   xx1x0xxxxxxxxxxxxx, 
   x0x1xxxxxxxxxxxxxx, 
   x1x0xxxxxxxxxxxxxx}}

filter: (or (= ((_ extract 2 1) (:var 0)) #b11)
    (= ((_ extract 2 1) (:var 3)) ((_ extract 1 0) (:var 4)))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0x1xxxxxxxxxxxxx, 
   xx1x0xxxxxxxxxxxxx, 
   x0x1xxxxxxxxxxxxxx, 
   x1x0xxxxxxxxxxxxxx}, 
   x1x0xxxxxxxxxxx11x \ {
   x1001xxxxxxxxxx11x, 
   x1100xxxxxxxxxx11x}, 
   x0x1xxxxxxxxxxx11x \ {
   x0011xxxxxxxxxx11x, 
   x0110xxxxxxxxxx11x}, 
   xx1x0xxxxxxxxxx11x \ {
   x0110xxxxxxxxxx11x, 
   x1100xxxxxxxxxx11x}, 
   x1100xxxxxxxxxx11x, 
   x0110xxxxxxxxxx11x, 
   xx0x1xxxxxxxxxx11x \ {
   x0011xxxxxxxxxx11x, 
   x1001xxxxxxxxxx11x}, 
   x1001xxxxxxxxxx11x, 
   x0011xxxxxxxxxx11x}

filter: (or (= (:var 0) (:var 2)) (= (:var 0) (:var 4))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0xxxxx0xxxxxxxx1, 
   x0xxxxxx0xxxxxxx11, 
   x1xxxxxx0xxxxxxx01, 
   0xxxxxxx0xxxxxx1x1, 
   1xxxxxxx0xxxxxx0x1, 
   xx1xxxxx1xxxxxxxx0, 
   x0xxxxxx1xxxxxxx10, 
   x1xxxxxx1xxxxxxx00, 
   0xxxxxxx1xxxxxx1x0, 
   1xxxxxxx1xxxxxx0x0, 
   xx0xxxx0xxxxxxxx11, 
   xx1xxxx0xxxxxxxx10, 
   x0xxxxx0xxxxxxxx1x, 
   0xxxxxx0xxxxxxx11x, 
   1xxxxxx0xxxxxxx01x, 
   xx0xxxx1xxxxxxxx01, 
   xx1xxxx1xxxxxxxx00, 
   x1xxxxx1xxxxxxxx0x, 
   0xxxxxx1xxxxxxx10x, 
   1xxxxxx1xxxxxxx00x, 
   xx0xxx0xxxxxxxx1x1, 
   xx1xxx0xxxxxxxx1x0, 
   x0xxxx0xxxxxxxx11x, 
   x1xxxx0xxxxxxxx10x, 
   0xxxxx0xxxxxxxx1xx, 
   xx0xxx1xxxxxxxx0x1, 
   xx1xxx1xxxxxxxx0x0, 
   x0xxxx1xxxxxxxx01x, 
   x1xxxx1xxxxxxxx00x, 
   1xxxxx1xxxxxxxx0xx}}

filter: (or (= (:var 0) (:var 2)) (= (:var 3) (:var 4))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0xx1xx0xxxxxxxx1, 
   xx1xx0xx0xxxxxxxx1, 
   x0xx1xxx0xxxxxxxx1, 
   x1xx0xxx0xxxxxxxx1, 
   0xx1xxxx0xxxxxxxx1, 
   1xx0xxxx0xxxxxxxx1, 
   xx0xx1xx1xxxxxxxx0, 
   xx1xx0xx1xxxxxxxx0, 
   x0xx1xxx1xxxxxxxx0, 
   x1xx0xxx1xxxxxxxx0, 
   0xx1xxxx1xxxxxxxx0, 
   1xx0xxxx1xxxxxxxx0, 
   xx0xx1x0xxxxxxxx1x, 
   xx1xx0x0xxxxxxxx1x, 
   x0xx1xx0xxxxxxxx1x, 
   x1xx0xx0xxxxxxxx1x, 
   0xx1xxx0xxxxxxxx1x, 
   1xx0xxx0xxxxxxxx1x, 
   xx0xx1x1xxxxxxxx0x, 
   xx1xx0x1xxxxxxxx0x, 
   x0xx1xx1xxxxxxxx0x, 
   x1xx0xx1xxxxxxxx0x, 
   0xx1xxx1xxxxxxxx0x, 
   1xx0xxx1xxxxxxxx0x, 
   xx0xx10xxxxxxxx1xx, 
   xx1xx00xxxxxxxx1xx, 
   x0xx1x0xxxxxxxx1xx, 
   x1xx0x0xxxxxxxx1xx, 
   0xx1xx0xxxxxxxx1xx, 
   1xx0xx0xxxxxxxx1xx, 
   xx0xx11xxxxxxxx0xx, 
   xx1xx01xxxxxxxx0xx, 
   x0xx1x1xxxxxxxx0xx, 
   x1xx0x1xxxxxxxx0xx, 
   0xx1xx1xxxxxxxx0xx, 
   1xx0xx1xxxxxxxx0xx}}

filter: (or (= ((_ extract 2 1) (:var 0)) ((_ extract 1 0) (:var 2)))
    (= (:var 3) (:var 4))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0xx1xx0xxxxxxx1x, 
   xx1xx0xx0xxxxxxx1x, 
   x0xx1xxx0xxxxxxx1x, 
   x1xx0xxx0xxxxxxx1x, 
   0xx1xxxx0xxxxxxx1x, 
   1xx0xxxx0xxxxxxx1x, 
   xx0xx1xx1xxxxxxx0x, 
   xx1xx0xx1xxxxxxx0x, 
   x0xx1xxx1xxxxxxx0x, 
   x1xx0xxx1xxxxxxx0x, 
   0xx1xxxx1xxxxxxx0x, 
   1xx0xxxx1xxxxxxx0x, 
   xx0xx1x0xxxxxxx1xx, 
   xx1xx0x0xxxxxxx1xx, 
   x0xx1xx0xxxxxxx1xx, 
   x1xx0xx0xxxxxxx1xx, 
   0xx1xxx0xxxxxxx1xx, 
   1xx0xxx0xxxxxxx1xx, 
   xx0xx1x1xxxxxxx0xx, 
   xx1xx0x1xxxxxxx0xx, 
   x0xx1xx1xxxxxxx0xx, 
   x1xx0xx1xxxxxxx0xx, 
   0xx1xxx1xxxxxxx0xx, 
   1xx0xxx1xxxxxxx0xx}}

filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= (:var 3) (:var 4))) {
   xxxxxxxxxxxxxxxxxx \ {
   xx0xx1xxxxxxxxxxxx, 
   xx1xx0xxxxxxxxxxxx, 
   x0xx1xxxxxxxxxxxxx, 
   x1xx0xxxxxxxxxxxxx, 
   0xx1xxxxxxxxxxxxxx, 
   1xx0xxxxxxxxxxxxxx}, 
   1xx0xxxxxxxxxxx11x \ {
   1x00x1xxxxxxxxx11x, 
   1x10x0xxxxxxxxx11x, 
   10x01xxxxxxxxxx11x, 
   11x00xxxxxxxxxx11x}, 
   0xx1xxxxxxxxxxx11x \ {
   0x01x1xxxxxxxxx11x, 
   0x11x0xxxxxxxxx11x, 
   00x11xxxxxxxxxx11x, 
   01x10xxxxxxxxxx11x}, 
   x1xx0xxxxxxxxxx11x \ {
   x10x01xxxxxxxxx11x, 
   x11x00xxxxxxxxx11x, 
   01x10xxxxxxxxxx11x, 
   11x00xxxxxxxxxx11x}, 
   11x00xxxxxxxxxx11x \ {
   110001xxxxxxxxx11x, 
   111000xxxxxxxxx11x}, 
   01x10xxxxxxxxxx11x \ {
   010101xxxxxxxxx11x, 
   011100xxxxxxxxx11x}, 
   x0xx1xxxxxxxxxx11x \ {
   x00x11xxxxxxxxx11x, 
   x01x10xxxxxxxxx11x, 
   00x11xxxxxxxxxx11x, 
   10x01xxxxxxxxxx11x}, 
   10x01xxxxxxxxxx11x \ {
   100011xxxxxxxxx11x, 
   101010xxxxxxxxx11x}, 
   00x11xxxxxxxxxx11x \ {
   000111xxxxxxxxx11x, 
   001110xxxxxxxxx11x}, 
   xx1xx0xxxxxxxxx11x \ {
   x01x10xxxxxxxxx11x, 
   x11x00xxxxxxxxx11x, 
   0x11x0xxxxxxxxx11x, 
   1x10x0xxxxxxxxx11x}, 
   1x10x0xxxxxxxxx11x \ {
   101010xxxxxxxxx11x, 
   111000xxxxxxxxx11x}, 
   0x11x0xxxxxxxxx11x \ {
   001110xxxxxxxxx11x, 
   011100xxxxxxxxx11x}, 
   x11x00xxxxxxxxx11x \ {
   011100xxxxxxxxx11x, 
   111000xxxxxxxxx11x}, 
   111000xxxxxxxxx11x, 
   011100xxxxxxxxx11x, 
   x01x10xxxxxxxxx11x \ {
   001110xxxxxxxxx11x, 
   101010xxxxxxxxx11x}, 
   101010xxxxxxxxx11x, 
   001110xxxxxxxxx11x, 
   xx0xx1xxxxxxxxx11x \ {
   x00x11xxxxxxxxx11x, 
   x10x01xxxxxxxxx11x, 
   0x01x1xxxxxxxxx11x, 
   1x00x1xxxxxxxxx11x}, 
   1x00x1xxxxxxxxx11x \ {
   100011xxxxxxxxx11x, 
   110001xxxxxxxxx11x}, 
   0x01x1xxxxxxxxx11x \ {
   000111xxxxxxxxx11x, 
   010101xxxxxxxxx11x}, 
   x10x01xxxxxxxxx11x \ {
   010101xxxxxxxxx11x, 
   110001xxxxxxxxx11x}, 
   110001xxxxxxxxx11x, 
   010101xxxxxxxxx11x, 
   x00x11xxxxxxxxx11x \ {
   000111xxxxxxxxx11x, 
   100011xxxxxxxxx11x}, 
   100011xxxxxxxxx11x, 
   000111xxxxxxxxx11x}

filter: (or (= ((_ extract 2 1) (:var 0)) #b11) (= (:var 3) #b011)) {
   xxxxxxxxxxxxxxx11x, 
   xxx011xxxxxxxxxxxx}

filter: (or (= (:var 0) #b101) (= (:var 3) #b101)) {
   xxxxxxxxxxxxxxx101, 
   xxx101xxxxxxxxxxxx}

filter: (or (= (:var 0) #b111) (= (:var 3) #b111)) {
   xxxxxxxxxxxxxxx111, 
   xxx111xxxxxxxxxxxx}

filter: (not (or (= (:var 0) (:var 2)) (= (:var 3) (:var 4)))) {
   xx0xx1xx0xxxxxxxx1, 
   xx0xx1xx1xxxxxxxx0, 
   xx0xx1x0xxxxxxxx1x, 
   xx0xx1x1xxxxxxxx0x, 
   xx0xx10xxxxxxxx1xx, 
   xx0xx11xxxxxxxx0xx, 
   xx1xx0xx0xxxxxxxx1, 
   xx1xx0xx1xxxxxxxx0, 
   xx1xx0x0xxxxxxxx1x, 
   xx1xx0x1xxxxxxxx0x, 
   xx1xx00xxxxxxxx1xx, 
   xx1xx01xxxxxxxx0xx, 
   x0xx1xxx0xxxxxxxx1, 
   x0xx1xxx1xxxxxxxx0, 
   x0xx1xx0xxxxxxxx1x, 
   x0xx1xx1xxxxxxxx0x, 
   x0xx1x0xxxxxxxx1xx, 
   x0xx1x1xxxxxxxx0xx, 
   x1xx0xxx0xxxxxxxx1, 
   x1xx0xxx1xxxxxxxx0, 
   x1xx0xx0xxxxxxxx1x, 
   x1xx0xx1xxxxxxxx0x, 
   x1xx0x0xxxxxxxx1xx, 
   x1xx0x1xxxxxxxx0xx, 
   0xx1xxxx0xxxxxxxx1, 
   0xx1xxxx1xxxxxxxx0, 
   0xx1xxx0xxxxxxxx1x, 
   0xx1xxx1xxxxxxxx0x, 
   0xx1xx0xxxxxxxx1xx, 
   0xx1xx1xxxxxxxx0xx, 
   1xx0xxxx0xxxxxxxx1, 
   1xx0xxxx1xxxxxxxx0, 
   1xx0xxx0xxxxxxxx1x, 
   1xx0xxx1xxxxxxxx0x, 
   1xx0xx0xxxxxxxx1xx, 
   1xx0xx1xxxxxxxx0xx}

filter: (= (:var 0) (:var 2)) {
   xxxxxxxxxxxxxxxxxx \ {
   xxxxxxxx0xxxxxxxx1, 
   xxxxxxxx1xxxxxxxx0, 
   xxxxxxx0xxxxxxxx1x, 
   xxxxxxx1xxxxxxxx0x, 
   xxxxxx0xxxxxxxx1xx, 
   xxxxxx1xxxxxxxx0xx}}

filter: (not (= (:var 0) (:var 2))) {
   xxxxxxxx0xxxxxxxx1, 
   xxxxxxxx1xxxxxxxx0, 
   xxxxxxx0xxxxxxxx1x, 
   xxxxxxx1xxxxxxxx0x, 
   xxxxxx0xxxxxxxx1xx, 
   xxxxxx1xxxxxxxx0xx}

PASS
(test udoc_relation :time 21.69 :before-memory 4.68 :after-memory 4.68)
PASS
(test string_buffer :time 0.02 :before-memory 4.68 :after-memory 4.68)
PASS
(test string_buffer :time 0.02 :before-memory 4.68 :after-memory 4.68)
PASS
(test map :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test map :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test diff_logic :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test diff_logic :time 0.00 :before-memory 4.68 :after-memory 4.68)
0
2
6
8198
{1, 2, 44} : 1
{1, 2, 4, 44} : 3
PASS
(test uint_set :time 1.22 :before-memory 4.68 :after-memory 4.68)
0
2
6
8198
{1, 2, 44} : 1
{1, 2, 4, 44} : 3
PASS
(test uint_set :time 1.20 :before-memory 4.68 :after-memory 4.68)
PASS
(test list :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test list :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test small_object_allocator :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test small_object_allocator :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test timeout :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test timeout :time 0.00 :before-memory 4.68 :after-memory 4.68)
[hypothesis]: a
#5 := (not a)
[hypothesis]: #5
#5 := (not a)
#6 := [hypothesis]: #5
#4 := [hypothesis]: a
#7 := [unit-resolution #4 #6]: false
[lemma #7]: a
#5 := (not a)
#10 := (or a #5)
#6 := [hypothesis]: #5
#4 := [hypothesis]: a
#7 := [unit-resolution #4 #6]: false
[lemma #7]: #10
PASS
(test proof_checker :time 0.00 :before-memory 4.68 :after-memory 4.68)
[hypothesis]: a
#5 := (not a)
[hypothesis]: #5
#5 := (not a)
#6 := [hypothesis]: #5
#4 := [hypothesis]: a
#7 := [unit-resolution #4 #6]: false
[lemma #7]: a
#5 := (not a)
#10 := (or a #5)
#6 := [hypothesis]: #5
#4 := [hypothesis]: a
#7 := [unit-resolution #4 #6]: false
[lemma #7]: #10
PASS
(test proof_checker :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test simplifier :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test simplifier :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test bit_blaster :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test bit_blaster :time 0.00 :before-memory 4.68 :after-memory 4.68)
(forall ((y S)) (and (p y (:var 1)) (p (:var 2) (:var 3))))
(forall ((y S)) (and (p y (:var 2)) (p (:var 1) (:var 3))))
(forall ((y S)) (and (p y (:var 2)) (p (:var 1) (:var 3))))
(forall ((y S) (x S)) (and (p x y) (p (:var 2) (:var 3))))
(forall ((y S) (x S)) (and (p x y) (p (:var 3) (:var 2))))
(forall ((y S) (x S)) (and (p x y) (p (:var 3) (:var 2))))
PASS
(test var_subst :time 0.01 :before-memory 4.68 :after-memory 4.68)
(forall ((y S)) (and (p y (:var 1)) (p (:var 2) (:var 3))))
(forall ((y S)) (and (p y (:var 2)) (p (:var 1) (:var 3))))
(forall ((y S)) (and (p y (:var 2)) (p (:var 1) (:var 3))))
(forall ((y S) (x S)) (and (p x y) (p (:var 2) (:var 3))))
(forall ((y S) (x S)) (and (p x y) (p (:var 3) (:var 2))))
(forall ((y S) (x S)) (and (p x y) (p (:var 3) (:var 2))))
PASS
(test var_subst :time 0.01 :before-memory 4.68 :after-memory 4.68)
ERROR: unexpected character: '-1 -1'.
WARNING: parser error
WARNING: parser error
WARNING: parser error
PASS
(test simple_parser :time 0.00 :before-memory 4.68 :after-memory 4.68)
ERROR: unexpected character: '-1 -1'.
WARNING: parser error
WARNING: parser error
WARNING: parser error
PASS
(test simple_parser :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test api :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test api :time 0.00 :before-memory 4.68 :after-memory 4.68)
l_true
l_true
l_true
l_false

a
l_false

a
c
l_false

a
c
e
l_true
PASS
(test cube_clause :time 0.01 :before-memory 4.68 :after-memory 4.68)
l_true
l_true
l_true
l_false

a
l_false

a
c
l_false

a
c
e
l_true
PASS
(test cube_clause :time 0.01 :before-memory 4.68 :after-memory 4.68)
x: (1, 2), y: (-2, 3), z: (-1, 5)
x: (1, 2), y: (-2, 3), z: (-4, 6)
[10, 10]
(-oo, oo)
[-10, oo)
(-oo, 10]
(-10, oo)
(-oo, 10)
[2, 10]
[[-25, 25), 0x1, 0x2, 0x3, 0x4, 0x1, 0x2, 0x3, 0x4]
[[1/3, oo), 0x1, 0x2, 0x3]
[[0, 9], 0x1, 0x2]
[[0, 16), 0x1, 0x2]
[(4, 16], 0x1, 0x1, 0x2]
[[0, 9], 0x1, 0x2]
[[4, 16), 0x2, 0x2, 0x1]
[2, 10] * (0, 1/10] = [(0, 1], 0x1, 0x3, 0x2, 0x3]
[-2, -1) * [-3, 0] = [0, 6]
(1, 2] * [0, 3] = [0, 6]
(1, 2) * [-3, 0] = (-6, 0]
[10, 20] / (0, 1] = [10, oo)
[5, oo)
PASS
(test old_interval :time 0.00 :before-memory 4.68 :after-memory 4.68)
x: (1, 2), y: (-2, 3), z: (-1, 5)
x: (1, 2), y: (-2, 3), z: (-4, 6)
[10, 10]
(-oo, oo)
[-10, oo)
(-oo, 10]
(-10, oo)
(-oo, 10)
[2, 10]
[[-25, 25), 0x1, 0x2, 0x3, 0x4, 0x1, 0x2, 0x3, 0x4]
[[1/3, oo), 0x1, 0x2, 0x3]
[[0, 9], 0x1, 0x2]
[[0, 16), 0x1, 0x2]
[(4, 16], 0x1, 0x1, 0x2]
[[0, 9], 0x1, 0x2]
[[4, 16), 0x2, 0x2, 0x1]
[2, 10] * (0, 1/10] = [(0, 1], 0x1, 0x3, 0x2, 0x3]
[-2, -1) * [-3, 0] = [0, 6]
(1, 2] * [0, 3] = [0, 6]
(1, 2) * [-3, 0] = (-6, 0]
[10, 20] / (0, 1] = [10, oo)
[5, oo)
PASS
(test old_interval :time 0.00 :before-memory 4.68 :after-memory 4.68)
Class a |-> 0
Class b |-> 0
Class c |-> 2
Class d |-> 0
Class (f a) |-> 4
Class (f b) |-> 4
Class (f c) |-> 6
asserting b <= f(a)
Class a |-> 0
Class b |-> 0
Class c |-> 2
Class d |-> 0
Class (f a) |-> 0
Class (f b) |-> 0
Class (f c) |-> 0
Class ((as const (Array Int Int)) 1) |-> 0
Class (store ((as const (Array Int Int)) 1) 1 a) |-> 1
Class (store (store ((as const (Array Int Int)) 1) 1 a) 2 b) |-> 2
Class (store ((as const (Array Int Int)) 1) 2 b) |-> 3
Class (store (store ((as const (Array Int Int)) 1) 2 b) 1 a) |-> 2
PASS
(test get_implied_equalities :time 0.05 :before-memory 4.68 :after-memory 4.68)
Class a |-> 0
Class b |-> 0
Class c |-> 2
Class d |-> 0
Class (f a) |-> 4
Class (f b) |-> 4
Class (f c) |-> 6
asserting b <= f(a)
Class a |-> 0
Class b |-> 0
Class c |-> 2
Class d |-> 0
Class (f a) |-> 0
Class (f b) |-> 0
Class (f c) |-> 0
Class ((as const (Array Int Int)) 1) |-> 0
Class (store ((as const (Array Int Int)) 1) 1 a) |-> 1
Class (store (store ((as const (Array Int Int)) 1) 1 a) 2 b) |-> 2
Class (store ((as const (Array Int Int)) 1) 2 b) |-> 3
Class (store (store ((as const (Array Int Int)) 1) 2 b) 1 a) |-> 2
PASS
(test get_implied_equalities :time 0.05 :before-memory 4.68 :after-memory 4.68)
not solved
 1 3 0 0
PASS
(test arith_simplifier_plugin :time 0.00 :before-memory 4.68 :after-memory 4.68)
not solved
 1 3 0 0
PASS
(test arith_simplifier_plugin :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test matcher :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test matcher :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test object_allocator :time 0.50 :before-memory 4.68 :after-memory 4.68)
PASS
(test object_allocator :time 0.50 :before-memory 4.68 :after-memory 4.68)
i: 0, a: 1
i: 1, a: 2
i: 2, a: 4
i: 3, a: 8
i: 4, a: 16
i: 5, a: 32
i: 6, a: 64
i: 7, a: 128
i: 8, a: 256
i: 9, a: 512
i: 10, a: 1024
i: 11, a: 2048
i: 12, a: 4096
i: 13, a: 8192
i: 14, a: 16384
i: 15, a: 32768
i: 16, a: 65536
i: 17, a: 131072
i: 18, a: 262144
i: 19, a: 524288
i: 20, a: 1048576
i: 21, a: 2097152
i: 22, a: 4194304
i: 23, a: 8388608
i: 24, a: 16777216
i: 25, a: 33554432
i: 26, a: 67108864
i: 27, a: 134217728
i: 28, a: 268435456
i: 29, a: 536870912
i: 30, a: 1073741824
i: 31, a: 2147483648
i: 32, a: 4294967296
i: 33, a: 8589934592
i: 34, a: 17179869184
i: 35, a: 34359738368
i: 36, a: 68719476736
i: 37, a: 137438953472
i: 38, a: 274877906944
i: 39, a: 549755813888
i: 40, a: 1099511627776
i: 41, a: 2199023255552
i: 42, a: 4398046511104
i: 43, a: 8796093022208
i: 44, a: 17592186044416
i: 45, a: 35184372088832
i: 46, a: 70368744177664
i: 47, a: 140737488355328
i: 48, a: 281474976710656
i: 49, a: 562949953421312
i: 50, a: 1125899906842624
i: 51, a: 2251799813685248
i: 52, a: 4503599627370496
i: 53, a: 9007199254740992
i: 54, a: 18014398509481984
i: 55, a: 36028797018963968
i: 56, a: 72057594037927936
i: 57, a: 144115188075855872
i: 58, a: 288230376151711744
i: 59, a: 576460752303423488
i: 60, a: 1152921504606846976
i: 61, a: 2305843009213693952
i: 62, a: 4611686018427387904
i: 63, a: 9223372036854775808
i: 64, a: 18446744073709551616
i: 65, a: 36893488147419103232
i: 66, a: 73786976294838206464
i: 67, a: 147573952589676412928
i: 68, a: 295147905179352825856
i: 69, a: 590295810358705651712
i: 70, a: 1180591620717411303424
i: 71, a: 2361183241434822606848
i: 72, a: 4722366482869645213696
i: 73, a: 9444732965739290427392
i: 74, a: 18889465931478580854784
i: 75, a: 37778931862957161709568
i: 76, a: 75557863725914323419136
i: 77, a: 151115727451828646838272
i: 78, a: 302231454903657293676544
i: 79, a: 604462909807314587353088
i: 80, a: 1208925819614629174706176
i: 81, a: 2417851639229258349412352
i: 82, a: 4835703278458516698824704
i: 83, a: 9671406556917033397649408
i: 84, a: 19342813113834066795298816
i: 85, a: 38685626227668133590597632
i: 86, a: 77371252455336267181195264
i: 87, a: 154742504910672534362390528
i: 88, a: 309485009821345068724781056
i: 89, a: 618970019642690137449562112
i: 90, a: 1237940039285380274899124224
i: 91, a: 2475880078570760549798248448
i: 92, a: 4951760157141521099596496896
i: 93, a: 9903520314283042199192993792
i: 94, a: 19807040628566084398385987584
i: 95, a: 39614081257132168796771975168
i: 96, a: 79228162514264337593543950336
i: 97, a: 158456325028528675187087900672
i: 98, a: 316912650057057350374175801344
i: 99, a: 633825300114114700748351602688
i: 100, a: 1267650600228229401496703205376
i: 101, a: 2535301200456458802993406410752
i: 102, a: 5070602400912917605986812821504
i: 103, a: 10141204801825835211973625643008
i: 104, a: 20282409603651670423947251286016
i: 105, a: 40564819207303340847894502572032
i: 106, a: 81129638414606681695789005144064
i: 107, a: 162259276829213363391578010288128
i: 108, a: 324518553658426726783156020576256
i: 109, a: 649037107316853453566312041152512
i: 110, a: 1298074214633706907132624082305024
i: 111, a: 2596148429267413814265248164610048
i: 112, a: 5192296858534827628530496329220096
i: 113, a: 10384593717069655257060992658440192
i: 114, a: 20769187434139310514121985316880384
i: 115, a: 41538374868278621028243970633760768
i: 116, a: 83076749736557242056487941267521536
i: 117, a: 166153499473114484112975882535043072
i: 118, a: 332306998946228968225951765070086144
i: 119, a: 664613997892457936451903530140172288
i: 120, a: 1329227995784915872903807060280344576
i: 121, a: 2658455991569831745807614120560689152
i: 122, a: 5316911983139663491615228241121378304
i: 123, a: 10633823966279326983230456482242756608
i: 124, a: 21267647932558653966460912964485513216
i: 125, a: 42535295865117307932921825928971026432
i: 126, a: 85070591730234615865843651857942052864
i: 127, a: 170141183460469231731687303715884105728
1 -> 0
5 -> 2
16 -> 4
INT_MAX -> 30
INT_MAX/4 -> 28
a: 4294967295, b: 0
a:  743830354841113335663687211002527445691550917589907496675217161767659946515903600076263877000948019374907893503976771853840367861756440897338976262896407238579353276643916482624223533124218
b:  1937882222342677277387116053280977534409262899937645811166277832716101170624571636418378348969908886088900064046792832493580205233144692189820687388221852603391799141284194640363020431622894326596555625068799460676950
g1: 928662106305234652120879557921815175442048322670528708038
g2: 928662106305234652120879557921815175442048322670528708038

a:  423244545127019618792438730862748722049118837487058745271000712459727364397318440851984856026454492455557614189641867392327220514789420760780556945641520079685474232322016869045741
b:  182222929672515753785101969783594487544258862429066087104055694564941563445191455507873225928449597766705598656724669254876004750206829521085690425533634945782996068953175699584442152308242929110337399062350298775916166788138874978947542587182373661
g1: 217038201978197195291864091167187916339547850802146332153
g2: 217038201978197195291864091167187916339547850802146332153

a:  310103838119063891336976777122867578948333623729346070771232557923859001820492543437683082361226944586540085657409315611867012053909038410063808884528355272796073351151233936822682085395756385090083800636211231025239294605312292990228086
b:  197558326383930519000819094235265951707326694828895942810221682116874518897573702354456916198444669168124268083283110439761267782379095094918451190589997390410831154720551911123186198420613817137430547025
g1: 297406927442181972563797131275944342840026714920379649
g2: 297406927442181972563797131275944342840026714920379649

a:  -195897519009786673164161737266941193168824912957626098305779023941908887039845712000708309407562814699265575763427253545738783923215970946838094642561327662871794020455326231972682635
b:  278065338513590158254176536348448090818064848684445014830573717244814808252049222769322901677391905870623033061267014220515503684173791641175715099940476997123396583903317577816477241106742497
g1: 6373561785356011602141170419082437384673497
g2: 6373561785356011602141170419082437384673497

a:  -32654922446436027058741899029562965539020561125665116238400968481564051194967634810145607077829208904728657855083866655085560369051369477328432919642918595697460025854157025560977853898069419234059727818925993301783
b:  -1422280133407940570417333298297179252442391927691157880492515903864327946747493048985691125279049575373532446138587961748409793629730671639927664112016479080954494783631938291730049845474325784904134010413102186128326964778904603386294050
g1: 1993297756039614944826613596631533823300588213601354561694197189
g2: 1993297756039614944826613596631533823300588213601354561694197189

a:  -7110540771106925536888089600365383835067735966173054839886221720536335874639235430061821910954672215807476108971256430159621696891529847720487282435681112970081089909530832616789243325265089636327212439330356438133372711755429968647727180
b:  -4601556026190218811076567959085186438363567414726232956130049934302618845672933622494657735816969843632340680996385689012763732622843456016176157289
g1: 83828588383091471758550710187633749
g2: 83828588383091471758550710187633749

a:  3883586288873781318422140610013064189119471102985031901157075140629705862325379463369307990551910672449470718263445069787225294651493512756523240157804554281744868888797088343365546440336727985515403837811975818785281
b:  492235715494412102477016690283731544520049406530626943500829517101770796407038337701962888776827336708094951150705457014329920646213833279190246566763866624541457634957
g1: 177187750026158042119971589865139494031817
g2: 177187750026158042119971589865139494031817

a:  -15312818458133023978108424096763938862408733446508435217815598779495981670102741833867291101143148793395780566525501408664405263942396016811172103592214291797159094661281734725703928766915067775
b:  -5489995665877520907139274861753553707527523992180627681502500534301962251476666251559079935412731353595299414739196244935413316063946254184466929944295784747835012925648796444217006963947437
g1: 365523596821045481120388323457650932265196588478012899036547871
g2: 365523596821045481120388323457650932265196588478012899036547871

a:  358395869700145550441928789023417242640742822748606148820818433685637541756773721250278168365740470832197603378433909620619997900696930189154473879389480103537957793941597439777608496930218275
b:  186560762615008128029377780921088526665718829089585804512969432876946136543466657454236459301720151275676207213110127829706471047551077656702196380022377074632516753354679298412696549409847852052772816475114314415
g1: 264124086873354087266689554216392841306534153333605
g2: 264124086873354087266689554216392841306534153333605

a:  -256707005659209767902327024540154169904228554673928598069267428568945315760182206561823563757532616230872027496241647952100685812546647382073159488255169218118521977567799747617978034121129895799317161286096335933421370308596384528632765
b:  -28496679266492579987155136782076778743950557279663825473300046169264561860273968106958728076781705335556424860857204225895423832132351969924003741878243495202089985728425808100
g1: 14501416887925526137719358397703198571290433850612802412118554076001915
g2: 14501416887925526137719358397703198571290433850612802412118554076001915

a:  12327877320932909631945059388178582786653832602873663491698794615700577530592076234844170470136182960236208447471237176908057121737016316700097656100985834945711802519135450202416187665208587433971379747770932020898780870533195084743373788680841
b:  11764058994051390586457821719836568006730616885882800100447653129226044669538307108081607691018631897747590479316397024625331360287330362620719393927098481354704742008193875716056939175145
g1: 439190013864774408569463822085608765673527837
g2: 439190013864774408569463822085608765673527837

a:  -6907827555220978714895161753383857481276625167609793618916668493288519204001641756685615751302948272876700625312836198780602207778957975347675304808013811704646763131009809740053
b:  -373695777548605760443536348789052374143024443628709334254748631350658297952066044853310126889192405207600017029519195675547447962675637547663582843932264592416998032003741213280386933388640742013910491668859
g1: 1444721628472986393621153336607237332287901
g2: 1444721628472986393621153336607237332287901

a:  175195924534597543877507068435321794168550855580411413268634806591077525120299238306725394078598823552540745476118326598089272664004108947594759453156120534613074743960646290416220068439282472452359597
b:  392788686509564479371131780049561597438577823739170155647293781604114585550503182410428638669049949232704218135355953843584090521383038168094786312728853424357334226036856170879249562080408071724688977136206510263532620715608734698219883810732
g1: 722156357310772449393784444643313345855138123607390819222490398861276955832509
g2: 722156357310772449393784444643313345855138123607390819222490398861276955832509

a:  194841413476181816958579846002499081532129127838744578675618585459077512407529029475173596779583349227332545429061223799349779112095141386170719887101907590646593795556369523776557055617543448409823720850357828783
b:  -66373721312962836474182270186426847267961449527253747332653224881884954544933083887753498980181938097821763391202296902009232530567478492882087343909221997842298598532566702326497877561455009980073
g1: 153645626191081527433446595054905631870048097856688609673482187
g2: 153645626191081527433446595054905631870048097856688609673482187

a:  2449680219377093951401775337507902047913374240195182591066534934555064908956586518686800829579210811980971220193540105827994958567359153848664340105128495720957751517767561012385918441182386468745
b:  137338556515472628323196592049899975196776099241320062975800551961376492203595694391490630475246871587287632996750797065336520095743034194220113614810291020422708745511724200277851296612550165559916407163
g1: 286153640451009717663396807765058727057061088318664139943
g2: 286153640451009717663396807765058727057061088318664139943

a:  -171665263238684530480622481563513330100354204787731367965887080303887000376272467484622608456606891006064221146253297947835587130179380871058152198045889287045472948126021427184174189616895825807652124
b:  915988781846699264654511293963299065271504575852885290295939370275865106636977594158532837114284672360346304666034806580467458316131874211974688810187098340615814263401532330808390046161087272833628514708302103204001095506976572876830419
g1: 69869828857293511789512773774862039169769766464863295545991221293030681918934300611583
g2: 69869828857293511789512773774862039169769766464863295545991221293030681918934300611583

a:  2772412750423834068646404409033031724027621618928242765073196563165228729891476755171721960973997978395386083201581056506424211739515124235404221356244719189115600127239404998579755421594
b:  -157042758787437487775110006860320036219304927877508680224326456763047440197295037987791310264348669799266409534768981417466084870015683918162030562486718376090000547478255164482061644605420940162646923809572636954405
g1: 1217713223164298576393366022943021
g2: 1217713223164298576393366022943021

a:  15113268209471752063915275204051558993411355246694609424038825996486735526251668882525369974635357061960841594673407730763608121541806642665481066424935288111328240862153169019783058404130919363977727414233418455299748748247
b:  6800322172597423734156463393586084700742202677881830089940296677977545642469144271568390230843531238095791783608194775042386474098023546961590899174962780820665441847777692862144122424048940589706770476897071783399781412
g1: 120768556304634049758454195641189521073847341574333110685626143639
g2: 120768556304634049758454195641189521073847341574333110685626143639

a:  -13945088285026093766136107441385598801224805248449920050923972991775349027547429850902023218373049017661249419085075971111557457749344857566071767736762358810456542342523412959834365394563846827259945034982228571796
b:  120004406533403061982110097713559817904105584201583991257930278367609710502110729506830660010637500209593312820809920293053106329673155076324754231800389152600697453687092776506117953173
g1: 13422797159507978277261958638141874232259889157572513
g2: 13422797159507978277261958638141874232259889157572513

a:  467126524016492794062406468879218841589663493337281472963179476705704305857687337071322880820640833836520446004813207456346804466208254298165775246001167377855104728446116592357705248110311643629432337888848163298810780602
b:  31127718164846897860019041653765573215830513998218900740301831124549208030415514296412939297488146713933872500719543617954979124832967730343262816169474654604310212671039588683756235
g1: 259938283391874381322752523561200791334406270040084186102953
g2: 259938283391874381322752523561200791334406270040084186102953

a:  -120632469083493437147433963577695299890299163617206653458555620610095338819190597207557500432832194729744404750706625206062059732698958762976716029096062123912813618812198103129294367673512172948128098873028031905089565152004758620593212692188958607094346652901753765
b:  417774015074118517598969432401127727506949008660476046313423980814302999833368211651373060618667956967636483707987768926982030791989917808332193217640432216090710622655412619916119512332
g1: 28980395703435910564256151731072158604326057013778234873
g2: 28980395703435910564256151731072158604326057013778234873

a:  -273015532749100152410021880573502410710513671098559418691440574481031796554404398755088315007330552216516832487232901425533395414145027031483179785591748129823486377412089467577430221652371823247130791842
b:  -29548698105941843226128631326734936115190599813749972148029707981134708719244113692766134007911585901508098306296290360221077960765817807460523976227457240099296833844325750108112684392952642168592357879127700418091710395331
g1: 11365311606978957381593881630179458952215122678027
g2: 11365311606978957381593881630179458952215122678027

a:  1535606541475266641986203557259201441892743452888266036008730460145374026625741113317377293259537060882294262483950079761699000158592112878291186816521255152252426486504645399087204464441756729746378597989383450099136767656707256611516005
b:  6654089437217769519541691754101421546700668122289225283291753010342923099805316634821385428290806990641160749276593183137168133793916584131588797936608066926265405045680023245240995037541
g1: 10318665907223990323131463170299381247409398493187
g2: 10318665907223990323131463170299381247409398493187

a:  -27342781298125615420797255527096209685631165219057541346950868466032308056725074315294491968497708893325592949975253389648743417899207913109224062052672159118002410026057620574119577027598557242657660186897817039565354527274974156835724134
b:  -3448629329294730504652488926336710766282675165541383819293254892404162236294488386876420678799024334262773888206232925165088687803316384305949031785895740582794606852
g1: 689158045763543282090378997437287918944498202669430710766759941483274
g2: 689158045763543282090378997437287918944498202669430710766759941483274

a:  2796898684385644426590079899004576590194257629157661625792951196885677794750743324275945568152048589166544504080532651038971733747268710949141323020128027277187018438634267405414614064566927251346285846947008523
b:  -10335840824748669786264642603135169860016527425057581170566748742184308866457675036955484137798418466590496697408851929529730490103400878910236567044908752356881167217004836065924800639950136884305351370998527791
g1: 2095301868659310020912023336086652894623066321546218846762198922660739
g2: 2095301868659310020912023336086652894623066321546218846762198922660739

a:  1384674443552576305143068800284831909534038485088409197959313956122393757126399181540730774020879965837913591821219657805358853409019029421729683591824252196652754690451684352449348153596660584711881698943283979374857035739
b:  -8503093900989759356780552999703808542871183153919767478630295588361111479964795087376261387147305205640855323164847392230962567550647036671896383679530637453559095895864534661450812143268035213900536968341823096267732
g1: 939170047247507150212857785730501126075556308622761419896658885317
g2: 939170047247507150212857785730501126075556308622761419896658885317

a:  -17581170180804682616435233944058941000359641596953255427095771714107692161571384311636748356028167336590276697916814323168368617027438234433275101173647596214200089039566921050156956735724955131317497753094211615412570267786677
b:  1951132338556793645134121420450315296592821204221985567828376681401001863081985288761538634068887495237108777214311402027638566242641565216651484532156432555677915098513613654385318778348094444996847969907708
g1: 18701365504664263988293545588877194876161471243217587879
g2: 18701365504664263988293545588877194876161471243217587879

a:  -4031233765996783091335113944130236452898524041583927051553264921147242165165069248492164220685397331865941959746422870616371498451539971772733742897958862533058301142140642496327552575262494267806538461560232125200884416444872887096769607746625465463301
b:  -3227591599586336971721183562200401273844934557919258383076624693911810430285902818881662714082666804641582321592118966701057543576887486818841605148593774393896080415166355988319640514429925943243517934
g1: 1500813907173067802071708238409263177634287085985829810772658453
g2: 1500813907173067802071708238409263177634287085985829810772658453

a:  7327374904567178706362652708524463216166736435872224681625600623640953791705737800650020704224273005256274330374050188606857562791021653983656356455827965747616391933672508530050936723043723894217418611
b:  -31394022216634161873803062902836049959876292827595560037616349200604431756371450659396713300704485888103755948278764221989950589634412680317810318733418036022109757276585827002353034044737832827693827157971885753173787577136346208642612716775815651
g1: 26944763641516929658311551211160783237782770664393719810623
g2: 26944763641516929658311551211160783237782770664393719810623

a:  -6889644261452559047270297520056509495407573104239320237000294090997479384461706487550096281955128462859983107650059666455919696677570624388319822952187521504139235956623075858937
b:  88346751597561973106950131491931812995337285698012159441701427798721302233686761137913903068077078662403171311390387389456613202018165525206255260121840080741299447128877754352458883135794457689298
g1: 1113782948133124632941014018394675441382666514719394253989
g2: 1113782948133124632941014018394675441382666514719394253989

a:  -3948827553000557575029190090086915709489243092015716203572442916099406001632952870594346007337997288515165433656823386788394358091744545384324254499996409725309160909511766485193477483990025074871030337519026988962201378200247840531455626014267250151667053173188
b:  72914392923943322636006950565064193187643494692247743640992394982131582711451998902917373618318984697253991069509471304521519913411032342575734649309775908741597588413554366460900050283779294779772247084460103610355507810430629728494926
g1: 155972623789776662557498801821157851737026321058860585592718842764475584665034
g2: 155972623789776662557498801821157851737026321058860585592718842764475584665034

a:  -31612115419370924457985665966161773918635197816996953135870732099240193716978264809573788398618138982018454843155312658832210304736882752118672728925471537711069236558354066520704539166089350
b:  4137025467436949637519724100463479023128489154085937637048158619426635072500246629844316211954495653632729324377339174926989202396603893832806398268576199389618386202986291460556136680152527151703788873697966523696975
g1: 645851843574743133864373749395499961265488777855727975
g2: 645851843574743133864373749395499961265488777855727975

a:  109561093102735536478679401882114268099959234849901650598010139924023755114562293083639508634385584574206644996536147996275189605752039321259717984088365211620399818886757040914045008959842
b:  76325150482964260891024747088993486465151827727040845845228254583256845055724656907078393125082401924868637994579102620823333194795572338837286753096889730940828197125252439
g1: 74590695547166445994623255956847186556389
g2: 74590695547166445994623255956847186556389

a:  856300400467332139453303129305898185716779650587450857297454051992417313087708629407836311119464781818908836379512727751489835835474666022709867820706653756377538329395305759821321173496480995228949523716385625351319
b:  4508395209654741849017805889015413969329807817931883877611047085817473176198100481174937653222911504575455752751072786834557411021936788149762909384235836520646186225379109774901253792921567057213529169000296491
g1: 1721513532739304133852545776670878338908326905519
g2: 1721513532739304133852545776670878338908326905519

a:  328900178785280128951242086507807303016273988325680314021841805689857138468687198105692352244749219644647465316969413861561546162284833693874730282869588770818551571473753208588989717545084503737109890592082032013
b:  3113555046570917766127446749070448394971893452303973685710447926684479860179040541598654364105795378034668557444804510197189862535108180705747045230083075231323344639024141520867958313213407883792196305477010
g1: 1086905378425773275529517128489733219626857124895834676444811694752266357
g2: 1086905378425773275529517128489733219626857124895834676444811694752266357

a:  -987787853060879520644149635142694338537216469723008951829171761226563359129972206593240772843121999122519420140573168205087534233506223217467811841237280932659200271855009666014211873037247812794134
b:  132081218741045573025677602353428431485798230581948656967108976102467983993292161630109483487682094338810456384517623717630095441583892992524320979123851301916291134243062392827732611157329632232718441042513082445965
g1: 17999980218737185017453544864533103845673774175198843
g2: 17999980218737185017453544864533103845673774175198843

a:  -458293586587439683065153537736060588593947119675665739837517726399204619941017042373143411673845156534933280552141723036884635204714070625919119244224280700337908125006568939027396161928713183257146
b:  -36255629851989538155810021922305987357632734104693340814513552765714597170153947599896162682324741462568692589136288492653447950453174210785226312716596209343783695441920373876
g1: 2151274793544734894913853074549926596785506634669115437443198
g2: 2151274793544734894913853074549926596785506634669115437443198

a:  5564183181949933032084022224027591772592078827591403718244067327366888279789791515576100533107793708113303772692331108560096800814475474781015766870453320150693619725
b:  -343080894555400922789689050828769001682496448859091448943666376899402051309891762612872206795009458619865130559923312580204999749812971081883140400414486163582199663244283276081102545549398852691825023357836179262931829011
g1: 31380301775009651024467090560746219460074311
g2: 31380301775009651024467090560746219460074311

a:  -1337304000656658651529100605486465674653862652116584079227394939884492133710363428252267426922723650409598183582964442698398050483031443108872602849093016056295353999248470075055217674511980137467624240320314927
b:  4945072057056181731343340753785191065302062828923958654824483654906472440769385176930077601884641824768386885321486266159196911149427560952886107095813686935537220505333541975730578889291354151021662493164709887018271439653
g1: 9190722393140278523414826876847487083323058713177102949901
g2: 9190722393140278523414826876847487083323058713177102949901

a:  -880122659205907766575277568596406702349917285297339203590087391235231253871607258659618493524465171485733254459464747670196808081527525267403848872585446430471202798324837042628032444164975
b:  -829446004320217806490741153086506445309329483224782503618412792392176597006946855150827342740084316427387435912875851935939017280751721235966697836022818544801636818400718442884459844689565866355989419
g1: 648742266423031530296330684624408112626243
g2: 648742266423031530296330684624408112626243

a:  76117322702843076233049956750495706842155114543384031421534928034359630862541132624044244653849768819099786765088114249974798376647382114736947525626660406112186323626903902643060527740567874984037789455410059321110215489433737332274761
b:  -200321523548712007008616541064780423798963109761487227291846056937325488726726394169825980076384368487827968333015690868767743098345349202854585558212267175213432308403151
g1: 1531810467954989620464368193333613292414565098291150665057
g2: 1531810467954989620464368193333613292414565098291150665057

a:  -149129260007282125089996811532943826543060243537839747837143748454669604884031467401768011779674772755413026449847511049519334658236791277102432133764720822640087867638737265889842881845606217297944632934168857596654015
b:  123919070334805208590963912595772421151762486403821628896919017852560854652599296817053742716973383917931687046045147648854031159628254430498102538469433202324058202486017653743103963444288876
g1: 788996176824618591452683579028728502171937320162323852585329710247795523977263559184723721
g2: 788996176824618591452683579028728502171937320162323852585329710247795523977263559184723721

a:  75213196381012984805196845937607924867762794341065186569201600418816204810264068493667438815322950945008961593363411414672512891198455133582991791489743852629157333069840408299182690978876450396664130285873946775
b:  -679234183205704045295177769226237588970670864380560757713642654014223132181857470410682104076789131687482434576107286362627427842228152605829130225283210435028075301731714006637208125239756958196397495626127087352214068478107307575
g1: 38969138670267004175611456321296644923701720886775
g2: 38969138670267004175611456321296644923701720886775

a:  522948977690604897517008797408857264871798579367868996770770194162887766847861525926092970932319459814908255666216278625192729483046300706983351117081702860327190347349806866967667093741587234104761926
b:  -440108234417535697342543860545179331368338498272673502398295140902714081960062613807974251470122166697766731615958260274996315827710414758048308939352956330978426268461923900900425090551999196528689286609827264289099883542940349617126
g1: 65471349719451949082054004178662019312356594323921859317259805462620144002
g2: 65471349719451949082054004178662019312356594323921859317259805462620144002

a:  -30656082474454150931042916148020007900729213840021832725591833708279569703926571683646499333519740676664868322987555365852711134215089874767035263100964106405583253751470682592038640868098066756460121349938501854360043830775
b:  421039965218950884507181914665069615829555967850759708663145269040717058350126475869848274603649900950044459846540244544057613722713162253160695496077569411678884047952560509500943915181
g1: 820172125806949158982123398224960217047499590689261
g2: 820172125806949158982123398224960217047499590689261

a:  -670717732051852719973743408412274560093271063796592526925541716214907479052800475674846222041971466249163823570090100684068900267837054840308348582730958514912452071246646213122822866566475821684064985035946241107421380760829868311874109620190152056445
b:  -1994215985836914080635272432102777596548400209134002567776497654821281874102724726322058768948067827584177438569454616925842487573763129738064355736356084528400196230253778464706603427840344178199303
g1: 136783701049096686367406287523917285240715101769835239826629
g2: 136783701049096686367406287523917285240715101769835239826629

a:  410261434026582552642010011744804085027437870348439055405156491747912512105875400502589683430536673013895247514607973488165078930821544361718834854041941678539046585466404087775804325052198198834300
b:  -1764018360066687653632449660294734800100760223687891639545124403978147589290214298644866408470970553230410746537853470693609890161870559865210005685036553379978417705744874083548538822664973858597927769048314410726
g1: 2209194915098481356845275249142449163218268212488034
g2: 2209194915098481356845275249142449163218268212488034

a:  2517282528279910027481922464731638075558055989368125296448135503088641381656840160631989425590509548098387297834377033198775283137517107912879725631306464201046309498531111233815677
b:  4942295261445974771286949349741893296620933758576980364251926496312560455695471184689386869430549058455595892934126312438590403568769167962308536368295772084872438084595070436544947780678
g1: 17477566629945192562471576916884954110403
g2: 17477566629945192562471576916884954110403

a:  222080953466272591199075685926070986449690197545177424948221464175614296816150792216146981230467722745372842241654252947958894873066551754501797863509499913290930227125991025205626388067556110108100514141822405069711373777925
b:  4017617934712179466936807180297524109100071513171281860791553210854089166106670691028492348187290690111215256078843749209807622517332893180959866162706618294025565859229463279161575605
g1: 428132322655336791458701484849810348963343786336189049265
g2: 428132322655336791458701484849810348963343786336189049265

a:  -6209707377372051284010195298515283742045443889479106516099130319418474510624766557151611982920564481309276848363856798487352765034550902856533413205780026077482987485063287891205
b:  -21013508679003231068789794113638815334263335478632632058592833356113455483485937425658172532930550046431753668030378425811640273273402863317843434011782110522069246792606177484537001126675173185139334753
g1: 60826941244850147395694238692970880578434047991
g2: 60826941244850147395694238692970880578434047991

g: 2147483648
213^{1/5}: 3
-213^{1/5}: -2
log2(0): 0
log2(1): 0
log2(2): 1
log2(3): 1
log2(4): 2
log2(5): 2
log2(6): 2
log2(7): 2
log2(8): 3
log2(9): 3
log2(10): 3
log2(11): 3
log2(12): 3
log2(13): 3
log2(14): 3
log2(15): 3
log2(16): 4
log2(17): 4
log2(18): 4
log2(19): 4
log2(20): 4
log2(21): 4
log2(22): 4
log2(23): 4
log2(24): 4
log2(25): 4
log2(26): 4
log2(27): 4
log2(28): 4
log2(29): 4
log2(30): 4
log2(31): 4
log2(32): 5
log2(33): 5
log2(34): 5
log2(35): 5
log2(36): 5
log2(37): 5
log2(38): 5
log2(39): 5
log2(40): 5
log2(41): 5
log2(42): 5
log2(43): 5
log2(44): 5
log2(45): 5
log2(46): 5
log2(47): 5
log2(48): 5
log2(49): 5
log2(50): 5
log2(51): 5
log2(52): 5
log2(53): 5
log2(54): 5
log2(55): 5
log2(56): 5
log2(57): 5
log2(58): 5
log2(59): 5
log2(60): 5
log2(61): 5
log2(62): 5
log2(63): 5
log2(64): 6
a: 1000231
b: 102928187172727273
b: 102951963583964173000063
r: 18446744075857035263
expected: 18446744075857035263
minint: -9223372036854775808
4294967295 4294967295
1002034040050606089383838288182
1002034040050606089383838288182
*-2 = 
-2004068080101212178767676576364
v2:
4294967296
v2*v2:
18446744073709551616
v2:
4294967296
v2*v2:
18446744073709551616
v2: 115792089237316195423570985008687907853269984665640564039457584007913129639936
PASS
(test mpz :time 0.16 :before-memory 4.68 :after-memory 4.68)
i: 0, a: 1
i: 1, a: 2
i: 2, a: 4
i: 3, a: 8
i: 4, a: 16
i: 5, a: 32
i: 6, a: 64
i: 7, a: 128
i: 8, a: 256
i: 9, a: 512
i: 10, a: 1024
i: 11, a: 2048
i: 12, a: 4096
i: 13, a: 8192
i: 14, a: 16384
i: 15, a: 32768
i: 16, a: 65536
i: 17, a: 131072
i: 18, a: 262144
i: 19, a: 524288
i: 20, a: 1048576
i: 21, a: 2097152
i: 22, a: 4194304
i: 23, a: 8388608
i: 24, a: 16777216
i: 25, a: 33554432
i: 26, a: 67108864
i: 27, a: 134217728
i: 28, a: 268435456
i: 29, a: 536870912
i: 30, a: 1073741824
i: 31, a: 2147483648
i: 32, a: 4294967296
i: 33, a: 8589934592
i: 34, a: 17179869184
i: 35, a: 34359738368
i: 36, a: 68719476736
i: 37, a: 137438953472
i: 38, a: 274877906944
i: 39, a: 549755813888
i: 40, a: 1099511627776
i: 41, a: 2199023255552
i: 42, a: 4398046511104
i: 43, a: 8796093022208
i: 44, a: 17592186044416
i: 45, a: 35184372088832
i: 46, a: 70368744177664
i: 47, a: 140737488355328
i: 48, a: 281474976710656
i: 49, a: 562949953421312
i: 50, a: 1125899906842624
i: 51, a: 2251799813685248
i: 52, a: 4503599627370496
i: 53, a: 9007199254740992
i: 54, a: 18014398509481984
i: 55, a: 36028797018963968
i: 56, a: 72057594037927936
i: 57, a: 144115188075855872
i: 58, a: 288230376151711744
i: 59, a: 576460752303423488
i: 60, a: 1152921504606846976
i: 61, a: 2305843009213693952
i: 62, a: 4611686018427387904
i: 63, a: 9223372036854775808
i: 64, a: 18446744073709551616
i: 65, a: 36893488147419103232
i: 66, a: 73786976294838206464
i: 67, a: 147573952589676412928
i: 68, a: 295147905179352825856
i: 69, a: 590295810358705651712
i: 70, a: 1180591620717411303424
i: 71, a: 2361183241434822606848
i: 72, a: 4722366482869645213696
i: 73, a: 9444732965739290427392
i: 74, a: 18889465931478580854784
i: 75, a: 37778931862957161709568
i: 76, a: 75557863725914323419136
i: 77, a: 151115727451828646838272
i: 78, a: 302231454903657293676544
i: 79, a: 604462909807314587353088
i: 80, a: 1208925819614629174706176
i: 81, a: 2417851639229258349412352
i: 82, a: 4835703278458516698824704
i: 83, a: 9671406556917033397649408
i: 84, a: 19342813113834066795298816
i: 85, a: 38685626227668133590597632
i: 86, a: 77371252455336267181195264
i: 87, a: 154742504910672534362390528
i: 88, a: 309485009821345068724781056
i: 89, a: 618970019642690137449562112
i: 90, a: 1237940039285380274899124224
i: 91, a: 2475880078570760549798248448
i: 92, a: 4951760157141521099596496896
i: 93, a: 9903520314283042199192993792
i: 94, a: 19807040628566084398385987584
i: 95, a: 39614081257132168796771975168
i: 96, a: 79228162514264337593543950336
i: 97, a: 158456325028528675187087900672
i: 98, a: 316912650057057350374175801344
i: 99, a: 633825300114114700748351602688
i: 100, a: 1267650600228229401496703205376
i: 101, a: 2535301200456458802993406410752
i: 102, a: 5070602400912917605986812821504
i: 103, a: 10141204801825835211973625643008
i: 104, a: 20282409603651670423947251286016
i: 105, a: 40564819207303340847894502572032
i: 106, a: 81129638414606681695789005144064
i: 107, a: 162259276829213363391578010288128
i: 108, a: 324518553658426726783156020576256
i: 109, a: 649037107316853453566312041152512
i: 110, a: 1298074214633706907132624082305024
i: 111, a: 2596148429267413814265248164610048
i: 112, a: 5192296858534827628530496329220096
i: 113, a: 10384593717069655257060992658440192
i: 114, a: 20769187434139310514121985316880384
i: 115, a: 41538374868278621028243970633760768
i: 116, a: 83076749736557242056487941267521536
i: 117, a: 166153499473114484112975882535043072
i: 118, a: 332306998946228968225951765070086144
i: 119, a: 664613997892457936451903530140172288
i: 120, a: 1329227995784915872903807060280344576
i: 121, a: 2658455991569831745807614120560689152
i: 122, a: 5316911983139663491615228241121378304
i: 123, a: 10633823966279326983230456482242756608
i: 124, a: 21267647932558653966460912964485513216
i: 125, a: 42535295865117307932921825928971026432
i: 126, a: 85070591730234615865843651857942052864
i: 127, a: 170141183460469231731687303715884105728
1 -> 0
5 -> 2
16 -> 4
INT_MAX -> 30
INT_MAX/4 -> 28
a: 4294967295, b: 0
a:  -168467067481663903977174712412131079127809658914447376435640199351081753219528927138175722181134199012809571289734095351064567282466861035759143357680420898723105884095025
b:  2444374638435802255823877461002941489168588502815966608936667598607498996069826019955056430766831776327329306755429556490035597522897888466136857290000844647079101938093146984528152831251
g1: 7808179208668026585711255334762083927976069191303152557815331
g2: 7808179208668026585711255334762083927976069191303152557815331

a:  1735018445396727013600304741011933159981912697626914355525154638583536227106120995668443431479065705791469882971118169420517522439795234079346336385771139962344104882936866494648491080745686140604302103147399496475
b:  -288286948459647739919171020483756714927577625275529656726175647558281868972493437896811628776696900056325160125577743870907509720075861584829550485768174228809694777960441952418190181401712700829388892012630405138865781
g1: 820484908397580818526860221531730099634541032300648437929540149
g2: 820484908397580818526860221531730099634541032300648437929540149

a:  -25325400465448846805455166261129610464310420360168471893867003318597920943258054392278976062203493206225026638065050804090765855003267030995428767883986552603385073366127259014325301884055302
b:  487178164998868937977900973671209726824225721186899672843938531557799902728747072592094399672904138070440832276675536875274534841613498769847069882377621121378073505362378293569131651533769678534865377326208962517281
g1: 1363969605926052860456097037587286420047073545081883246886317079471
g2: 1363969605926052860456097037587286420047073545081883246886317079471

a:  2301128953219123281692912696603366479480794443811658798639771688417559148912334903845691418702134797820312376875880291157532966625210443440993808120742441358140255926027844232524658038851076707975883876898610859
b:  6294113825313144695636712624988128804162406622226236115910942159935235114851685181971505857165887149935547735614856517736092733360330281941994845035548629515157277750966908383299605503483861379719608552916697468
g1: 51764774489047214223414839437521849505735875354198179260074557
g2: 51764774489047214223414839437521849505735875354198179260074557

a:  1140095227742461113331294547823460771740885325817509309996174352822464479551888326803083945693258422010219048122719400909087544142307497453232652854767242749211082329781468697350036121167045105248576142568287002826165033486423329605809397457576906715
b:  -1507825173788460135901770401474646458616579010307093004813295432913066259232787772284893541290056764856050939532995349550306857889320216447042415163314282582197632621394596746123452864288479880420231678834
g1: 1174191721603694181488225344238966610872099239950268053237734073
g2: 1174191721603694181488225344238966610872099239950268053237734073

a:  28798649259069183347868210986495214833353768048985030327005831807449944216429839699772397678117858525882878498595660456236996199919817095791752516826462611833621845059464978
b:  -1171328238916069733395271981790147523606065716212940164361247253369313443722802677840901223325087394224347435249212010228163838209778518811181885019245106803531641286866026549612436524450259389361325202018945250636209075709
g1: 6169364263156734034109960377439284725560670107
g2: 6169364263156734034109960377439284725560670107

a:  -22089250809071785595434034519417230920351890419832747420335059300426923779118304290824723806571845397521572677792193866949806715123916736261641134918059780469882304309303942300039433444265584469536854803309400282495505832588956922444984450
b:  -6638733807676753970139560167141722570158270053916668716899208494301538725437390521874771536455221312372270609948138468396346963891128100429032432253260406960384639827764050376629066185567331605706016672803324684197163413484
g1: 3453073418077420845182189288236442936245258167072937789712096054277178733011442
g2: 3453073418077420845182189288236442936245258167072937789712096054277178733011442

a:  237799369822820926516909878339058026616973447834779749750146059626335296496232030721365065029900191694166552967536763753577730527260822107267661353594727732863529367636133756684954806291344663868166785214530096982421
b:  -6974244646367248525488163793847522139242076340049958811061752552244546509512032311379811071982277347410303852097570365790843255257156139513797751087154794792330607886710056485053798686934758697648468808985880337
g1: 84726320933131417367744261905693074526923680384761747731981123
g2: 84726320933131417367744261905693074526923680384761747731981123

a:  -51701631425218359471983815546020841848829921462526468720214744730515504786765950033904341985645334333979964317958541600857729245384426666414712417514278066703518581254618038770794111279013997302664967649687002873734065131619719553152342511188844
b:  -54380667301694429875030484153673436218460036995999593077846438259175764662166308300722078800457524459693082833973609708895471067657150185127756928846632853281462872831929177822041019568898798056920839110631566101346020967975
g1: 147822375042442651051655827349066814395798966963765675896844899763738136229
g2: 147822375042442651051655827349066814395798966963765675896844899763738136229

a:  23999744499696764019629661524264886849865294015195187857592383558477945049716521763973018116594001953068650133872078705543560112433078041953843308964615778244705096856238871059891220685
b:  4882479235853472767370415174874186559073649545027768221331843066411791545835584458245817410316195456626471030031137717670121562867616281165158705519522467420539380990190305536365270275990737964462572691412
g1: 387818974516604113704881643978079399
g2: 387818974516604113704881643978079399

a:  11494132798697147283122850657158572919528897086039449304473967719182410150543004050657649551897288000322141034528954110500691763137639382629284550631253137334635846626235476290478256225462183260300
b:  33749403854583603575349613085147014240867695989163747376795180303845902535473081013162819823902348894483284846560266714302459025901982035189342096747648085058605103621636810277697982780449759781455882250540242466635645668275086105355076190027780005460025
g1: 927465018368952245731193529474395096796228955945382744039222451855475
g2: 927465018368952245731193529474395096796228955945382744039222451855475

a:  819203848505952067331132149394949351755687127642100465952090509463370772087862031241736262970795499903843636606385291420089141224611708305167155099444739918265921519354572524410329292520099353430427374176919632119603946414394632351096177
b:  2374166728030160680617199997539108479318483285181407496240147092038022607134537367001433475288760597511590567415848171537062085018691612733230979513330343891739124057355842776336515263571652410665310525276775
g1: 760582095916587727407113035804176853856414953741329202688607796956059
g2: 760582095916587727407113035804176853856414953741329202688607796956059

a:  118421104221082190827830086139202256432109845098653431798267457822267124137491805383546770071707009091949128506437693118994438942204146472165614405840290963364784739342835948841952641800752901319944750959039
b:  -5193153324433912688982825636587704424329332702993279152235394259870645827070165193610920265824487832914796638488603345493689217204931221400672955250229961131158126768376997990480197023655806863463440539157107526251597843035225094193
g1: 734969368107714903583883024216277689866176390204187846373
g2: 734969368107714903583883024216277689866176390204187846373

a:  -567398528383724558670778529519869374109277976651774775829300360371000696219625208771757450075224427743411450988890864397769794248920782007560272941289640312123808964021612924212390895002889536971733524829575
b:  4276228789027909035487887785227833505673171039567721601457643457478477984610246778233448535849916702973890019984003876925864039768117661147205368573851683371115448797537210192167669902698634025
g1: 80544242041296705121734503042624758904490425
g2: 80544242041296705121734503042624758904490425

a:  3036341514175120240480307503781476193755088903641042478326805648781918430007551853871222577042157365497084840001830200249736558923439490253689316304872923302270961532943544645772474515894956596485416733422244768087970288658025
b:  -93531670319968676769776807650166621336423213633399544587515756596781784876429370816146077565314986138280909943418898463504274954658572466893701009448720577077143511278725885194425820407644734475
g1: 856819910550626503113346535710154817918988775
g2: 856819910550626503113346535710154817918988775

a:  -1226856239122788022207895525012169732934729577081422692303349670906436169355632387663657179422827756636139531131812011807177668201803915591840453698490139213943571789118701551370702098435352712150549
b:  423604602466960023882443216262554757006491401322980992209176427181250433777597565228627383586446440969253242200595932158891256688580927508380948337057105268766969053080579660772073325991954975454165
g1: 261694458095504211789002407334890381431429536142165172425140809406635958059
g2: 261694458095504211789002407334890381431429536142165172425140809406635958059

a:  22121620248777597382207940801047659539948162672004544408390072834228839239628321349089239769961895090670763559683318919778487614002243570325491386477561653494932251395001859116057195748055711690974270
b:  5147994056992539665210214431094322740074632572841858392722574593227367101358980470156527067244904086363780194085862053535190295144575345725714507100108728064222880062640963784041492930065597988988343937726946816847843
g1: 1730183007291798715943135609675495276425365420301
g2: 1730183007291798715943135609675495276425365420301

a:  -66621747053938134690456271642932877003912122725871143224752977334992393913123347143302750987209665600818058030352504195555993971565074649236004973066248755912383033345352832617612572965371394904824419045828535417595666850
b:  40833202764665568193147787361706346101499179347516560273653416228945330593706590774444770987117841728279196272916344593618480280749699026180971346672996151361837377123760124712396896910230196217
g1: 14953331887649307128811210784581035104409278284474912840650084197
g2: 14953331887649307128811210784581035104409278284474912840650084197

a:  -34703103209262325741019282620355904152418629325880524967100899079181857243020447554996086888706046648906758550195012725571936913520856988955775514906307815998184166689272864929963454240839498239514413192867777561720748617754033
b:  -66319160837077127192327691690637758618001568164725090136581677659371215214284408331011744604177827964539438082177198789572827390118282378179591969328415914926515215504059202726994054927285970413810925403843224494612433891137949335628
g1: 258089374823658534688876364125913439325784144552472879886774484714711
g2: 258089374823658534688876364125913439325784144552472879886774484714711

a:  400800630401834730776924184704900942432348647480371782831987041942746137030307494549149893291345246008823956240226568190404636806052996249316255754804592529735180898329935196588500078472332860758538504875387783583897170414656483
b:  7773389816389420412312044440243505145437683298837475753953718405321487981367696603244190502219645346360950467133414055402568889959421034063356234588147786609640264913
g1: 39560327643837279821038635168414407
g2: 39560327643837279821038635168414407

a:  1794702392417352170087370910718785281579841662433860442598136087488335468813209732374052198354668785190738749196670151554423519872472208950155978969087780445395374485402538122893566806781531265726511995674742120406101891159663231
b:  -83571326267228329726554279236174345457120311886643110964712308930233456691216992204590511292593299277765391538711428092393740731759103892633611179233205651542506131828537596375191394111770245813329480568399455688099011018417393972122392592785100939809964098475
g1: 21823488885418712241602358112830445963335229229545544082454217646585811
g2: 21823488885418712241602358112830445963335229229545544082454217646585811

a:  -1279888844330913423723933566331511551957274732965090424829330578023906905730318627074764379337793040820395166958908436320742168907596805101353232247220324423852116
b:  371947715899036075937331404707744077097533416296175935204311522013526899812471852978232197181613650923915862988195802210682034295746302317435831237567730322508383950221856364690988052694989422733
g1: 4683773470601789654728991358209269
g2: 4683773470601789654728991358209269

a:  -1244014993370841011559435859040404873277080074491062530270360646297560888697686271583622770300077960441300375400524296761857175231189707566947368070963578711421085881254735555145234111432216479147837237537424324885053988507811810844074075
b:  -625430816788736270934232118898158333431522192724946339196606587841618199592437202124732695761231060794790146156012231729019571450947769471292600607905628084388621557932466018351600473896697126338467103363753293847
g1: 31309182395316682266152475160359715458525662984652827651475448500169950009
g2: 31309182395316682266152475160359715458525662984652827651475448500169950009

a:  -259612894071456212648412608573119457373929398157503043968493279059176797147202052280029962301867846890697860387181576620482440231265209539193177344432704754866963348728774299621165058991142527778891942193582406911
b:  39792315266890637645972986645169770207933384618204131873978907963258415184653873765657504406821294986439896875794835067019666894891000548780106618382847675185908928164776617840485869858623200369607885900895573940406722674009518
g1: 828181094309281428957711851153401616283148593831203579828011
g2: 828181094309281428957711851153401616283148593831203579828011

a:  -3654112423726459474286440393358966130418600360144879830558738573673344408018831423380089548083166434490756291571176333976570747082547017041672967732057822673224162740829635815238133404711553407685502767784935628722475090969903073283649788654799
b:  1276568471843060297882045350518337816522655155148268117643460933390534124156741786710782604912555002530369501673723355925002766012779557831306445829562673771517608368906278969998483464031057751648437991347629354314103675764752429185
g1: 2822468435372848124437779024580868697324697015392401151585113254766977609
g2: 2822468435372848124437779024580868697324697015392401151585113254766977609

a:  28838238719406546989312647325383627272579714031470097354360572600186127904077533742488994054861877050464162117180234134770989569772336447602381030955826768694538927399893817481023686760748593306328741407615642026354943497740161772576007412650084565568575
b:  -1409259977478869438470929811544779756427275968625871770567103739951812006593602336689669868710203015550530894126371628310946510621110037332140578667670843072398870826028256860753006784590719480928921641256876599086325849841460
g1: 81946452941270755636472782020742077891107265088894504346668750549930508469835
g2: 81946452941270755636472782020742077891107265088894504346668750549930508469835

a:  5640848304431568424075547792356298531227576540684393481592249344965274863923914994066045765712508109891837289538657131146788588306593508149275720416910949551642818552912644146530919703122504799339416169297794061828571149435958429373848012999
b:  18491671743611480039828270785976827358195604459094083574262144144022770920330064913006500462908382297099340801855449970575667535153274991366073279012810611807169371199611195145614878431073199254414742197792027992968382559727476695414061
g1: 522094731858799894935514733073034044564361980675907927794357354853059984199
g2: 522094731858799894935514733073034044564361980675907927794357354853059984199

a:  -841025060272782187465500686420713831705558031891053601167666527674741813907010826970636338292316443245917665910631695517841679556380027286744280934767995042418082356518203339423594459613392060991012
b:  -72644837424677420662702186352004457788215936114112604034810352684930844309352711925865460307815101492217063016959155853328987854812536271966615229798839411316959473041374150710721606471109925306485648075735861114075
g1: 714030453603563828262335480756108475690932991231198013343
g2: 714030453603563828262335480756108475690932991231198013343

a:  -1296466999831963024824984086003109466541327969510223521086443951434352327408091986664622847060456838900429106823691200487379756697171091439206040345069490014611332272275927813858436388379944076793662229511679911
b:  -208570164186406032532948814754129410335709824877915393159183833506907706382148582038463991214870814360513519174694595472937590049461707794896764605518292898917136197817722639208013727520899325631194856076
g1: 369847384671477156468569561085899015803425793440055799717297
g2: 369847384671477156468569561085899015803425793440055799717297

a:  4071762793565727803091777418393621209420159852629767965305228703638676316941682238251640846169584080170704625734609570166245014536735237371348079868833261477994036282426266315018166326953460353143927449063011
b:  2995620972415351249467296899865679221649741427278732195007587293765428709513029400466864099615764060871466889445094769659088578068804912429062238197828452489960853839968177422938570786243251728093799437326566318931922893955860961078967551603788265680067509864826473435154822449
g1: 5728153454981725659232839218489499206685688543132787892760961917917807517826393838861257
g2: 5728153454981725659232839218489499206685688543132787892760961917917807517826393838861257

a:  37921027811399757050443135911778249282434631930128432801387377958470487072085767634789237266015758247306096730760436691289704280825132693957620207730347981303241870151199320794875025154218570199
b:  4158047264661974406834352939878149056830331126337169782590603316281792447748370898929397187455647269755018199698287180546907539420132111620618757393970780253363457046249129450434927409147176792588
g1: 16149071034391287329679188355323895320399450208193683
g2: 16149071034391287329679188355323895320399450208193683

a:  -2588668377582663585379762756844242100138131246476540742631516759593240341354838059226235591265935513024494991263639015244801110887739822514660090563391205878290732025117228571982157081151698996297595614010384502949438833365187937703
b:  -81823288646954733147132237959242656234206722762755047330826141498707072233458872812083181886843018768792436265540076487782372532085585417980942449171231226465270890198628
g1: 2385785868797674705035763240066485396264086746695117
g2: 2385785868797674705035763240066485396264086746695117

a:  1492313718644860878014443237521523778081068578147343668281169815956010728848691394474503447801939616588881396977479018488294675813219871998291157488505395719176450218443692745832819154798150408793062918647
b:  13802884876696383427859919817166740887818179622057006841367492839476978742865000599615828858184826520626186799688710140745112494327245450497792177803028717891906014007955770528132510094416498076653529751509556442586
g1: 3438985664076972294661577433456232174972820589103067
g2: 3438985664076972294661577433456232174972820589103067

a:  222696173954812007391945765761881476481030791272570676925676819294615243337960305940373755461922138922869520718857926290679169533309898756169389246410028014536442432255987470910039645481993412196709341039946426773820170158300
b:  -153234770756607215851384922434032189813790771449048219253100267908030734442577971124049126571542660234501484543771124389600107389473845168005832667502452782630311642830495082315
g1: 28553828037930187553607186179559986557241391733389605345
g2: 28553828037930187553607186179559986557241391733389605345

a:  9240732072331200992478367093351062291459212822907463801689507432761237878398439716210100908388581888587763330459732817511679541866125326905405618154483687299967933831
b:  3557483001511971485545925300362685959153899738992308925674968891737548442796088630023642069638737217667366983811765043634460039707288451098670339279690510057750448577821121246986053238829899978100933607276675
g1: 99394357659344223110806253903471185833705176904161393
g2: 99394357659344223110806253903471185833705176904161393

a:  16867062899581818141591032390399691543118830932093673268124526704634330497898671373390165617331643421404779906300372930763349730315053206850347013760088667850103917649066450607348143332152515126635130713352278196986322486880246468
b:  -5331681040445832679891575488322899431040260466744870116732857364181914692476879502627157146581120929446579231612262209158979913959093240247672381523816707903273887787866110020
g1: 4302201223358541067980240792413438995975303507856434228
g2: 4302201223358541067980240792413438995975303507856434228

a:  -1127684397396893074900221271028952847773775752536389833856146533038172677922520055732005283252162552828088599169657905452720825372117627783240710255984883636541342068258703779946558439252791728972604231925553
b:  1394797359356817243071372000600068772710967749674086321009818706131331717703104203433615698587460818705142784333609220987544376132876444966665138234106321078300824799174437469157852904411194046964923978506190283753584085301005552253
g1: 16197678722959537196312967517612207745955816541863
g2: 16197678722959537196312967517612207745955816541863

a:  5009230859957488794308171254890727201029820268147354310057401607958415999368844301407461762525917463106506837388205222463668352105519727280669777948972766438834563539484118237309727453195
b:  443019507371962137664315753207132585238653978550572149857465266340040531309108296809291461557520601327140988708869644455500649011740003344817818473832590153377424481156962913739928971632766917887316776933085
g1: 186797110160792536328037360861602963257999516036698450070715
g2: 186797110160792536328037360861602963257999516036698450070715

a:  -2387615722672195733637787874244244411625444291607391719900531898485086427211057764388288996738757678694315098677336827565791565667848356868553172831913926421963195193844547568249484786334402767185999301378415135140587942568089473656728421994561125475659713828292507
b:  2746071383442798509584243930099531007970647473536601865414205204296038949501992089619563027208505292977309215673365269913414149743876567034074387997444920495173543812648332138759542345353916339578707063760322708819807236
g1: 350974994026620753979675180990051647398168083073545014908480697570945345464331891
g2: 350974994026620753979675180990051647398168083073545014908480697570945345464331891

a:  -117056998580945304184821702970990642540641661408292521120201060112550819020545228979394212957414409150358468028308399361041165854001915386060803537255972968474005080989453549476390751330196730234430700004932167687137381818127
b:  10887980216824713410285775659556028917843913454396402631170924306429164759767095148705112532704275088587083941908785366178275898393450995
g1: 39670620743063294957954384556739313
g2: 39670620743063294957954384556739313

a:  -598001823912534874208517349680591539504160701915355384877665105770363629221543599843198400332955435196904981538978750612537661169776344025743444795629307548576821736212045517283833765778360353817452510327356254575668650
b:  90509048207784702620501770854042911351589061991068451125351081532712386896877288900622389859065917998452452291292615363953199710026005253474176110406031968594539099946521324850398838595086265209684192902924467849729202032029781381250219860
g1: 66828566960312378305054873708070175386473030309578066210
g2: 66828566960312378305054873708070175386473030309578066210

a:  1960352178423649225892280536314678469863235161290760134098320083785718977406685228720876400548457222670557383566413188152649739244776561301613716575787818575602170756801796949930237097950270522739079575817769427
b:  -25384154713871646476808223512414581909063492530373174271243332366838025244352050483714117680294099568596054993381312466480940437911572856264771452863538475465229700420479583225394983981052267891620066062
g1: 4179708984265806324928461116697741999511642038037
g2: 4179708984265806324928461116697741999511642038037

a:  -349256717799207080394849609820183585996524601631231936883025528029804487906948134776250214658392015308383329264038993138245202578751143214190367854605596256993077323373768381517729783048759490776101797861
b:  -985139945319990785680156247979996422530806924961814986725840561594436127527958238949245592686334932621686380586536254139616369228057092744226984377364834556541410448655953710445145559150208728074169
g1: 1346019145817437081368523953398329917380854477
g2: 1346019145817437081368523953398329917380854477

a:  -149736550027231283712206412964562178741440585785902220706191976409223479758375789833197568404472839565571847929871207212173419614542477953192909574618001850522815261545021051236484912779706286374040222860738204
b:  68178517612029643974388357228434446330959886012775393688776131853162559439238865101573215452897868702712017332339146360751741072534475020024523195821054805567130562854765878236381352570205109803
g1: 6510119565583144494776770221422526200150977226021
g2: 6510119565583144494776770221422526200150977226021

a:  568038408526896562918092114832000037709119184432925081019763944823125217530309356466832726213353409161931480395119090219197826180210048520070960296876913278180142004375949712758866324460358175538673401160955453228
b:  12918170321349774004903317349216627640937588988470219051482424880402999814899658562373151128521222204856705429478454561656205162139336704062127225501961253250051066098484720895512311679480772133281754514608420794017024199
g1: 1240858815571998317754386811122560876850367385310074033063058015235288502294909
g2: 1240858815571998317754386811122560876850367385310074033063058015235288502294909

a:  205612332648181921758372645790949691935998256975376065436061447598856682771920824932859394837461887015779961237895842372541845006958653111716035602451790922395652173198163565013780562454031323988660452717470571351
b:  162245969050809894474270260493919222406436287611885461263809013308869831025196905715466896678230370868513506490228377358881251843921220897366919646267201791262981474847161484728274113854939914447429228748712820591371127089849640695656491193
g1: 2085095625406351609368675184631662475539682827300623898296877661
g2: 2085095625406351609368675184631662475539682827300623898296877661

a:  -1390178499701917461683270380403562800751510565949079692620244522485547290500332255512457915206814077467052648312925651739531295911750536753770614196271673865206857758187378909418665677796422941437469
b:  19237436287865567569634133586479273332183434667315576796441787099686273145752986594410761057530970641427112901816475956743319139588984370398036034691370216575195755025823992847965371884498242962018423
g1: 23494334560781987777796595767756668787940703546608221053609
g2: 23494334560781987777796595767756668787940703546608221053609

a:  5593980395607533522268516602501307483202128668315103500750016665694520831930186612662416498428888546459597201770674202630636441176499621919225177954226136514070583079255734297443339225455967104452378049704218583614209
b:  -245416203671391941112704751442350908702828878883271716551584490080287568199821690268455564995896577135133165167328441588090929230436620114931222136780225055418578997119924579544918488613431334000057410770849479319007
g1: 211145515808498016031750956689701833323287518586925822365963550202201571439
g2: 211145515808498016031750956689701833323287518586925822365963550202201571439

a:  -371567976249870618929142736391847131455977187703423110783345762658310156543196901759454908249614693275405574152595340203289783397815779453727496845529286907340697958129063261225
b:  -31083328029269937083066261100223836587803810027279124083427918206588815127925333231505418078385336427406340264645110993520631386825285186833229975774415328057398140305843453053079031952740
g1: 11034914308430244615314878417607382290916211850998565994416732245
g2: 11034914308430244615314878417607382290916211850998565994416732245

a:  7066110684390952456916626518811883416127339712441988048443571673827451171269204485134032456805832052638661262800802701773280866022689156009793945697942386911348503990136239
b:  3755001110190229262374433854777410520392130065360180423683941139827484325396974328201764061592466181628621510112993796708111674033520460998215391640375413022035385455306600654045619169893305207163890497035105037885678584045509634524689296968794625728182647
g1: 1035439824674085131032840654547143944103080279051990362891
g2: 1035439824674085131032840654547143944103080279051990362891

g: 2147483648
213^{1/5}: 3
-213^{1/5}: -2
log2(0): 0
log2(1): 0
log2(2): 1
log2(3): 1
log2(4): 2
log2(5): 2
log2(6): 2
log2(7): 2
log2(8): 3
log2(9): 3
log2(10): 3
log2(11): 3
log2(12): 3
log2(13): 3
log2(14): 3
log2(15): 3
log2(16): 4
log2(17): 4
log2(18): 4
log2(19): 4
log2(20): 4
log2(21): 4
log2(22): 4
log2(23): 4
log2(24): 4
log2(25): 4
log2(26): 4
log2(27): 4
log2(28): 4
log2(29): 4
log2(30): 4
log2(31): 4
log2(32): 5
log2(33): 5
log2(34): 5
log2(35): 5
log2(36): 5
log2(37): 5
log2(38): 5
log2(39): 5
log2(40): 5
log2(41): 5
log2(42): 5
log2(43): 5
log2(44): 5
log2(45): 5
log2(46): 5
log2(47): 5
log2(48): 5
log2(49): 5
log2(50): 5
log2(51): 5
log2(52): 5
log2(53): 5
log2(54): 5
log2(55): 5
log2(56): 5
log2(57): 5
log2(58): 5
log2(59): 5
log2(60): 5
log2(61): 5
log2(62): 5
log2(63): 5
log2(64): 6
a: 1000231
b: 102928187172727273
b: 102951963583964173000063
r: 18446744075857035263
expected: 18446744075857035263
minint: -9223372036854775808
4294967295 4294967295
1002034040050606089383838288182
1002034040050606089383838288182
*-2 = 
-2004068080101212178767676576364
v2:
4294967296
v2*v2:
18446744073709551616
v2:
4294967296
v2*v2:
18446744073709551616
v2: 115792089237316195423570985008687907853269984665640564039457584007913129639936
PASS
(test mpz :time 0.17 :before-memory 4.68 :after-memory 4.68)
1
11/10
1/3
1002034040050606089383838288182
1002034040050606089383838288182
*-2 = 
-2004068080101212178767676576364
1/3: 0.3333333333?
1/4: 0.25
PASS
(test mpq :time 0.00 :before-memory 4.68 :after-memory 4.68)
1
11/10
1/3
1002034040050606089383838288182
1002034040050606089383838288182
*-2 = 
-2004068080101212178767676576364
1/3: 0.3333333333?
1/4: 0.25
PASS
(test mpq :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test mpf :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test mpf :time 0.00 :before-memory 4.68 :after-memory 4.68)
****************************************************************************************************
1 3 2
****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************
****************************************************************************************************
****************************************************************************************************
****************************************************************************************************
****************************************************************************************************
****************************************************************************************************
PASS
(test total_order :time 6.35 :before-memory 4.68 :after-memory 4.68)
****************************************************************************************************
1 3 2
****************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************************
****************************************************************************************************
****************************************************************************************************
****************************************************************************************************
****************************************************************************************************
****************************************************************************************************
PASS
(test total_order :time 6.56 :before-memory 4.68 :after-memory 4.68)
table with signature (2,4,8,4):
(1,3,7,2)
(1,3,7,3)

1 3 7 2 
1 3 7 3 
table with signature (2,4,8,4,2,4,8,4):
(0,3,7,1,1,3,7,3)
(1,3,7,3,1,3,7,3)

table with signature (2,4,8,4,2,4,8,4):
(0,3,7,1,1,3,7,2)
(1,3,7,3,1,3,7,2)
(0,3,7,1,1,3,7,3)
(1,3,7,3,1,3,7,3)

PASS
(test dl_table :time 0.23 :before-memory 4.68 :after-memory 4.68)
table with signature (2,4,8,4):
(1,3,7,2)
(1,3,7,3)

1 3 7 2 
1 3 7 3 
table with signature (2,4,8,4,2,4,8,4):
(0,3,7,1,1,3,7,3)
(1,3,7,3,1,3,7,3)

table with signature (2,4,8,4,2,4,8,4):
(0,3,7,1,1,3,7,2)
(1,3,7,3,1,3,7,2)
(0,3,7,1,1,3,7,3)
(1,3,7,3,1,3,7,3)

PASS
(test dl_table :time 0.24 :before-memory 4.68 :after-memory 4.68)
PASS
(test dl_context :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test dl_context :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test dl_util :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test dl_util :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test dl_product_relation :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test dl_product_relation :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test dl_relation :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test dl_relation :time 0.00 :before-memory 4.68 :after-memory 4.68)
max. heap size: 68.6695 Mbytes
max. heap size: 68.6695 Mbytes
PASS
(test parray :time 1.66 :before-memory 4.68 :after-memory 4.68)
max. heap size: 68.6695 Mbytes
max. heap size: 68.6695 Mbytes
PASS
(test parray :time 1.73 :before-memory 4.68 :after-memory 4.68)
PASS
(test stack :time 4.70 :before-memory 4.68 :after-memory 4.68)
PASS
(test stack :time 4.56 :before-memory 4.68 :after-memory 4.68)
[\"hello\"\"world\"

]
[\"hello\"
world\"]
[\"hello\"
world\"]
[\"hello\"
world\"]
[\"hello\"
\"world\"

]
[]
[


]
[]
[
]
[]
[]
[]
[]
PASS
(test escaped :time 0.00 :before-memory 4.68 :after-memory 4.68)
[\"hello\"\"world\"

]
[\"hello\"
world\"]
[\"hello\"
world\"]
[\"hello\"
world\"]
[\"hello\"
\"world\"

]
[]
[


]
[]
[
]
[]
[]
[]
[]
PASS
(test escaped :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test buffer :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test buffer :time 0.00 :before-memory 4.68 :after-memory 4.68)
10 20 30 
12 10 
12 10 13 
14 12 10 13 
18 10 14 16 13 
18 14 16 13 
size: 9 9
size: 7 7
size: 662 662
PASS
(test chashtable :time 0.24 :before-memory 4.68 :after-memory 4.68)
10 20 30 
12 10 
12 10 13 
14 12 10 13 
18 10 14 16 13 
18 14 16 13 
size: 8 8
size: 8 8
size: 675 675
PASS
(test chashtable :time 0.24 :before-memory 4.68 :after-memory 4.68)
testing exception
Format 12 twelve
PASS
(test ex :time 0.00 :before-memory 4.68 :after-memory 4.68)
testing exception
Format 12 twelve
PASS
(test ex :time 0.00 :before-memory 4.68 :after-memory 4.68)
PASS
(test nlarith_util :time 0.01 :before-memory 4.68 :after-memory 4.68)
PASS
(test nlarith_util :time 0.00 :before-memory 4.68 :after-memory 4.68)
Using Z3 Version 4.8 (build 6, revision 0)
result 1
model : mySet -> (lambda ((x!1 Int)) (or (= x!1 42) (= x!1 43)))

PASS
(test api_bug :time 0.18 :before-memory 4.68 :after-memory 4.68)
Using Z3 Version 4.8 (build 6, revision 0)
result 1
model : mySet -> (lambda ((x!1 Int)) (or (= x!1 42) (= x!1 43)))

PASS
(test api_bug :time 0.18 :before-memory 4.68 :after-memory 4.68)
0.0
(<= (+ (* (/ 13.0 10.0) x y) (* (/ 23.0 10.0) y y) (* (- 2.0) x)) (/ 11.0 10.0))
(= (+ (* 3.0 x x) (* (- 4.0) y)) (- 7.0))
PASS
(test arith_rewriter :time 0.01 :before-memory 4.68 :after-memory 4.69)
0.0
(<= (+ (* (/ 13.0 10.0) x y) (* (/ 23.0 10.0) y y) (* (- 2.0) x)) (/ 11.0 10.0))
(= (+ (* 3.0 x x) (* (- 4.0) y)) (- 7.0))
PASS
(test arith_rewriter :time 0.01 :before-memory 4.69 :after-memory 4.69)
PASS
(test check_assumptions :time 0.01 :before-memory 4.69 :after-memory 4.69)
PASS
(test check_assumptions :time 0.01 :before-memory 4.69 :after-memory 4.69)
PASS
(test smt_context :time 0.01 :before-memory 4.69 :after-memory 4.69)
PASS
(test smt_context :time 0.01 :before-memory 4.69 :after-memory 4.69)
b -> 63
a -> 47
b -> 39
a -> 3
c -> 47
l_false
PASS
(test theory_dl :time 0.03 :before-memory 4.69 :after-memory 4.69)
b -> 63
a -> 47
b -> 39
a -> 3
c -> 47
l_false
PASS
(test theory_dl :time 0.03 :before-memory 4.69 :after-memory 4.69)
satisfiable
a1 -> (_ as-array k!0)
k!0 -> {
  true -> true
  else -> true
}
--------------------------
Logical context:
scope-lvl: 0
base-lvl:  0
search-lvl:  0
inconsistent(): 0
m_asserted_formulas.inconsistent(): 0
#1 := true
#5 := a1
#7 := (select a1 true)
#2 := false
#26 := as-array[#2147483785]
#6 := a2
#27 := (= a2 as-array[#2147483785])
asserted formulas:
#7 #27 
current assignment:
#7: (select a1 true)
expression -> bool_var:
(#1 -> true) (#7 -> p1) 
expression -> enode:
(#1 -> e!0) (#2 -> e!1) (#5 -> e!2) (#7 -> e!3) 
relevant exprs:
#7 #1 #5 
Theory array:
v0    #5    -> #5    is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {#7 #7}
 maps: {} p_parent_maps: {} p_const: {}
v1    #7    -> #7    is_array: 0 is_select: 1 upward: 0 stores: {} p_stores: {} p_selects: {}
 maps: {} p_parent_maps: {} p_const: {}
recfun{}
decl2enodes:
id 131 -> #7
hot bool vars:
--------------------------
Logical context:
scope-lvl: 0
base-lvl:  0
search-lvl:  0
inconsistent(): 0
m_asserted_formulas.inconsistent(): 0
#1 := true
#5 := a1
#7 := (select a1 true)
#26 := as-array[#2147483785]
#6 := a2
#27 := (= a2 as-array[#2147483785])
#2 := false
asserted formulas:
#7 #27 
current assignment:
#7: (select a1 true)
#27: (= a2 as-array[#2147483785])
equivalence classes:
#6 -> #26: a2 -> (_ as-array k!0)
expression -> bool_var:
(#1 -> true) (#7 -> p1) (#27 -> p2) 
expression -> enode:
(#1 -> e!0) (#2 -> e!1) (#5 -> e!2) (#7 -> e!3) (#6 -> e!4) (#26 -> e!5) (#27 -> e!6) 
relevant exprs:
#7 #1 #5 #27 #26 #6 
Theory array:
v0    #5    -> #5    is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {#7 #7}
 maps: {} p_parent_maps: {} p_const: {}
v1    #7    -> #7    is_array: 0 is_select: 1 upward: 0 stores: {} p_stores: {} p_selects: {}
 maps: {} p_parent_maps: {} p_const: {}
v2    #6    -> #6    is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {}
 maps: {} p_parent_maps: {} p_const: {}
v3    #26   -> #6    is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {}
 maps: {} p_parent_maps: {} p_const: {}
recfun{}
decl2enodes:
id 131 -> #7
hot bool vars:
--------------------------
unknown
PASS
(test model_retrieval :time 0.01 :before-memory 4.69 :after-memory 4.69)
satisfiable
a1 -> (_ as-array k!0)
k!0 -> {
  true -> true
  else -> true
}
--------------------------
Logical context:
scope-lvl: 0
base-lvl:  0
search-lvl:  0
inconsistent(): 0
m_asserted_formulas.inconsistent(): 0
#1 := true
#5 := a1
#7 := (select a1 true)
#2 := false
#26 := as-array[#2147483785]
#6 := a2
#27 := (= a2 as-array[#2147483785])
asserted formulas:
#7 #27 
current assignment:
#7: (select a1 true)
expression -> bool_var:
(#1 -> true) (#7 -> p1) 
expression -> enode:
(#1 -> e!0) (#2 -> e!1) (#5 -> e!2) (#7 -> e!3) 
relevant exprs:
#7 #1 #5 
Theory array:
v0    #5    -> #5    is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {#7 #7}
 maps: {} p_parent_maps: {} p_const: {}
v1    #7    -> #7    is_array: 0 is_select: 1 upward: 0 stores: {} p_stores: {} p_selects: {}
 maps: {} p_parent_maps: {} p_const: {}
recfun{}
decl2enodes:
id 131 -> #7
hot bool vars:
--------------------------
Logical context:
scope-lvl: 0
base-lvl:  0
search-lvl:  0
inconsistent(): 0
m_asserted_formulas.inconsistent(): 0
#1 := true
#5 := a1
#7 := (select a1 true)
#26 := as-array[#2147483785]
#6 := a2
#27 := (= a2 as-array[#2147483785])
#2 := false
asserted formulas:
#7 #27 
current assignment:
#7: (select a1 true)
#27: (= a2 as-array[#2147483785])
equivalence classes:
#6 -> #26: a2 -> (_ as-array k!0)
expression -> bool_var:
(#1 -> true) (#7 -> p1) (#27 -> p2) 
expression -> enode:
(#1 -> e!0) (#2 -> e!1) (#5 -> e!2) (#7 -> e!3) (#6 -> e!4) (#26 -> e!5) (#27 -> e!6) 
relevant exprs:
#7 #1 #5 #27 #26 #6 
Theory array:
v0    #5    -> #5    is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {#7 #7}
 maps: {} p_parent_maps: {} p_const: {}
v1    #7    -> #7    is_array: 0 is_select: 1 upward: 0 stores: {} p_stores: {} p_selects: {}
 maps: {} p_parent_maps: {} p_const: {}
v2    #6    -> #6    is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {}
 maps: {} p_parent_maps: {} p_const: {}
v3    #26   -> #6    is_array: 1 is_select: 0 upward: 0 stores: {} p_stores: {} p_selects: {}
 maps: {} p_parent_maps: {} p_const: {}
recfun{}
decl2enodes:
id 131 -> #7
hot bool vars:
--------------------------
unknown
PASS
(test model_retrieval :time 0.01 :before-memory 4.69 :after-memory 4.69)
-  <=  0; value: 0
+ v0 -2*v2  <=  0; value: -4
+ v1 -2*v2  + 1  <=  0; value: -4
+ 3*v2 -4*v4  <=  0; value: -11
+ 3*v2 -5*v3  + 1  <=  0; value: -10
+ 3*v2 -6*v5  + 1  <=  0; value: -26
0: 1 
1: 2 
2: 1 2 3 4 5 
3: 4 
4: 3 
5: 5 
v0  + 1  / 2
-  <=  0; value: 0
- v0 -2*v2  <=  0; value: -4
+ -1*v0 + v1  + 1  <=  0; value: 0
+ 3*v0 -8*v4  + 2  <=  0; value: -32
+ 3*v0 -10*v3  + 4  <=  0; value: -30
+ 3*v0 -12*v5  + 4  <=  0; value: -62
0: 1 3 4 5 2 
1: 2 
2: 1 2 3 4 5 
3: 4 
4: 3 
5: 5 
v1  + 1 
-  <=  0; value: 0
- v0 -2*v2  <=  0; value: -4
- -1*v0 + v1  + 1  <=  0; value: 0
+ 3*v1 -8*v4  + 5  <=  0; value: -32
+ 3*v1 -10*v3  + 7  <=  0; value: -30
+ 3*v1 -12*v5  + 7  <=  0; value: -62
0: 1 3 4 5 2 
1: 2 3 4 5 
2: 1 2 3 4 5 
3: 4 
4: 3 
5: 5 
+ 2*v0 -2*v1  <=  0; value: 0
+ 2*v1 + 5*v2 -31  <  0; value: -1
+ -1*v1 + 4*v2 + 2*v3 -45  <=  0; value: -26
+ 5*v1 + v3 -42  <=  0; value: -13
+ -3*v2 -9  <  0; value: -21
+ v3 -4  =  0; value: 0
0: 
1: 1 2 3 
2: 1 2 4 
3: 2 3 5 
optimal: oo
+ 2*v0  + 98  <  0; value: 108
+ -144  <  0; value: -144
- -1*v1 + 4*v2 + 2*v3 -45  <=  0; value: 0
+ -283  <  0; value: -283
- -3*v2 -9  <  0; value: -3
- v3 -4  =  0; value: 0
0: 
1: 1 2 3 
2: 1 2 4 3 
3: 2 3 5 1 
0: 5 -> 5
1: 5 -> -45
2: 4 -> -2
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 2
+ -3*v2 -4*v3  + 11  <=  0; value: -2
+ 3*v0 + 5*v2 -43  <=  0; value: -16
+ -6*v1 + 4*v3  + 14  =  0; value: 0
+ 3*v0 + 2*v3 -25  <=  0; value: -11
+ 4*v2 -19  <  0; value: -7
0: 2 4 
1: 3 
2: 1 2 5 
3: 1 3 4 
optimal: (37/4 -e*1)
+  + 37/4  <  0; value: 37/4
- -3*v2 -4*v3  + 11  <=  0; value: 0
- 3*v0 -77/4  <=  0; value: 0
- -6*v1 + 4*v3  + 14  =  0; value: 0
+ -59/8  <  0; value: -59/8
- 4*v2 -19  <  0; value: -7/2
0: 2 4 
1: 3 
2: 1 2 5 4 
3: 1 3 4 
0: 4 -> 77/12
1: 3 -> 107/48
2: 3 -> 31/8
3: 1 -> -5/32
+ 2*v0 -2*v1  <=  0; value: 0
+  =  0; value: 0
+ -5*v0 -5*v1  <=  0; value: 0
+ 5*v2 -1*v3 -27  <=  0; value: -14
+ v2 -8  <=  0; value: -5
+ -1*v1  <=  0; value: 0
0: 2 
1: 2 5 
2: 3 4 
3: 3 
optimal: 0
+  <=  0; value: 0
+  =  0; value: 0
- -5*v0 -5*v1  <=  0; value: 0
+ 5*v2 -1*v3 -27  <=  0; value: -14
+ v2 -8  <=  0; value: -5
- v0  <=  0; value: 0
0: 2 5 
1: 2 5 
2: 3 4 
3: 3 
0: 0 -> 0
1: 0 -> 0
2: 3 -> 3
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -2
+ 6*v1 + 5*v2 -77  <=  0; value: -40
+ -2*v1 + 3*v2 + 2*v3 -28  <=  0; value: -17
+ -5*v0 -6*v1 + 2*v2 -4  <=  0; value: -11
+ -4*v0 + v2 -1  <=  0; value: 0
+ -2*v2 -6*v3 -6  <=  0; value: -16
0: 3 4 
1: 1 2 3 
2: 1 2 3 4 5 
3: 2 5 
optimal: oo
+ 11/3*v0 + 2*v3  + 10/3  <=  0; value: 7
+ -5*v0 -21*v3 -102  <=  0; value: -107
+ 5/3*v0 -5*v3 -101/3  <=  0; value: -32
- -5*v0 -6*v1 + 2*v2 -4  <=  0; value: 0
+ -4*v0 -3*v3 -4  <=  0; value: -8
- -2*v2 -6*v3 -6  <=  0; value: 0
0: 3 4 2 1 
1: 1 2 3 
2: 1 2 3 4 5 
3: 2 5 1 4 
0: 1 -> 1
1: 2 -> -5/2
2: 5 -> -3
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 2
+ -6*v0  + 18  =  0; value: 0
+ 2*v1 -3*v3 -2  <=  0; value: -1
+ 4*v0 -12  =  0; value: 0
+ -1*v1  + 2  =  0; value: 0
+ 2*v2 -4*v3 -17  <  0; value: -11
0: 1 3 
1: 2 4 
2: 5 
3: 2 5 
optimal: 2
+  + 2  <=  0; value: 2
- -6*v0  + 18  =  0; value: 0
+ -3*v3  + 2  <=  0; value: -1
+  =  0; value: 0
- -1*v1  + 2  =  0; value: 0
+ 2*v2 -4*v3 -17  <  0; value: -11
0: 1 3 
1: 2 4 
2: 5 
3: 2 5 
0: 3 -> 3
1: 2 -> 2
2: 5 -> 5
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 0
+ v0 -3*v2  + 2  <=  0; value: -3
+ v1 + 2*v2 -4*v3 -2  <=  0; value: 0
+ -1*v0  + 1  <=  0; value: -3
+ -2*v1 + v3  + 4  <=  0; value: -2
+ -3*v0 + 4*v1 -5  <=  0; value: -1
0: 1 3 5 
1: 2 4 5 
2: 1 2 
3: 2 4 
optimal: oo
+ 38/21*v0 -92/21  <=  0; value: 20/7
- v0 -3*v2  + 2  <=  0; value: 0
- 2*v2 -7/2*v3  <=  0; value: 0
+ -1*v0  + 1  <=  0; value: -3
- -2*v1 + v3  + 4  <=  0; value: 0
+ -55/21*v0  + 79/21  <=  0; value: -47/7
0: 1 3 5 
1: 2 4 5 
2: 1 2 5 
3: 2 4 5 
0: 4 -> 4
1: 4 -> 18/7
2: 3 -> 2
3: 2 -> 8/7
+ 2*v0 -2*v1  <=  0; value: -2
+ 6*v1 -18  =  0; value: 0
+ -1*v2 + 4*v3  + 3  <=  0; value: -1
+  <=  0; value: 0
+ 4*v1 -18  <  0; value: -6
+ -5*v1 -6*v2 -15  <=  0; value: -54
0: 
1: 1 4 5 
2: 2 5 
3: 2 
optimal: oo
+ 2*v0 -6  <=  0; value: -2
- 6*v1 -18  =  0; value: 0
+ -1*v2 + 4*v3  + 3  <=  0; value: -1
+  <=  0; value: 0
+ -6  <  0; value: -6
+ -6*v2 -30  <=  0; value: -54
0: 
1: 1 4 5 
2: 2 5 
3: 2 
0: 2 -> 2
1: 3 -> 3
2: 4 -> 4
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -6
+ 5*v0 -3*v2  + 4  <  0; value: -1
+ v0 + v2 + 5*v3 -19  <=  0; value: -12
+ -5*v1 + v2 -5  <  0; value: -25
+ 4*v0 + 4*v1 -3*v3 -28  =  0; value: 0
+ 3*v3  <=  0; value: 0
0: 1 2 4 
1: 3 4 
2: 1 2 3 
3: 2 4 5 
optimal: (46/5 -e*1)
+  + 46/5  <  0; value: 46/5
- 5*v0 -3*v2  + 4  <  0; value: -3
+ -11/5  <=  0; value: -11/5
- 5*v0 + v2 -15/4*v3 -40  <  0; value: -17/6
- 4*v0 + 4*v1 -3*v3 -28  =  0; value: 0
- 16/3*v0 -464/15  <  0; value: -16/3
0: 1 2 4 3 5 
1: 3 4 
2: 1 2 3 5 
3: 2 4 5 3 
0: 2 -> 24/5
1: 5 -> 49/30
2: 5 -> 31/3
3: 0 -> -34/45
+ 2*v0 -2*v1  <=  0; value: -2
+ 6*v0 + 4*v1 -21  <  0; value: -7
+ -6*v0 -6*v3  + 30  =  0; value: 0
+ -6*v1 + 3*v2 + v3 -7  =  0; value: 0
+ 4*v2 -2*v3 -19  <=  0; value: -7
+ -5*v0  + 1  <=  0; value: -4
0: 1 2 5 
1: 1 3 
2: 3 4 
3: 2 3 4 
optimal: oo
+ 7/3*v0 -1*v2  + 2/3  <=  0; value: -2
+ 16/3*v0 + 2*v2 -67/3  <  0; value: -7
- -6*v0 -6*v3  + 30  =  0; value: 0
- -6*v1 + 3*v2 + v3 -7  =  0; value: 0
+ 2*v0 + 4*v2 -29  <=  0; value: -7
+ -5*v0  + 1  <=  0; value: -4
0: 1 2 5 4 
1: 1 3 
2: 3 4 1 
3: 2 3 4 1 
0: 1 -> 1
1: 2 -> 2
2: 5 -> 5
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -2
+ 2*v1 + 4*v2 -44  <=  0; value: -24
+ 4*v2 + v3 -18  <=  0; value: 0
+ 6*v0 -4*v2 + 3*v3  + 2  <  0; value: -2
+ v3 -5  <=  0; value: -3
+ -3*v1  + 2  <=  0; value: -4
0: 3 
1: 1 5 
2: 1 2 3 
3: 2 3 4 
optimal: oo
+ 4/3*v2 -1*v3 -2  <  0; value: 4/3
+ 4*v2 -128/3  <=  0; value: -80/3
+ 4*v2 + v3 -18  <=  0; value: 0
- 6*v0 -4*v2 + 3*v3  + 2  <  0; value: -1
+ v3 -5  <=  0; value: -3
- -3*v1  + 2  <=  0; value: 0
0: 3 
1: 1 5 
2: 1 2 3 
3: 2 3 4 
0: 1 -> 7/6
1: 2 -> 2/3
2: 4 -> 4
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 6
+ 6*v3 -18  =  0; value: 0
+ -2*v1 -1*v2 -2  <  0; value: -7
+ 2*v0 -5*v1 -6*v2  + 14  <=  0; value: -1
+  =  0; value: 0
+ 3*v0 -4*v3  <=  0; value: 0
0: 3 5 
1: 2 3 
2: 2 3 
3: 1 5 
optimal: (124/7 -e*1)
+  + 124/7  <  0; value: 124/7
- 6*v3 -18  =  0; value: 0
- -4/5*v0 + 7/5*v2 -38/5  <  0; value: -7/5
- 2*v0 -5*v1 -6*v2  + 14  <=  0; value: 0
+  =  0; value: 0
- 3*v0 -4*v3  <=  0; value: 0
0: 3 5 2 
1: 2 3 
2: 2 3 
3: 1 5 
0: 4 -> 4
1: 1 -> -128/35
2: 3 -> 47/7
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -4
+ -2*v0 -1*v2 -6*v3  + 18  =  0; value: 0
+ -6*v1  + 7  <=  0; value: -5
+ -1*v0 + v1 + 4*v2 -3  <=  0; value: -1
+ -3*v3  + 3  <=  0; value: -6
+ 4*v2 -5*v3  + 10  <=  0; value: -5
0: 1 3 
1: 2 3 
2: 1 3 5 
3: 1 4 5 
optimal: 131/12
+  + 131/12  <=  0; value: 131/12
- -2*v0 -1*v2 -6*v3  + 18  =  0; value: 0
- -6*v1  + 7  <=  0; value: 0
+ -323/24  <=  0; value: -323/24
- -12/5*v2 -3  <=  0; value: 0
- 4*v2 -5*v3  + 10  <=  0; value: 0
0: 1 3 
1: 2 3 
2: 1 3 5 4 
3: 1 4 5 3 
0: 0 -> 53/8
1: 2 -> 7/6
2: 0 -> -5/4
3: 3 -> 1
+ 2*v0 -2*v1  <=  0; value: 4
+ 6*v1 + v3 -1  <=  0; value: 0
+ 5*v0 + 4*v1 -10  =  0; value: 0
+ -2*v1 + 3*v3 -3  <=  0; value: 0
+ 3*v0 -2*v2 -2  =  0; value: 0
+ -1*v2 -2*v3  + 4  =  0; value: 0
0: 2 4 
1: 1 2 3 
2: 4 5 
3: 1 3 5 
optimal: 4
+  + 4  <=  0; value: 4
+  <=  0; value: 0
- 5*v0 + 4*v1 -10  =  0; value: 0
- -1/3*v3  + 1/3  <=  0; value: 0
- 3*v0 -2*v2 -2  =  0; value: 0
- -1*v2 -2*v3  + 4  =  0; value: 0
0: 2 4 3 1 
1: 1 2 3 
2: 4 5 3 1 
3: 1 3 5 
0: 2 -> 2
1: 0 -> 0
2: 2 -> 2
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -2
+ -6*v1 + 3*v2  + 18  =  0; value: 0
+ 3*v0 -6*v1 -6*v2  + 14  <  0; value: -28
+ -4*v0 -1*v3  + 19  =  0; value: 0
+ -5*v1 -3*v3  + 34  =  0; value: 0
+ v0 + 3*v3 -13  =  0; value: 0
0: 2 3 5 
1: 1 2 4 
2: 1 2 
3: 3 4 5 
optimal: -2
+ -2  <=  0; value: -2
- -6*v1 + 3*v2  + 18  =  0; value: 0
+ -28  <  0; value: -28
- -4*v0 -1*v3  + 19  =  0; value: 0
- -5/2*v2 -3*v3  + 19  =  0; value: 0
- -11*v0  + 44  =  0; value: 0
0: 2 3 5 
1: 1 2 4 
2: 1 2 4 
3: 3 4 5 2 
0: 4 -> 4
1: 5 -> 5
2: 4 -> 4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 2
+ 4*v1 + 5*v3 -30  <=  0; value: -10
+ 5*v1 -3*v2 + 5*v3 -20  =  0; value: 0
+ -5*v2 + 2*v3 -8  <=  0; value: 0
+ 3*v0 -1*v1 -3  <=  0; value: 0
+ -2*v1  =  0; value: 0
0: 4 
1: 1 2 4 5 
2: 2 3 
3: 1 2 3 
optimal: 2
+  + 2  <=  0; value: 2
+ -10  <=  0; value: -10
- 5*v1 -3*v2 + 5*v3 -20  =  0; value: 0
- -5*v2 + 2*v3 -8  <=  0; value: 0
- 3*v0 + 19/10*v2 -3  <=  0; value: 0
- -6*v0  + 6  =  0; value: 0
0: 4 5 1 
1: 1 2 4 5 
2: 2 3 4 5 1 
3: 1 2 3 4 5 
0: 1 -> 1
1: 0 -> 0
2: 0 -> 0
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 6
+ 6*v0 -3*v2 + 6*v3 -66  <  0; value: -39
+ -4*v0 -1*v1 + 6*v3  =  0; value: 0
+ 5*v1 -2*v3  + 4  <=  0; value: 0
+ 4*v0 -17  <  0; value: -5
+ 5*v0 + 3*v3 -45  <=  0; value: -24
0: 1 2 4 5 
1: 2 3 
2: 1 
3: 1 2 3 5 
optimal: oo
+ 10*v0 -12*v3  <=  0; value: 6
+ 6*v0 -3*v2 + 6*v3 -66  <  0; value: -39
- -4*v0 -1*v1 + 6*v3  =  0; value: 0
+ -20*v0 + 28*v3  + 4  <=  0; value: 0
+ 4*v0 -17  <  0; value: -5
+ 5*v0 + 3*v3 -45  <=  0; value: -24
0: 1 2 4 5 3 
1: 2 3 
2: 1 
3: 1 2 3 5 
0: 3 -> 3
1: 0 -> 0
2: 1 -> 1
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -2
+ 3*v0 -1*v2 + v3 -17  <=  0; value: -9
+ -6*v0 -4*v2 -18  <  0; value: -52
+ -1*v1  <=  0; value: -4
+ 3*v1 + 2*v2 -20  =  0; value: 0
+ 3*v0 -5*v2 -1*v3 -3  <=  0; value: -17
0: 1 2 5 
1: 3 4 
2: 1 2 4 5 
3: 1 5 
optimal: 80/3
+  + 80/3  <=  0; value: 80/3
- 3*v0 + v3 -27  <=  0; value: 0
+ -138  <  0; value: -138
- 2/3*v2 -20/3  <=  0; value: 0
- 3*v1 + 2*v2 -20  =  0; value: 0
- -2*v3 -26  <=  0; value: 0
0: 1 2 5 
1: 3 4 
2: 1 2 4 5 3 
3: 1 5 2 
0: 3 -> 40/3
1: 4 -> 0
2: 4 -> 10
3: 3 -> -13
+ 2*v0 -2*v1  <=  0; value: 8
+ 5*v0 + v2 -50  <=  0; value: -26
+ v0 -6*v1 -4  =  0; value: 0
+ 3*v0 -5*v2 -4  <  0; value: -12
+ -1*v0 -6*v1  <=  0; value: -4
+ v2 -2*v3  + 1  <  0; value: -3
0: 1 2 3 4 
1: 2 4 
2: 1 3 5 
3: 5 
optimal: (691/42 -e*1)
+  + 691/42  <  0; value: 691/42
- 28/3*v2 -130/3  <=  0; value: 0
- v0 -6*v1 -4  =  0; value: 0
- 3*v0 -5*v2 -4  <  0; value: -3
+ -99/7  <  0; value: -99/7
+ -2*v3  + 79/14  <  0; value: -33/14
0: 1 2 3 4 
1: 2 4 
2: 1 3 5 4 
3: 5 
0: 4 -> 113/14
1: 0 -> 19/28
2: 4 -> 65/14
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -2
+ -6*v1 -2*v2 -10  <=  0; value: -26
+ -4*v1 -6*v3 -10  <  0; value: -36
+ -4*v0 + 3*v3 -5  =  0; value: 0
+ 5*v0 + 4*v1 -1*v2 -18  <=  0; value: -7
+ -3*v0 -4*v1 + 2*v3 -3  <=  0; value: -8
0: 3 4 5 
1: 1 2 4 5 
2: 1 4 
3: 2 3 5 
optimal: oo
+ 13/28*v2  + 225/28  <=  0; value: 251/28
+ -53/28*v2 -241/28  <=  0; value: -347/28
+ -23/14*v2 -691/14  <  0; value: -737/14
- -4*v0 + 3*v3 -5  =  0; value: 0
- 14/3*v0 -1*v2 -53/3  <=  0; value: 0
- -3*v0 -4*v1 + 2*v3 -3  <=  0; value: 0
0: 3 4 5 2 1 
1: 1 2 4 5 
2: 1 4 2 
3: 2 3 5 1 4 
0: 1 -> 59/14
1: 2 -> -15/56
2: 2 -> 2
3: 3 -> 51/7
+ 2*v0 -2*v1  <=  0; value: 6
+ 5*v0 + 2*v3 -47  <=  0; value: -19
+ 5*v0 -5*v2 -3*v3 -1  <  0; value: -8
+ 4*v1 -3*v3  + 8  <=  0; value: 0
+ 6*v0 + 3*v3 -81  <=  0; value: -45
+ -1*v0 -2*v1 -3*v3 -1  <  0; value: -19
0: 1 2 4 5 
1: 3 5 
2: 2 
3: 1 2 3 4 5 
optimal: (103 -e*1)
+  + 103  <  0; value: 103
- 5*v0 + 2*v3 -47  <=  0; value: 0
+ -5*v2 -159  <  0; value: -174
+ -349  <  0; value: -349
- -3/2*v0 -21/2  <=  0; value: 0
- -1*v0 -2*v1 -3*v3 -1  <  0; value: -2
0: 1 2 4 5 3 
1: 3 5 
2: 2 
3: 1 2 3 4 5 
0: 4 -> -7
1: 1 -> -115/2
2: 3 -> 3
3: 4 -> 41
+ 2*v0 -2*v1  <=  0; value: -8
+ 3*v0 + 6*v2 -3*v3  + 12  =  0; value: 0
+ -4*v0 + 6*v2  =  0; value: 0
+ 3*v2 -6*v3  + 24  =  0; value: 0
+ 5*v2 -2*v3 -3  <=  0; value: -11
+ 6*v1 -32  <=  0; value: -8
0: 1 2 
1: 5 
2: 1 2 3 4 
3: 1 3 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -8
+ 3*v0 + 6*v2 -3*v3  + 12  =  0; value: 0
+ -4*v0 + 6*v2  =  0; value: 0
+ 3*v2 -6*v3  + 24  =  0; value: 0
+ 5*v2 -2*v3 -3  <=  0; value: -11
+ 6*v1 -32  <=  0; value: -8
0: 1 2 
1: 5 
2: 1 2 3 4 
3: 1 3 4 
0: 0 -> 0
1: 4 -> 4
2: 0 -> 0
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -4
+ 5*v0 + 3*v3 -11  =  0; value: 0
+ v0 + 4*v3 -9  =  0; value: 0
+ 5*v0 -2*v1 -4*v2 -8  <=  0; value: -25
+ -6*v0 -3*v2  + 16  <  0; value: -2
+ 4*v0 + 6*v2 -4*v3 -55  <  0; value: -35
0: 1 2 3 4 5 
1: 3 
2: 3 4 5 
3: 1 2 5 
optimal: (133/3 -e*1)
+  + 133/3  <  0; value: 133/3
- 5*v0 + 3*v3 -11  =  0; value: 0
- -17/3*v0  + 17/3  =  0; value: 0
- 5*v0 -2*v1 -4*v2 -8  <=  0; value: 0
+ -39/2  <  0; value: -39/2
- 4*v0 + 6*v2 -4*v3 -55  <  0; value: -6
0: 1 2 3 4 5 
1: 3 
2: 3 4 5 
3: 1 2 5 4 
0: 1 -> 1
1: 3 -> -115/6
2: 4 -> 53/6
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -4
+ 6*v0 -4*v1  + 1  <  0; value: -3
+ 4*v2  <=  0; value: 0
+ 6*v1 -33  <=  0; value: -9
+ -6*v0 + 2*v2  + 7  <=  0; value: -5
+ 5*v0 + v1 -38  <=  0; value: -24
0: 1 4 5 
1: 1 3 5 
2: 2 4 
3: 
optimal: oo
+ -1/3*v2 -5/3  <  0; value: -5/3
- 6*v0 -4*v1  + 1  <  0; value: -4
+ 4*v2  <=  0; value: 0
+ 3*v2 -21  <  0; value: -21
- -6*v0 + 2*v2  + 7  <=  0; value: 0
+ 13/6*v2 -181/6  <  0; value: -181/6
0: 1 4 5 3 
1: 1 3 5 
2: 2 4 5 3 
3: 
0: 2 -> 7/6
1: 4 -> 3
2: 0 -> 0
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 4
+ -5*v1  + 5  =  0; value: 0
+ -3*v0 -5*v2  + 10  <  0; value: -4
+ 6*v0 -42  <=  0; value: -24
+ 6*v2 + 5*v3 -60  <=  0; value: -39
+ 4*v0 + 6*v2 + v3 -52  <  0; value: -31
0: 2 3 5 
1: 1 
2: 2 4 5 
3: 4 5 
optimal: 12
+  + 12  <=  0; value: 12
- -5*v1  + 5  =  0; value: 0
+ -5*v2 -11  <  0; value: -16
- 6*v0 -42  <=  0; value: 0
+ 6*v2 + 5*v3 -60  <=  0; value: -39
+ 6*v2 + v3 -24  <  0; value: -15
0: 2 3 5 
1: 1 
2: 2 4 5 
3: 4 5 
0: 3 -> 7
1: 1 -> 1
2: 1 -> 1
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ -3*v0 -5*v3  + 9  =  0; value: 0
+ 3*v2 -4*v3  <=  0; value: 0
+ -2*v0 + 2*v2  + 6  =  0; value: 0
+ v0 -3*v3 -4  <=  0; value: -1
+ 4*v0 + 6*v2 -3*v3 -34  <  0; value: -22
0: 1 3 4 5 
1: 
2: 2 3 5 
3: 1 2 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 0
+ -3*v0 -5*v3  + 9  =  0; value: 0
+ 3*v2 -4*v3  <=  0; value: 0
+ -2*v0 + 2*v2  + 6  =  0; value: 0
+ v0 -3*v3 -4  <=  0; value: -1
+ 4*v0 + 6*v2 -3*v3 -34  <  0; value: -22
0: 1 3 4 5 
1: 
2: 2 3 5 
3: 1 2 4 5 
0: 3 -> 3
1: 3 -> 3
2: 0 -> 0
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -2
+ 4*v0 -2*v1 + 4*v2 -34  <=  0; value: -16
+ -6*v0 -2*v2 -8  <  0; value: -28
+ 4*v0 + 3*v1 -3*v2 -7  <=  0; value: -2
+ -2*v1 + 6*v2 -3*v3 -43  <=  0; value: -25
+ 3*v1 -12  <=  0; value: -3
0: 1 2 3 
1: 1 3 4 5 
2: 1 2 3 4 
3: 4 
optimal: (750 -e*1)
+  + 750  <  0; value: 750
- 4*v0 -2*v1 + 4*v2 -34  <=  0; value: 0
- -6*v0 -2*v2 -8  <  0; value: -2
- v0 -70  <  0; value: -1
+ -3*v3 -717  <  0; value: -717
+ -927  <  0; value: -927
0: 1 2 3 4 5 
1: 1 3 4 5 
2: 1 2 3 4 5 
3: 4 
0: 2 -> 69
1: 3 -> -299
2: 4 -> -210
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 0
+ 5*v2 + 2*v3 -71  <=  0; value: -40
+ 3*v2 + 6*v3 -33  =  0; value: 0
+ -3*v0 -4*v1 -3*v2  + 20  <  0; value: -2
+ -3*v2 -3*v3 -19  <=  0; value: -43
+ 3*v0 + 2*v1 + 5*v3 -20  <=  0; value: 0
0: 3 5 
1: 3 5 
2: 1 2 3 4 
3: 1 2 4 5 
optimal: (335/3 -e*1)
+  + 335/3  <  0; value: 335/3
- -8*v3 -16  <=  0; value: 0
- 3*v2 + 6*v3 -33  =  0; value: 0
- -3*v0 -4*v1 -3*v2  + 20  <  0; value: -4
+ -58  <=  0; value: -58
- 3/2*v0 -85/2  <  0; value: -3/2
0: 3 5 
1: 3 5 
2: 1 2 3 4 5 
3: 1 2 4 5 
0: 1 -> 82/3
1: 1 -> -103/4
2: 5 -> 15
3: 3 -> -2
+ 2*v0 -2*v1  <=  0; value: 6
+ -1*v0 + 3*v1  + 1  <=  0; value: 0
+ 6*v0 -3*v1 + 5*v3 -35  <  0; value: -9
+ 2*v0 + v1 + 6*v3 -15  <=  0; value: 0
+ -5*v0 + 5*v1 + 2*v2 -6  <  0; value: -13
+ 5*v0 + 6*v3 -55  <=  0; value: -29
0: 1 2 3 4 5 
1: 1 2 3 4 
2: 4 
3: 2 3 5 
optimal: oo
+ -2*v0 -10/3*v3  + 70/3  <  0; value: 12
+ 5*v0 + 5*v3 -34  <  0; value: -9
- 6*v0 -3*v1 + 5*v3 -35  <  0; value: -3
+ 4*v0 + 23/3*v3 -80/3  <  0; value: -3
+ 5*v0 + 2*v2 + 25/3*v3 -193/3  <  0; value: -28
+ 5*v0 + 6*v3 -55  <=  0; value: -29
0: 1 2 3 4 5 
1: 1 2 3 4 
2: 4 
3: 2 3 5 1 4 
0: 4 -> 4
1: 1 -> -1
2: 4 -> 4
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 6
+ 5*v1 + 4*v2 -3*v3 -39  <=  0; value: -22
+ 2*v2 -6*v3 -6  <=  0; value: 0
+ 6*v0 -2*v3 -39  <  0; value: -15
+ -2*v2 + 5*v3  + 3  <  0; value: -3
+ -5*v1 + v2  + 2  <=  0; value: 0
0: 3 
1: 1 5 
2: 1 2 4 5 
3: 1 2 3 4 
optimal: (63/5 -e*1)
+  + 63/5  <  0; value: 63/5
+ -58  <  0; value: -58
- -1*v3 -3  <  0; value: -1
- 6*v0 -33  <=  0; value: 0
- -2*v2 + 5*v3  + 3  <  0; value: -2
- -5*v1 + v2  + 2  <=  0; value: 0
0: 3 
1: 1 5 
2: 1 2 4 5 
3: 1 2 3 4 
0: 4 -> 11/2
1: 1 -> -1/10
2: 3 -> -5/2
3: 0 -> -2
+ 2*v0 -2*v1  <=  0; value: 2
+ 2*v0 + 3*v1 -4  <=  0; value: -2
+ 5*v0 + v1 -6*v3 -13  <=  0; value: -8
+ -1*v1  =  0; value: 0
+ 4*v1  =  0; value: 0
+ -1*v0 -4*v2 + 2*v3  + 1  =  0; value: 0
0: 1 2 5 
1: 1 2 3 4 
2: 5 
3: 2 5 
optimal: 4
+  + 4  <=  0; value: 4
- -8*v2 + 4*v3 -2  <=  0; value: 0
+ -12*v2 -6  <=  0; value: -6
- -1*v1  =  0; value: 0
+  =  0; value: 0
- -1*v0 -4*v2 + 2*v3  + 1  =  0; value: 0
0: 1 2 5 
1: 1 2 3 4 
2: 5 2 1 
3: 2 5 1 
0: 1 -> 2
1: 0 -> 0
2: 0 -> 0
3: 0 -> 1/2
+ 2*v0 -2*v1  <=  0; value: 10
+ -1*v0 -1*v1  + 5  =  0; value: 0
+ 5*v0 -5*v2 -6*v3 -22  <=  0; value: -7
+ -4*v0 -1*v2  + 17  <  0; value: -5
+ -5*v0 -2*v1 + v2  + 21  <=  0; value: -2
+ v0 + 5*v1 + v2 -9  <=  0; value: -2
0: 1 2 3 4 5 
1: 1 4 5 
2: 2 3 4 5 
3: 2 
optimal: oo
+ 4*v2 + 24/5*v3  + 38/5  <=  0; value: 78/5
- -1*v0 -1*v1  + 5  =  0; value: 0
- 5*v0 -5*v2 -6*v3 -22  <=  0; value: 0
+ -5*v2 -24/5*v3 -3/5  <  0; value: -53/5
+ -2*v2 -18/5*v3 -11/5  <=  0; value: -31/5
+ -3*v2 -24/5*v3 -8/5  <=  0; value: -38/5
0: 1 2 3 4 5 
1: 1 4 5 
2: 2 3 4 5 
3: 2 3 4 5 
0: 5 -> 32/5
1: 0 -> -7/5
2: 2 -> 2
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -4
+ -2*v2 + v3  + 1  <=  0; value: 0
+ 4*v0 + 3*v1 -2*v2 -18  <  0; value: -11
+ v0 -2*v2  + 4  <=  0; value: -1
+ -3*v0 + 6*v3 -59  <=  0; value: -32
+ 5*v0 -2*v2 + v3 -6  <=  0; value: -2
0: 2 3 4 5 
1: 2 
2: 1 2 3 5 
3: 1 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -4
+ -2*v2 + v3  + 1  <=  0; value: 0
+ 4*v0 + 3*v1 -2*v2 -18  <  0; value: -11
+ v0 -2*v2  + 4  <=  0; value: -1
+ -3*v0 + 6*v3 -59  <=  0; value: -32
+ 5*v0 -2*v2 + v3 -6  <=  0; value: -2
0: 2 3 4 5 
1: 2 
2: 1 2 3 5 
3: 1 4 5 
0: 1 -> 1
1: 3 -> 3
2: 3 -> 3
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -4
+ -3*v0 + 5*v1 -27  <=  0; value: -15
+ -2*v0 -2*v2  + 12  =  0; value: 0
+ 6*v0 + v1 + 6*v3 -104  <=  0; value: -65
+ v2 + v3 -10  <=  0; value: 0
+ -1*v1 + 3*v2 -19  <  0; value: -7
0: 1 2 3 
1: 1 3 5 
2: 2 4 5 
3: 3 4 
optimal: oo
+ -16*v3  + 282  <  0; value: 202
+ 36*v3 -662  <  0; value: -482
- -2*v0 -2*v2  + 12  =  0; value: 0
- 3*v0 + 6*v3 -105  <  0; value: -3
+ 3*v3 -39  <  0; value: -24
- -1*v1 + 3*v2 -19  <  0; value: -1
0: 1 2 3 4 
1: 1 3 5 
2: 2 4 5 1 3 
3: 3 4 1 
0: 1 -> 24
1: 3 -> -72
2: 5 -> -18
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 0
+ 6*v1 + 4*v3 -8  =  0; value: 0
+ -1*v0 -1*v2 + 2*v3 -2  <=  0; value: 0
+ 3*v0 + 3*v2 -4*v3  + 1  <=  0; value: -1
+ 2*v1 + 5*v2 -6*v3  <=  0; value: -2
+ 3*v1 -3*v3 -3  <  0; value: -9
0: 2 3 
1: 1 4 5 
2: 2 3 4 
3: 1 2 3 4 5 
optimal: oo
+ 2*v0  + 2/3  <=  0; value: 2/3
- 6*v1 + 4*v3 -8  =  0; value: 0
- -1*v0 -1*v2 + 2*v3 -2  <=  0; value: 0
- v0 + v2 -3  <=  0; value: 0
+ -5*v0 -2/3  <=  0; value: -2/3
+ -23/2  <  0; value: -23/2
0: 2 3 4 5 
1: 1 4 5 
2: 2 3 4 5 
3: 1 2 3 4 5 
0: 0 -> 0
1: 0 -> -1/3
2: 2 -> 3
3: 2 -> 5/2
+ 2*v0 -2*v1  <=  0; value: -2
+ 4*v0 + 5*v1 -1*v3 -65  <=  0; value: -38
+ -5*v0 + 4*v1 -1  <=  0; value: 0
+ 5*v3 -34  <=  0; value: -9
+ -2*v0 -6*v2  + 36  =  0; value: 0
+ -6*v3  + 18  <  0; value: -12
0: 1 2 4 
1: 1 2 
2: 4 
3: 1 3 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+ 4*v0 + 5*v1 -1*v3 -65  <=  0; value: -38
+ -5*v0 + 4*v1 -1  <=  0; value: 0
+ 5*v3 -34  <=  0; value: -9
+ -2*v0 -6*v2  + 36  =  0; value: 0
+ -6*v3  + 18  <  0; value: -12
0: 1 2 4 
1: 1 2 
2: 4 
3: 1 3 5 
0: 3 -> 3
1: 4 -> 4
2: 5 -> 5
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -2
+ 6*v0 + 3*v1 + 3*v2 -38  <  0; value: -23
+ -6*v0 -4*v1 -6*v2  + 26  <=  0; value: -2
+ -6*v3  + 2  <=  0; value: -4
+ -2*v3  + 2  =  0; value: 0
+ 6*v0 + 5*v1 -3*v2 -6  <=  0; value: -13
0: 1 2 5 
1: 1 2 5 
2: 1 2 5 
3: 3 4 
optimal: oo
+ 5*v0 + 3*v2 -13  <=  0; value: -1
+ 3/2*v0 -3/2*v2 -37/2  <  0; value: -49/2
- -6*v0 -4*v1 -6*v2  + 26  <=  0; value: 0
+ -6*v3  + 2  <=  0; value: -4
+ -2*v3  + 2  =  0; value: 0
+ -3/2*v0 -21/2*v2  + 53/2  <=  0; value: -31/2
0: 1 2 5 
1: 1 2 5 
2: 1 2 5 
3: 3 4 
0: 0 -> 0
1: 1 -> 1/2
2: 4 -> 4
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 2
+ -3*v0 + 6*v1 -6*v3 -13  <=  0; value: -43
+ -4*v0  + 8  =  0; value: 0
+ -6*v1 -5*v3  + 1  <=  0; value: -30
+ 3*v2 -4*v3 -10  <  0; value: -27
+ 6*v2 + 2*v3 -24  <=  0; value: -8
0: 1 2 
1: 1 3 
2: 4 5 
3: 1 3 4 5 
optimal: oo
+ 2*v0 -5*v2  + 59/3  <=  0; value: 56/3
+ -3*v0 + 33*v2 -144  <=  0; value: -117
+ -4*v0  + 8  =  0; value: 0
- -6*v1 -5*v3  + 1  <=  0; value: 0
+ 15*v2 -58  <  0; value: -43
- 6*v2 + 2*v3 -24  <=  0; value: 0
0: 1 2 
1: 1 3 
2: 4 5 1 
3: 1 3 4 5 
0: 2 -> 2
1: 1 -> -22/3
2: 1 -> 1
3: 5 -> 9
+ 2*v0 -2*v1  <=  0; value: 0
+ -4*v1 -2*v2 -4*v3 -5  <=  0; value: -25
+ 2*v0 + 4*v2 -17  <=  0; value: -11
+ -3*v0 -4*v1 -6*v3  + 32  <  0; value: -1
+ -4*v1 -4*v2 -3  <  0; value: -15
+ 5*v0 + 5*v2 + 4*v3 -23  =  0; value: 0
0: 2 3 5 
1: 1 3 4 
2: 1 2 4 5 
3: 1 3 5 
optimal: (391/26 -e*1)
+  + 391/26  <  0; value: 391/26
- 52/23*v0 -582/23  <=  0; value: 0
+ -160/13  <=  0; value: -160/13
- -3*v0 -4*v1 -6*v3  + 32  <  0; value: -35/26
- -9/2*v0 -23/2*v2 -1/2  <=  0; value: 0
- 5*v0 + 5*v2 + 4*v3 -23  =  0; value: 0
0: 2 3 5 1 4 
1: 1 3 4 
2: 1 2 4 5 
3: 1 3 5 4 
0: 3 -> 291/26
1: 3 -> 417/104
2: 0 -> -115/26
3: 2 -> -141/52
+ 2*v0 -2*v1  <=  0; value: -2
+ -3*v2  <=  0; value: 0
+ 3*v1 -2*v2 -8  <=  0; value: -5
+ -4*v0 -2*v3  + 8  <=  0; value: 0
+ -3*v0 + 6*v2  =  0; value: 0
+ 3*v1 -4*v3  + 8  <  0; value: -5
0: 3 4 
1: 2 5 
2: 1 2 4 
3: 3 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+ -3*v2  <=  0; value: 0
+ 3*v1 -2*v2 -8  <=  0; value: -5
+ -4*v0 -2*v3  + 8  <=  0; value: 0
+ -3*v0 + 6*v2  =  0; value: 0
+ 3*v1 -4*v3  + 8  <  0; value: -5
0: 3 4 
1: 2 5 
2: 1 2 4 
3: 3 5 
0: 0 -> 0
1: 1 -> 1
2: 0 -> 0
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -6
+ -3*v0  + 2  <=  0; value: -4
+ 2*v1 + 2*v3 -50  <=  0; value: -30
+ -5*v1 -12  <=  0; value: -37
+ -3*v1 -4*v3  + 35  =  0; value: 0
+ -5*v0 -1*v3 -6  <=  0; value: -21
0: 1 5 
1: 2 3 4 
2: 
3: 2 4 5 
optimal: oo
+ 2*v0  + 24/5  <=  0; value: 44/5
+ -3*v0  + 2  <=  0; value: -4
+ -337/10  <=  0; value: -337/10
- 20/3*v3 -211/3  <=  0; value: 0
- -3*v1 -4*v3  + 35  =  0; value: 0
+ -5*v0 -331/20  <=  0; value: -531/20
0: 1 5 
1: 2 3 4 
2: 
3: 2 4 5 3 
0: 2 -> 2
1: 5 -> -12/5
2: 4 -> 4
3: 5 -> 211/20
+ 2*v0 -2*v1  <=  0; value: 4
+ 4*v1 -5*v2 -1*v3 -11  <  0; value: -3
+ 3*v0 + 5*v1 -4*v3 -25  <=  0; value: -3
+ -1*v0 + 4*v2  + 2  <=  0; value: -2
+ -6*v0 + v2 -1*v3 -6  <=  0; value: -30
+ -3*v3  <=  0; value: 0
0: 2 3 4 
1: 1 2 
2: 1 3 4 
3: 1 2 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 4
+ 4*v1 -5*v2 -1*v3 -11  <  0; value: -3
+ 3*v0 + 5*v1 -4*v3 -25  <=  0; value: -3
+ -1*v0 + 4*v2  + 2  <=  0; value: -2
+ -6*v0 + v2 -1*v3 -6  <=  0; value: -30
+ -3*v3  <=  0; value: 0
0: 2 3 4 
1: 1 2 
2: 1 3 4 
3: 1 2 4 5 
0: 4 -> 4
1: 2 -> 2
2: 0 -> 0
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 6
+ -1*v0 + 2*v1  + 2  <=  0; value: -1
+ 2*v3 -8  =  0; value: 0
+ -3*v0 + 4*v1 -2*v3  + 9  <=  0; value: -8
+ 4*v1 -1*v2 -4*v3 -8  <  0; value: -27
+ -5*v0 -4*v1  + 2  <  0; value: -13
0: 1 3 5 
1: 1 3 4 5 
2: 4 
3: 2 3 4 
optimal: oo
+ 9/2*v0 -1  <  0; value: 25/2
+ -7/2*v0  + 3  <  0; value: -15/2
+ 2*v3 -8  =  0; value: 0
+ -8*v0 -2*v3  + 11  <  0; value: -21
+ -5*v0 -1*v2 -4*v3 -6  <  0; value: -40
- -5*v0 -4*v1  + 2  <  0; value: -4
0: 1 3 5 4 
1: 1 3 4 5 
2: 4 
3: 2 3 4 
0: 3 -> 3
1: 0 -> -9/4
2: 3 -> 3
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -8
+ 4*v0 -4*v2 -4*v3 -1  <=  0; value: -21
+  <=  0; value: 0
+ -5*v0 -3*v1 + 2*v2 -4  <=  0; value: -16
+ v0 + 6*v1 -40  <  0; value: -16
+ -2*v2 + 3*v3 -37  <=  0; value: -22
0: 1 3 4 
1: 3 4 
2: 1 3 5 
3: 1 5 
optimal: oo
+ 68/15*v0  + 191/15  <=  0; value: 191/15
- 4*v0 -4*v2 -4*v3 -1  <=  0; value: 0
+  <=  0; value: 0
- -5*v0 -3*v1 + 2*v2 -4  <=  0; value: 0
+ -33/5*v0 -391/5  <  0; value: -391/5
- -2*v0 + 5*v3 -73/2  <=  0; value: 0
0: 1 3 4 5 
1: 3 4 
2: 1 3 5 4 
3: 1 5 4 
0: 0 -> 0
1: 4 -> -191/30
2: 0 -> -151/20
3: 5 -> 73/10
+ 2*v0 -2*v1  <=  0; value: -4
+ 2*v0 -2*v2 + 4*v3 -26  <=  0; value: -16
+ -2*v0 -5*v2 -1*v3  + 16  <=  0; value: -2
+ 2*v0 + 4*v1 -75  <=  0; value: -49
+ v1 -4*v2 -2*v3 -1  <=  0; value: -8
+ -5*v0 + 3*v1 -4*v3  + 6  <=  0; value: -2
0: 1 2 3 5 
1: 3 4 5 
2: 1 2 4 
3: 1 2 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -4
+ 2*v0 -2*v2 + 4*v3 -26  <=  0; value: -16
+ -2*v0 -5*v2 -1*v3  + 16  <=  0; value: -2
+ 2*v0 + 4*v1 -75  <=  0; value: -49
+ v1 -4*v2 -2*v3 -1  <=  0; value: -8
+ -5*v0 + 3*v1 -4*v3  + 6  <=  0; value: -2
0: 1 2 3 5 
1: 3 4 5 
2: 1 2 4 
3: 1 2 4 5 
0: 3 -> 3
1: 5 -> 5
2: 2 -> 2
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 6
+ -4*v0 + 6*v1 -7  <=  0; value: -19
+ -1*v1 -6*v2  + 2  <=  0; value: -16
+ -4*v2 + 3*v3 -2  <=  0; value: -5
+ -6*v1 -5*v2 -5*v3  + 3  <  0; value: -27
+ 3*v0 + 4*v2 -43  <  0; value: -22
0: 1 5 
1: 1 2 4 
2: 2 3 4 5 
3: 3 4 
optimal: oo
+ -11/12*v0  + 503/12  <  0; value: 235/6
+ 19/4*v0 -531/4  <  0; value: -237/2
+ 73/24*v0 -997/24  <  0; value: -389/12
- -4*v2 + 3*v3 -2  <=  0; value: 0
- -6*v1 -5*v2 -5*v3  + 3  <  0; value: -6
- 3*v0 + 4*v2 -43  <  0; value: -4
0: 1 5 2 
1: 1 2 4 
2: 2 3 4 5 1 
3: 3 4 2 1 
0: 3 -> 3
1: 0 -> -491/36
2: 3 -> 15/2
3: 3 -> 32/3
+ 2*v0 -2*v1  <=  0; value: 6
+ -6*v2 + 6*v3  <=  0; value: 0
+ -2*v0 + 3*v2 -14  <=  0; value: -8
+ -5*v1 -5*v2 -13  <=  0; value: -33
+ -4*v1  <=  0; value: 0
+ v2 -4  <=  0; value: 0
0: 2 
1: 3 4 
2: 1 2 3 5 
3: 1 
optimal: oo
+ 2*v0  <=  0; value: 6
+ -6*v2 + 6*v3  <=  0; value: 0
+ -2*v0 + 3*v2 -14  <=  0; value: -8
+ -5*v2 -13  <=  0; value: -33
- -4*v1  <=  0; value: 0
+ v2 -4  <=  0; value: 0
0: 2 
1: 3 4 
2: 1 2 3 5 
3: 1 
0: 3 -> 3
1: 0 -> 0
2: 4 -> 4
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 4
+ -1*v0 + 5*v1 -5  <=  0; value: -3
+ -4*v0 -3*v1 -1*v3  + 16  =  0; value: 0
+ 3*v0 + v3 -24  <=  0; value: -14
+ 6*v2 + 6*v3 -33  <  0; value: -21
+ 3*v0 -4*v1 -5*v3  <=  0; value: 0
0: 1 2 3 5 
1: 1 2 5 
2: 4 
3: 2 3 4 5 
optimal: (592/29 -e*1)
+  + 592/29  <  0; value: 592/29
+ -969/29  <  0; value: -969/29
- -4*v0 -3*v1 -1*v3  + 16  =  0; value: 0
- 3*v0 -1*v2 -37/2  <=  0; value: 0
- 6*v2 + 6*v3 -33  <  0; value: -6
- 58/3*v0 -328/3  <  0; value: -58/3
0: 1 2 3 5 
1: 1 2 5 
2: 4 3 5 1 
3: 2 3 4 5 1 
0: 3 -> 135/29
1: 1 -> -338/87
2: 1 -> -263/58
3: 1 -> 262/29
+ 2*v0 -2*v1  <=  0; value: 0
+ -6*v0 -4*v2  <=  0; value: 0
+ 2*v2 + 6*v3  <=  0; value: 0
+ -6*v0 -6*v2  <=  0; value: 0
+ -3*v1  =  0; value: 0
+ -2*v1  <=  0; value: 0
0: 1 3 
1: 4 5 
2: 1 2 3 
3: 2 
optimal: oo
+ 2*v0  <=  0; value: 0
+ -6*v0 -4*v2  <=  0; value: 0
+ 2*v2 + 6*v3  <=  0; value: 0
+ -6*v0 -6*v2  <=  0; value: 0
- -3*v1  =  0; value: 0
+  <=  0; value: 0
0: 1 3 
1: 4 5 
2: 1 2 3 
3: 2 
0: 0 -> 0
1: 0 -> 0
2: 0 -> 0
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -10
+ -1*v2  + 1  <=  0; value: 0
+ -6*v1 -6*v3  + 54  =  0; value: 0
+ 2*v2 -5  <=  0; value: -3
+ -4*v2 -5*v3  + 9  <=  0; value: -15
+ 3*v0 + 2*v1 -12  <=  0; value: -2
0: 5 
1: 2 5 
2: 1 3 4 
3: 2 4 
optimal: oo
+ 2*v0 + 2*v3 -18  <=  0; value: -10
+ -1*v2  + 1  <=  0; value: 0
- -6*v1 -6*v3  + 54  =  0; value: 0
+ 2*v2 -5  <=  0; value: -3
+ -4*v2 -5*v3  + 9  <=  0; value: -15
+ 3*v0 -2*v3  + 6  <=  0; value: -2
0: 5 
1: 2 5 
2: 1 3 4 
3: 2 4 5 
0: 0 -> 0
1: 5 -> 5
2: 1 -> 1
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 0
+ -3*v0 + 6*v1 -10  <=  0; value: -1
+ 4*v0 + v1 -4*v3  + 1  =  0; value: 0
+ -4*v0 -1*v1 + 5*v3 -13  <=  0; value: -8
+ -2*v0 -4*v1  + 15  <=  0; value: -3
+ -1*v1 -6*v3  + 27  =  0; value: 0
0: 1 2 3 4 
1: 1 2 3 4 5 
2: 
3: 2 3 5 
optimal: 51/19
+  + 51/19  <=  0; value: 51/19
+ -299/38  <=  0; value: -299/38
- 4*v0 + v1 -4*v3  + 1  =  0; value: 0
+ -149/19  <=  0; value: -149/19
- 38/5*v0 -129/5  <=  0; value: 0
- 4*v0 -10*v3  + 28  =  0; value: 0
0: 1 2 3 4 5 3 
1: 1 2 3 4 5 
2: 
3: 2 3 5 4 1 
0: 3 -> 129/38
1: 3 -> 39/19
2: 5 -> 5
3: 4 -> 79/19
+ 2*v0 -2*v1  <=  0; value: -10
+ 5*v0  <=  0; value: 0
+ 2*v0 + 2*v1 -2*v2 -21  <  0; value: -13
+ -4*v0 -6*v1 -14  <=  0; value: -44
+ 4*v1 -6*v2 -36  <  0; value: -22
+ 5*v1 + 4*v2 -29  =  0; value: 0
0: 1 2 3 
1: 2 3 4 5 
2: 2 4 5 
3: 
optimal: 14/3
+  + 14/3  <=  0; value: 14/3
- 5*v0  <=  0; value: 0
+ -46  <  0; value: -46
- -4*v0 + 24/5*v2 -244/5  <=  0; value: 0
+ -319/3  <  0; value: -319/3
- 5*v1 + 4*v2 -29  =  0; value: 0
0: 1 2 3 4 
1: 2 3 4 5 
2: 2 4 5 3 
3: 
0: 0 -> 0
1: 5 -> -7/3
2: 1 -> 61/6
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 4
+ v0 + 2*v2 + 3*v3 -11  =  0; value: 0
+ 2*v0 + v3 -16  <=  0; value: -10
+ 5*v1 + 4*v2 -21  =  0; value: 0
+ 6*v1 -14  <  0; value: -8
+ -1*v1 + 5*v2 -56  <=  0; value: -37
0: 1 2 
1: 3 4 5 
2: 1 3 5 
3: 1 2 
optimal: 908/29
+  + 908/29  <=  0; value: 908/29
- v0 + 2*v2 + 3*v3 -11  =  0; value: 0
- 5/3*v0 -1675/87  <=  0; value: 0
- 5*v1 + 4*v2 -21  =  0; value: 0
+ -1120/29  <  0; value: -1120/29
- -29/10*v0 -87/10*v3 -283/10  <=  0; value: 0
0: 1 2 5 4 
1: 3 4 5 
2: 1 3 5 4 
3: 1 2 5 4 
0: 3 -> 335/29
1: 1 -> -119/29
2: 4 -> 301/29
3: 0 -> -206/29
+ 2*v0 -2*v1  <=  0; value: 2
+ -1*v1 + 4*v3 -15  <=  0; value: -7
+ -4*v1 + 6*v2 -1*v3 -16  =  0; value: 0
+ -5*v0 + 2*v1 -1*v2  + 8  =  0; value: 0
+ -2*v0 -4*v3 -3  <  0; value: -13
+ 6*v0 + 2*v2 -3*v3 -17  <=  0; value: -11
0: 3 4 5 
1: 1 2 3 
2: 2 3 5 
3: 1 2 4 5 
optimal: (1941/91 -e*1)
+  + 1941/91  <  0; value: 1941/91
- -91/16*v0 -445/32  <  0; value: -91/16
- -4*v1 + 6*v2 -1*v3 -16  =  0; value: 0
- -5*v0 + 2*v2 -1/2*v3  =  0; value: 0
- 38*v0 -16*v2 -3  <  0; value: -16
+ -586/13  <  0; value: -586/13
0: 3 4 5 1 
1: 1 2 3 
2: 2 3 5 1 4 
3: 1 2 4 5 3 
0: 1 -> -263/182
1: 0 -> -12991/1456
2: 3 -> -1907/728
3: 2 -> 723/182
+ 2*v0 -2*v1  <=  0; value: -2
+ 6*v1 -6*v3 -18  =  0; value: 0
+ -1*v0 -3*v2  + 14  <=  0; value: -5
+ -4*v3  + 4  <=  0; value: -4
+ 4*v0 -5*v1 -4*v3  + 17  =  0; value: 0
+ 6*v0 -4*v1 + 3*v2 -54  <=  0; value: -35
0: 2 4 5 
1: 1 4 5 
2: 2 5 
3: 1 3 4 
optimal: 342/29
+  + 342/29  <=  0; value: 342/29
- 6*v1 -6*v3 -18  =  0; value: 0
- -87/38*v2 -35/19  <=  0; value: 0
+ -756/29  <=  0; value: -756/29
- 4*v0 -9*v3  + 2  =  0; value: 0
- 38/9*v0 + 3*v2 -602/9  <=  0; value: 0
0: 2 4 5 3 
1: 1 4 5 
2: 2 5 3 
3: 1 3 4 5 
0: 4 -> 476/29
1: 5 -> 305/29
2: 5 -> -70/87
3: 2 -> 218/29
+ 2*v0 -2*v1  <=  0; value: 0
+ 3*v0 + 2*v2 + 2*v3 -29  =  0; value: 0
+ 3*v0 -1*v2 -11  =  0; value: 0
+ -2*v1 -3*v3 -7  <=  0; value: -26
+ 4*v2 -38  <=  0; value: -22
+ -5*v2  + 8  <=  0; value: -12
0: 1 2 
1: 3 
2: 1 2 4 5 
3: 1 3 
optimal: 176/5
+  + 176/5  <=  0; value: 176/5
- 3*v0 + 2*v2 + 2*v3 -29  =  0; value: 0
- 3*v0 -1*v2 -11  =  0; value: 0
- -2*v1 -3*v3 -7  <=  0; value: 0
+ -158/5  <=  0; value: -158/5
- -15*v0  + 63  <=  0; value: 0
0: 1 2 5 4 
1: 3 
2: 1 2 4 5 
3: 1 3 
0: 5 -> 21/5
1: 5 -> -67/5
2: 4 -> 8/5
3: 3 -> 33/5
+ 2*v0 -2*v1  <=  0; value: 2
+ 2*v1 -15  <=  0; value: -9
+ 6*v0 -6*v2  + 1  <=  0; value: -5
+ -5*v1 + 2*v3 -2  <  0; value: -7
+ 4*v1 -5*v2 -6  <  0; value: -19
+ -4*v0 -4*v1  + 28  =  0; value: 0
0: 2 5 
1: 1 3 4 5 
2: 2 4 
3: 3 
optimal: oo
+ -8/5*v3  + 78/5  <  0; value: 38/5
+ 4/5*v3 -79/5  <  0; value: -59/5
- 6*v0 -6*v2  + 1  <=  0; value: 0
- 5*v2 + 2*v3 -227/6  <  0; value: -17/12
+ 18/5*v3 -1363/30  <  0; value: -823/30
- -4*v0 -4*v1  + 28  =  0; value: 0
0: 2 5 3 1 4 
1: 1 3 4 5 
2: 2 4 3 1 
3: 3 4 1 
0: 4 -> 307/60
1: 3 -> 113/60
2: 5 -> 317/60
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -2
+ -2*v0 + v1 -1  =  0; value: 0
+ -3*v3  + 6  <=  0; value: 0
+ -4*v0 -5*v2 -4  <=  0; value: -14
+ 2*v0 -6*v1 -5*v3  + 3  <=  0; value: -13
+ -2*v1  + 2  =  0; value: 0
0: 1 3 4 
1: 1 4 5 
2: 3 
3: 2 4 
optimal: -2
+ -2  <=  0; value: -2
- -2*v0 + v1 -1  =  0; value: 0
+ -3*v3  + 6  <=  0; value: 0
+ -5*v2 -4  <=  0; value: -14
+ -5*v3 -3  <=  0; value: -13
- -4*v0  =  0; value: 0
0: 1 3 4 5 
1: 1 4 5 
2: 3 
3: 2 4 
0: 0 -> 0
1: 1 -> 1
2: 2 -> 2
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v1 -2*v2  + 6  <  0; value: -2
+ -1*v1 -1*v3 -1  <=  0; value: -5
+ v1 + 3*v3 -19  <=  0; value: -7
+ -5*v0 + 4*v2 -44  <=  0; value: -28
+ -2*v1 + 6*v2 -24  =  0; value: 0
0: 4 
1: 1 2 3 5 
2: 1 4 5 
3: 2 3 
optimal: oo
+ 2*v0  + 22  <=  0; value: 22
+ -116/3  <  0; value: -116/3
- -3*v2 -1*v3  + 11  <=  0; value: 0
- 2*v3 -20  <=  0; value: 0
+ -5*v0 -128/3  <=  0; value: -128/3
- -2*v1 + 6*v2 -24  =  0; value: 0
0: 4 
1: 1 2 3 5 
2: 1 4 5 2 3 
3: 2 3 1 4 
0: 0 -> 0
1: 0 -> -11
2: 4 -> 1/3
3: 4 -> 10
+ 2*v0 -2*v1  <=  0; value: 8
+ -2*v0 -4*v2 -6*v3 -55  <  0; value: -113
+ 6*v0 + 5*v1 -40  <=  0; value: -16
+ 6*v0 -4*v3 -8  <=  0; value: -4
+ 6*v1 -1*v3 -4  <=  0; value: -9
+ -3*v1 + v3 -5  =  0; value: 0
0: 1 2 3 
1: 2 4 5 
2: 1 
3: 1 3 4 5 
optimal: 548/51
+  + 548/51  <=  0; value: 548/51
+ -4*v2 -5603/51  <  0; value: -6623/51
- 17/2*v0 -155/3  <=  0; value: 0
- 6*v0 -4*v3 -8  <=  0; value: 0
+ -117/17  <=  0; value: -117/17
- -3*v1 + v3 -5  =  0; value: 0
0: 1 2 3 4 
1: 2 4 5 
2: 1 
3: 1 3 4 5 2 
0: 4 -> 310/51
1: 0 -> 12/17
2: 5 -> 5
3: 5 -> 121/17
+ 2*v0 -2*v1  <=  0; value: -2
+ 6*v0 -4*v2 + 4*v3 -34  =  0; value: 0
+ 3*v0 + 2*v3 -49  <=  0; value: -30
+ 2*v0 + 5*v1 -1*v2 -25  =  0; value: 0
+ 4*v2 + 5*v3 -48  <=  0; value: -19
+ v0 -6*v1 -5*v2 -7  <=  0; value: -33
0: 1 2 3 5 
1: 3 5 
2: 1 3 4 5 
3: 1 2 4 
optimal: 1628/17
+  + 1628/17  <=  0; value: 1628/17
- 6*v0 -4*v2 + 4*v3 -34  =  0; value: 0
- 34/31*v0 -1362/31  <=  0; value: 0
- 2*v0 + 5*v1 -1*v2 -25  =  0; value: 0
+ -2753/17  <=  0; value: -2753/17
- -59/10*v0 -31/5*v3  + 157/10  <=  0; value: 0
0: 1 2 3 5 4 
1: 3 5 
2: 1 3 4 5 
3: 1 2 4 5 
0: 3 -> 681/17
1: 4 -> -133/17
2: 1 -> 16
3: 5 -> -605/17
+ 2*v0 -2*v1  <=  0; value: 10
+ -6*v0 -3*v3 -9  <=  0; value: -42
+ -2*v0  + 8  <  0; value: -2
+ -5*v0 -5*v1 -2*v3  + 27  =  0; value: 0
+ 6*v0 + v2 -60  <  0; value: -25
+ 6*v0 + 3*v2 -85  <=  0; value: -40
0: 1 2 3 4 5 
1: 3 
2: 4 5 
3: 1 3 
optimal: oo
+ 4*v0 + 4/5*v3 -54/5  <=  0; value: 10
+ -6*v0 -3*v3 -9  <=  0; value: -42
+ -2*v0  + 8  <  0; value: -2
- -5*v0 -5*v1 -2*v3  + 27  =  0; value: 0
+ 6*v0 + v2 -60  <  0; value: -25
+ 6*v0 + 3*v2 -85  <=  0; value: -40
0: 1 2 3 4 5 
1: 3 
2: 4 5 
3: 1 3 
0: 5 -> 5
1: 0 -> 0
2: 5 -> 5
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -4
+ -5*v1 -4*v3 -7  <=  0; value: -22
+  <=  0; value: 0
+ -1*v0 -4*v2  + 13  =  0; value: 0
+ 6*v1 -5*v2 + 4*v3 -8  <=  0; value: -5
+ -2*v1 -4*v2  + 18  =  0; value: 0
0: 3 
1: 1 4 5 
2: 3 4 5 
3: 1 4 
optimal: 80/7
+  + 80/7  <=  0; value: 80/7
- -28/17*v3 -424/17  <=  0; value: 0
+  <=  0; value: 0
- -1*v0 -4*v2  + 13  =  0; value: 0
- 17/4*v0 + 4*v3 -37/4  <=  0; value: 0
- -2*v1 -4*v2  + 18  =  0; value: 0
0: 3 1 4 
1: 1 4 5 
2: 3 4 5 1 
3: 1 4 
0: 1 -> 115/7
1: 3 -> 75/7
2: 3 -> -6/7
3: 0 -> -106/7
+ 2*v0 -2*v1  <=  0; value: -8
+ v0 -4*v2 -5*v3 -15  <=  0; value: -39
+ 5*v2 + 2*v3 -67  <=  0; value: -40
+ 5*v0 -1*v1 + 2*v3 -2  <=  0; value: 0
+ -6*v0 -4*v1  + 26  =  0; value: 0
+ -1*v1 -6*v2 -6*v3  + 38  <  0; value: -3
0: 1 3 4 
1: 3 4 5 
2: 1 2 5 
3: 1 2 3 5 
optimal: (249/22 -e*1)
+  + 249/22  <  0; value: 249/22
+ -2151/88  <=  0; value: -2151/88
- 22/7*v2 -793/14  <  0; value: -22/7
- 5*v0 -1*v1 + 2*v3 -2  <=  0; value: 0
- -26*v0 -8*v3  + 34  =  0; value: 0
- 21*v0 -6*v2  + 6  <  0; value: -21
0: 1 3 4 5 2 
1: 3 4 5 
2: 1 2 5 
3: 1 2 3 5 4 
0: 1 -> 551/154
1: 5 -> 349/308
2: 5 -> 749/44
3: 1 -> -4545/616
+ 2*v0 -2*v1  <=  0; value: -4
+ -2*v0 -5*v1 -1  <  0; value: -11
+ 2*v2 -13  <=  0; value: -3
+ 5*v0 + 3*v2 -21  <=  0; value: -6
+ 6*v3 -41  <=  0; value: -11
+ -2*v1  <=  0; value: -4
0: 1 3 
1: 1 5 
2: 2 3 
3: 4 
optimal: oo
+ -6/5*v2  + 42/5  <=  0; value: 12/5
+ 6/5*v2 -47/5  <  0; value: -17/5
+ 2*v2 -13  <=  0; value: -3
- 5*v0 + 3*v2 -21  <=  0; value: 0
+ 6*v3 -41  <=  0; value: -11
- -2*v1  <=  0; value: 0
0: 1 3 
1: 1 5 
2: 2 3 1 
3: 4 
0: 0 -> 6/5
1: 2 -> 0
2: 5 -> 5
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -6
+ -4*v0 + 3*v2  + 3  <  0; value: -1
+ 2*v0 + 3*v3 -2  <=  0; value: 0
+ 4*v3  <=  0; value: 0
+ v0 -3*v2 -1  <=  0; value: 0
+ 3*v1 -26  <  0; value: -14
0: 1 2 4 
1: 5 
2: 1 4 
3: 2 3 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -6
+ -4*v0 + 3*v2  + 3  <  0; value: -1
+ 2*v0 + 3*v3 -2  <=  0; value: 0
+ 4*v3  <=  0; value: 0
+ v0 -3*v2 -1  <=  0; value: 0
+ 3*v1 -26  <  0; value: -14
0: 1 2 4 
1: 5 
2: 1 4 
3: 2 3 
0: 1 -> 1
1: 4 -> 4
2: 0 -> 0
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -4
+ -1*v0 -1*v3 -1  <=  0; value: -4
+ 5*v1 + 2*v2 -47  <  0; value: -16
+ 2*v0 -6*v1  + 24  =  0; value: 0
+ 2*v0 + v1 -22  <=  0; value: -11
+ -5*v1 + 3*v3  + 2  <=  0; value: -23
0: 1 3 4 
1: 2 3 4 5 
2: 2 
3: 1 5 
optimal: 16/7
+  + 16/7  <=  0; value: 16/7
+ -1*v3 -61/7  <=  0; value: -61/7
+ 2*v2 -99/7  <  0; value: -57/7
- 2*v0 -6*v1  + 24  =  0; value: 0
- 7/3*v0 -18  <=  0; value: 0
+ 3*v3 -216/7  <=  0; value: -216/7
0: 1 3 4 5 2 
1: 2 3 4 5 
2: 2 
3: 1 5 
0: 3 -> 54/7
1: 5 -> 46/7
2: 3 -> 3
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -2
+ -2*v2 + v3  + 4  <=  0; value: -3
+ 5*v1 -15  =  0; value: 0
+ -5*v0 + v3 -6  <  0; value: -15
+ 6*v1 + 4*v3 -22  =  0; value: 0
+ 5*v2 -36  <=  0; value: -16
0: 3 
1: 2 4 
2: 1 5 
3: 1 3 4 
optimal: oo
+ 2*v0 -6  <=  0; value: -2
+ -2*v2 + v3  + 4  <=  0; value: -3
- 5*v1 -15  =  0; value: 0
+ -5*v0 + v3 -6  <  0; value: -15
+ 4*v3 -4  =  0; value: 0
+ 5*v2 -36  <=  0; value: -16
0: 3 
1: 2 4 
2: 1 5 
3: 1 3 4 
0: 2 -> 2
1: 3 -> 3
2: 4 -> 4
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 2
+ v1  =  0; value: 0
+ -6*v0 -3*v2  + 21  =  0; value: 0
+ 2*v0 + v2 -7  <=  0; value: 0
+ v0 -3*v2 -4*v3  + 15  <  0; value: -3
+ -2*v0 + 5*v1  + 2  =  0; value: 0
0: 2 3 4 5 
1: 1 5 
2: 2 3 4 
3: 4 
optimal: 2
+  + 2  <=  0; value: 2
- v1  =  0; value: 0
- -6*v0 -3*v2  + 21  =  0; value: 0
+  <=  0; value: 0
+ -4*v3  + 1  <  0; value: -3
- v2 -5  =  0; value: 0
0: 2 3 4 5 
1: 1 5 
2: 2 3 4 5 
3: 4 
0: 1 -> 1
1: 0 -> 0
2: 5 -> 5
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 4
+ -5*v0 + 5*v1  + 10  =  0; value: 0
+ -4*v2 -4*v3  + 12  <=  0; value: 0
+ -2*v0 + 2*v2 + 3*v3  <=  0; value: -2
+ 3*v0 -6*v1 -5*v2  + 7  <=  0; value: -1
+ 2*v2 + 6*v3 -26  <=  0; value: -12
0: 1 3 4 
1: 1 4 
2: 2 3 4 5 
3: 2 3 5 
optimal: 4
+  + 4  <=  0; value: 4
- -5*v0 + 5*v1  + 10  =  0; value: 0
+ -4*v2 -4*v3  + 12  <=  0; value: 0
+ -2*v0 + 2*v2 + 3*v3  <=  0; value: -2
+ -3*v0 -5*v2  + 19  <=  0; value: -1
+ 2*v2 + 6*v3 -26  <=  0; value: -12
0: 1 3 4 
1: 1 4 
2: 2 3 4 5 
3: 2 3 5 
0: 5 -> 5
1: 3 -> 3
2: 1 -> 1
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -2
+ 5*v0 -3*v2 + 3*v3 -25  <=  0; value: -15
+ 2*v1 -12  <=  0; value: -6
+ 6*v0 -1*v2 -11  =  0; value: 0
+ v1 -2*v2 -2  <=  0; value: -1
+ -2*v1 -3*v2  + 5  <=  0; value: -4
0: 1 3 
1: 2 4 5 
2: 1 3 4 5 
3: 1 
optimal: oo
+ 20*v0 -38  <=  0; value: 2
+ -13*v0 + 3*v3  + 8  <=  0; value: -15
+ -18*v0  + 26  <=  0; value: -10
- 6*v0 -1*v2 -11  =  0; value: 0
+ -21*v0  + 39  <=  0; value: -3
- -2*v1 -3*v2  + 5  <=  0; value: 0
0: 1 3 4 2 
1: 2 4 5 
2: 1 3 4 5 2 
3: 1 
0: 2 -> 2
1: 3 -> 1
2: 1 -> 1
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 10
+ v0 -1*v1 + 6*v3 -11  =  0; value: 0
+ v1 -5*v2 -5*v3  + 11  <  0; value: -4
+ 3*v1  <=  0; value: 0
+ -3*v0 -2*v2  + 19  =  0; value: 0
+ 2*v1 -4*v2 -2  <  0; value: -10
0: 1 4 
1: 1 2 3 5 
2: 2 4 5 
3: 1 2 
optimal: oo
+ -12*v3  + 22  <=  0; value: 10
- v0 -1*v1 + 6*v3 -11  =  0; value: 0
+ v0 -5*v2 + v3  <  0; value: -4
+ 3*v0 + 18*v3 -33  <=  0; value: 0
+ -3*v0 -2*v2  + 19  =  0; value: 0
+ 2*v0 -4*v2 + 12*v3 -24  <  0; value: -10
0: 1 4 2 3 5 
1: 1 2 3 5 
2: 2 4 5 
3: 1 2 3 5 
0: 5 -> 5
1: 0 -> 0
2: 2 -> 2
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -10
+ 3*v1 -15  =  0; value: 0
+ -3*v0 -2*v2  + 8  =  0; value: 0
+ 2*v0 + v1 -13  <  0; value: -8
+ -4*v0 + 3*v3 -3  =  0; value: 0
+ -2*v0 + 2*v2 -3*v3 -12  <=  0; value: -7
0: 2 3 4 5 
1: 1 3 
2: 2 5 
3: 4 5 
optimal: (-2 -e*1)
+ -2  <  0; value: -2
- 3*v1 -15  =  0; value: 0
- -3*v0 -2*v2  + 8  =  0; value: 0
- 3/2*v3 -19/2  <  0; value: -3/2
- 8/3*v2 + 3*v3 -41/3  =  0; value: 0
+ -43  <  0; value: -43
0: 2 3 4 5 
1: 1 3 
2: 2 5 3 4 
3: 4 5 3 
0: 0 -> 13/4
1: 5 -> 5
2: 4 -> -7/8
3: 1 -> 16/3
+ 2*v0 -2*v1  <=  0; value: 2
+ 6*v0 + 5*v2 + 6*v3 -105  <=  0; value: -64
+ 5*v2 -3*v3  + 4  <=  0; value: 0
+ 6*v0 + 6*v1 -5*v2 -25  =  0; value: 0
+ 6*v0 -2*v3 -23  <=  0; value: -11
+ -1*v2 + 4*v3 -24  <  0; value: -13
0: 1 3 4 
1: 3 
2: 1 2 3 5 
3: 1 2 4 5 
optimal: oo
+ -16*v0  + 325/3  <  0; value: 181/3
+ 84*v0 -524  <  0; value: -272
+ 51*v0 -623/2  <  0; value: -317/2
- 6*v0 + 6*v1 -5*v2 -25  =  0; value: 0
- 6*v0 -2*v3 -23  <=  0; value: 0
- -1*v2 + 4*v3 -24  <  0; value: -1
0: 1 3 4 2 
1: 3 
2: 1 2 3 5 
3: 1 2 4 5 
0: 3 -> 3
1: 2 -> -79/3
2: 1 -> -33
3: 3 -> -5/2
+ 2*v0 -2*v1  <=  0; value: 0
+ -1*v1 -1*v2 -1*v3  <=  0; value: -8
+ 3*v0 -4*v1 + 5*v2 -21  <=  0; value: -7
+ -3*v0 -3*v1 + v2  <=  0; value: -3
+ 5*v1 + 2*v2 + 2*v3 -40  <=  0; value: -21
+ -5*v0 -4*v1 -3*v2 -17  <=  0; value: -35
0: 2 3 5 
1: 1 2 3 4 5 
2: 1 2 3 4 5 
3: 1 4 
optimal: 53/2
+  + 53/2  <=  0; value: 53/2
- v0 -4/3*v2 -1*v3  <=  0; value: 0
- 80/13*v0 -460/13  <=  0; value: 0
- -3*v0 -3*v1 + v2  <=  0; value: 0
+ -125/2  <=  0; value: -125/2
- -17/4*v0 + 13/4*v3 -17  <=  0; value: 0
0: 2 3 5 1 4 
1: 1 2 3 4 5 
2: 1 2 3 4 5 
3: 1 4 5 2 
0: 1 -> 23/4
1: 1 -> -15/2
2: 3 -> -21/4
3: 4 -> 51/4
+ 2*v0 -2*v1  <=  0; value: -10
+ 2*v0 + 3*v1 -3*v2 -7  <  0; value: -1
+ 6*v0 + 5*v2 -26  <=  0; value: -11
+ 4*v0 + v3  <=  0; value: 0
+ -4*v1 + v3  + 20  =  0; value: 0
+ 2*v1 + v3 -22  <=  0; value: -12
0: 1 2 3 
1: 1 4 5 
2: 1 2 
3: 3 4 5 
optimal: oo
+ 2*v0 -1/2*v3 -10  <=  0; value: -10
+ 2*v0 -3*v2 + 3/4*v3  + 8  <  0; value: -1
+ 6*v0 + 5*v2 -26  <=  0; value: -11
+ 4*v0 + v3  <=  0; value: 0
- -4*v1 + v3  + 20  =  0; value: 0
+ 3/2*v3 -12  <=  0; value: -12
0: 1 2 3 
1: 1 4 5 
2: 1 2 
3: 3 4 5 1 
0: 0 -> 0
1: 5 -> 5
2: 3 -> 3
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 2
+ -3*v1 + 3*v2  <=  0; value: 0
+  =  0; value: 0
+ 6*v0 -50  <=  0; value: -26
+ -4*v0 + v1  + 1  <=  0; value: -12
+ -3*v0 + 6*v2 -10  <=  0; value: -4
0: 3 4 5 
1: 1 4 
2: 1 5 
3: 
optimal: oo
+ 2*v0 -2*v2  <=  0; value: 2
- -3*v1 + 3*v2  <=  0; value: 0
+  =  0; value: 0
+ 6*v0 -50  <=  0; value: -26
+ -4*v0 + v2  + 1  <=  0; value: -12
+ -3*v0 + 6*v2 -10  <=  0; value: -4
0: 3 4 5 
1: 1 4 
2: 1 5 4 
3: 
0: 4 -> 4
1: 3 -> 3
2: 3 -> 3
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 4
+ -5*v2  <=  0; value: 0
+ -5*v0 + v3 -21  <=  0; value: -46
+ -5*v1 -1*v2 -2*v3  + 5  <=  0; value: -10
+ -2*v1 -4*v2  + 6  =  0; value: 0
+ -6*v0 -4*v1 + 2*v2  + 7  <=  0; value: -35
0: 2 5 
1: 3 4 5 
2: 1 3 4 5 
3: 2 3 
optimal: oo
+ 22/5*v0 -4  <=  0; value: 18
+ -3*v0 -5/2  <=  0; value: -35/2
+ -23/10*v0 -95/4  <=  0; value: -141/4
- 9*v2 -2*v3 -10  <=  0; value: 0
- -2*v1 -4*v2  + 6  =  0; value: 0
- -6*v0 + 20/9*v3  + 55/9  <=  0; value: 0
0: 2 5 1 
1: 3 4 5 
2: 1 3 4 5 
3: 2 3 5 1 
0: 5 -> 5
1: 3 -> -4
2: 0 -> 7/2
3: 0 -> 43/4
+ 2*v0 -2*v1  <=  0; value: 8
+ 3*v1 + 6*v2 -40  <=  0; value: -16
+ -1*v0 + 4*v2 -12  =  0; value: 0
+ -2*v1 -5*v2 -2*v3  + 20  <=  0; value: -4
+ -6*v0 -3  <=  0; value: -27
+ 4*v0 + 2*v3 -53  <  0; value: -33
0: 2 4 5 
1: 1 3 
2: 1 2 3 
3: 3 5 
optimal: (387/8 -e*1)
+  + 387/8  <  0; value: 387/8
+ -1549/16  <  0; value: -1549/16
- -1*v0 + 4*v2 -12  =  0; value: 0
- -2*v1 -5*v2 -2*v3  + 20  <=  0; value: 0
- -6*v0 -3  <=  0; value: 0
- 4*v0 + 2*v3 -53  <  0; value: -2
0: 2 4 5 1 
1: 1 3 
2: 1 2 3 
3: 3 5 1 
0: 4 -> -1/2
1: 0 -> -379/16
2: 4 -> 23/8
3: 2 -> 53/2
+ 2*v0 -2*v1  <=  0; value: 0
+ -6*v0 -3*v3  + 19  <  0; value: -17
+ 3*v0 -6*v2 -6  <=  0; value: -21
+ 4*v1 + 4*v3 -45  <=  0; value: -17
+ -5*v1 -2*v3 -11  <  0; value: -40
+ -3*v0 + 2*v2  + 5  =  0; value: 0
0: 1 2 5 
1: 3 4 
2: 2 5 
3: 1 3 4 
optimal: oo
+ 4/3*v2  + 77/3  <  0; value: 97/3
+ -4*v2 -233/4  <  0; value: -313/4
+ -4*v2 -1  <=  0; value: -21
- 12/5*v3 -269/5  <  0; value: -12/5
- -5*v1 -2*v3 -11  <  0; value: -5
- -3*v0 + 2*v2  + 5  =  0; value: 0
0: 1 2 5 
1: 3 4 
2: 2 5 1 
3: 1 3 4 
0: 5 -> 5
1: 5 -> -293/30
2: 5 -> 5
3: 2 -> 257/12
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v0 -6*v2  + 3  <  0; value: -5
+ -4*v1 + 6*v2 -2*v3 -6  =  0; value: 0
+ 5*v0 + v3 -8  <=  0; value: -2
+ -5*v2 -3*v3  + 13  =  0; value: 0
+ -4*v0 -2*v3  + 6  =  0; value: 0
0: 1 3 5 
1: 2 
2: 1 2 4 
3: 2 3 4 5 
optimal: (45/8 -e*1)
+  + 45/8  <  0; value: 45/8
- -16/5*v0 -9/5  <  0; value: -5/2
- -4*v1 + 6*v2 -2*v3 -6  =  0; value: 0
+ -107/16  <  0; value: -107/16
- -5*v2 -3*v3  + 13  =  0; value: 0
- -4*v0 + 10/3*v2 -8/3  =  0; value: 0
0: 1 3 5 
1: 2 
2: 1 2 4 3 5 
3: 2 3 4 5 
0: 1 -> 7/32
1: 1 -> -19/16
2: 2 -> 17/16
3: 1 -> 41/16
+ 2*v0 -2*v1  <=  0; value: 8
+ 6*v0 + 2*v3 -67  <=  0; value: -35
+ -5*v0 + v2  + 19  =  0; value: 0
+ -1*v0  + 1  <  0; value: -3
+ 3*v0 + v1 + 4*v3 -67  <=  0; value: -39
+ 5*v1  <=  0; value: 0
0: 1 2 3 4 
1: 4 5 
2: 2 
3: 1 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 8
+ 6*v0 + 2*v3 -67  <=  0; value: -35
+ -5*v0 + v2  + 19  =  0; value: 0
+ -1*v0  + 1  <  0; value: -3
+ 3*v0 + v1 + 4*v3 -67  <=  0; value: -39
+ 5*v1  <=  0; value: 0
0: 1 2 3 4 
1: 4 5 
2: 2 
3: 1 4 
0: 4 -> 4
1: 0 -> 0
2: 1 -> 1
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 4
+ 3*v1  <=  0; value: 0
+ 5*v1 -6*v3  + 11  <=  0; value: -7
+ 2*v0 -3*v1 + 3*v2 -4  =  0; value: 0
+ 3*v2 + 2*v3 -14  <=  0; value: -8
+ 3*v0 -4*v1 -4*v2 -6  =  0; value: 0
0: 3 5 
1: 1 2 3 5 
2: 3 4 5 
3: 2 4 
optimal: 4
+  + 4  <=  0; value: 4
- 17/8*v0 -17/4  <=  0; value: 0
+ -6*v3  + 11  <=  0; value: -7
- 2*v0 -3*v1 + 3*v2 -4  =  0; value: 0
+ 2*v3 -14  <=  0; value: -8
- 1/3*v0 -8*v2 -2/3  =  0; value: 0
0: 3 5 1 2 4 
1: 1 2 3 5 
2: 3 4 5 1 2 
3: 2 4 
0: 2 -> 2
1: 0 -> 0
2: 0 -> 0
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 2
+ 6*v3 -31  <=  0; value: -19
+ v0 + 2*v3 -15  <=  0; value: -7
+ -4*v0 + 3*v2  <=  0; value: -4
+ v1 + v2 -19  <  0; value: -12
+ -3*v2 + 4*v3 -3  <=  0; value: -7
0: 2 3 
1: 4 
2: 3 4 5 
3: 1 2 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 2
+ 6*v3 -31  <=  0; value: -19
+ v0 + 2*v3 -15  <=  0; value: -7
+ -4*v0 + 3*v2  <=  0; value: -4
+ v1 + v2 -19  <  0; value: -12
+ -3*v2 + 4*v3 -3  <=  0; value: -7
0: 2 3 
1: 4 
2: 3 4 5 
3: 1 2 5 
0: 4 -> 4
1: 3 -> 3
2: 4 -> 4
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 6
+ -5*v0 -5*v2 -16  <=  0; value: -66
+ -4*v3  + 8  =  0; value: 0
+ -2*v0 + 4*v2 -14  <  0; value: -4
+ -5*v1 -2*v2  + 7  <=  0; value: -13
+ -2*v2 -5  <=  0; value: -15
0: 1 3 
1: 4 
2: 1 3 4 5 
3: 2 
optimal: oo
+ 12/5*v0  <  0; value: 12
+ -15/2*v0 -67/2  <  0; value: -71
+ -4*v3  + 8  =  0; value: 0
- -2*v0 + 4*v2 -14  <  0; value: -2
- -5*v1 -2*v2  + 7  <=  0; value: 0
+ -1*v0 -12  <  0; value: -17
0: 1 3 5 
1: 4 
2: 1 3 4 5 
3: 2 
0: 5 -> 5
1: 2 -> -4/5
2: 5 -> 11/2
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -8
+ -4*v0 + 6*v3 -7  <  0; value: -1
+ -2*v3 -1  <=  0; value: -3
+ 4*v1 + 3*v3 -37  <  0; value: -18
+ 6*v0 -3*v1 -4*v3  + 8  <=  0; value: -8
+ -5*v0 -6*v2 + 5*v3  + 12  <=  0; value: -1
0: 1 4 5 
1: 3 4 
2: 5 
3: 1 2 3 4 5 
optimal: (-5/3 -e*1)
+ -5/3  <  0; value: -5/3
- -4*v0 + 6*v3 -7  <  0; value: -21/10
- 24/5*v2 -88/5  <  0; value: -8/5
+ -271/6  <  0; value: -271/6
- 6*v0 -3*v1 -4*v3  + 8  <=  0; value: 0
- -5/3*v0 -6*v2  + 107/6  <=  0; value: 0
0: 1 4 5 3 2 
1: 3 4 
2: 5 2 3 
3: 1 2 3 4 5 
0: 0 -> -13/10
1: 4 -> 2/15
2: 3 -> 10/3
3: 1 -> -1/20
+ 2*v0 -2*v1  <=  0; value: -2
+ 3*v0 + 5*v2 -1*v3 -18  =  0; value: 0
+ 3*v2 -12  =  0; value: 0
+ -3*v0  + 2  <=  0; value: -1
+ -4*v2  + 16  =  0; value: 0
+ -5*v1 + 6*v2 -3*v3  + 1  <=  0; value: 0
0: 1 3 
1: 5 
2: 1 2 4 5 
3: 1 5 
optimal: oo
+ 28/5*v0 -38/5  <=  0; value: -2
- 3*v0 + 5*v2 -1*v3 -18  =  0; value: 0
- 3*v2 -12  =  0; value: 0
+ -3*v0  + 2  <=  0; value: -1
+  =  0; value: 0
- -5*v1 + 6*v2 -3*v3  + 1  <=  0; value: 0
0: 1 3 
1: 5 
2: 1 2 4 5 
3: 1 5 
0: 1 -> 1
1: 2 -> 2
2: 4 -> 4
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 4
+ -2*v0 + 3*v3 -22  <=  0; value: -14
+ 6*v0 + 3*v3 -56  <=  0; value: -32
+ 6*v0 + 3*v2 -37  <  0; value: -13
+ -6*v0 -4*v1 -4*v2 -11  <=  0; value: -39
+ 2*v0 + 6*v2 -28  <=  0; value: 0
0: 1 2 3 4 5 
1: 4 
2: 3 4 5 
3: 1 2 
optimal: (1043/30 -e*1)
+  + 1043/30  <  0; value: 1043/30
+ 3*v3 -156/5  <  0; value: -96/5
+ 3*v3 -142/5  <=  0; value: -82/5
- 5*v0 -23  <  0; value: -5
- -6*v0 -4*v1 -4*v2 -11  <=  0; value: 0
- 2*v0 + 6*v2 -28  <=  0; value: 0
0: 1 2 3 4 5 
1: 4 
2: 3 4 5 
3: 1 2 
0: 2 -> 18/5
1: 0 -> -697/60
2: 4 -> 52/15
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -10
+ v0 -5*v2  + 25  =  0; value: 0
+ 2*v1 + 5*v2 -35  =  0; value: 0
+ -5*v3  + 10  =  0; value: 0
+ -5*v0 -1*v3  <=  0; value: -2
+ -4*v1  + 20  =  0; value: 0
0: 1 4 
1: 2 5 
2: 1 2 
3: 3 4 
optimal: -10
+ -10  <=  0; value: -10
- v0 -5*v2  + 25  =  0; value: 0
- 2*v1 + 5*v2 -35  =  0; value: 0
+ -5*v3  + 10  =  0; value: 0
+ -1*v3  <=  0; value: -2
- 2*v0  =  0; value: 0
0: 1 4 5 
1: 2 5 
2: 1 2 5 
3: 3 4 
0: 0 -> 0
1: 5 -> 5
2: 5 -> 5
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 6
+ 6*v0 -6*v2 -12  <=  0; value: 0
+ v1 + 5*v2 -17  =  0; value: 0
+ -5*v1 + 6*v3 -42  <=  0; value: -22
+ -1*v1 + 6*v2 -22  <=  0; value: -6
+ -3*v0 -3*v1 -3*v3  + 4  <=  0; value: -32
0: 1 5 
1: 2 3 4 5 
2: 1 2 4 
3: 3 5 
optimal: 138/11
+  + 138/11  <=  0; value: 138/11
- 6*v0 -366/11  <=  0; value: 0
- v1 + 5*v2 -17  =  0; value: 0
+ 6*v3 -422/11  <=  0; value: -92/11
- 11*v2 -39  <=  0; value: 0
+ -3*v3 -115/11  <=  0; value: -280/11
0: 1 5 
1: 2 3 4 5 
2: 1 2 4 3 5 
3: 3 5 
0: 5 -> 61/11
1: 2 -> -8/11
2: 3 -> 39/11
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 8
+ -4*v0 + v1 -1*v3  + 21  =  0; value: 0
+ v0 + v1 -6  =  0; value: 0
+ 4*v0 -5*v1 -5*v2 -15  =  0; value: 0
+ 5*v0 + 4*v1 -31  <  0; value: -2
+ -3*v0 + 3*v1 -6*v2  + 1  <=  0; value: -11
0: 1 2 3 4 5 
1: 1 2 3 4 5 
2: 3 5 
3: 1 
optimal: (16 -e*1)
+  + 16  <  0; value: 16
- -4*v0 + v1 -1*v3  + 21  =  0; value: 0
- 5*v0 + v3 -27  =  0; value: 0
- 9*v0 -5*v2 -45  =  0; value: 0
- 5/9*v2 -2  <  0; value: -5/9
+ -223/5  <  0; value: -223/5
0: 1 2 3 4 5 
1: 1 2 3 4 5 
2: 3 5 4 
3: 1 2 3 4 5 
0: 5 -> 58/9
1: 1 -> -4/9
2: 0 -> 13/5
3: 2 -> -47/9
+ 2*v0 -2*v1  <=  0; value: 2
+ -2*v1 -1*v3  + 6  =  0; value: 0
+ 4*v3 -8  =  0; value: 0
+ -2*v0 + 3*v2  <=  0; value: 0
+  <=  0; value: 0
+  <=  0; value: 0
0: 3 
1: 1 
2: 3 
3: 1 2 
optimal: oo
+ 2*v0 -4  <=  0; value: 2
- -2*v1 -1*v3  + 6  =  0; value: 0
- 4*v3 -8  =  0; value: 0
+ -2*v0 + 3*v2  <=  0; value: 0
+  <=  0; value: 0
+  <=  0; value: 0
0: 3 
1: 1 
2: 3 
3: 1 2 
0: 3 -> 3
1: 2 -> 2
2: 2 -> 2
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -4
+ v0 + 6*v2 -7  <  0; value: -1
+ 2*v1 -7  <=  0; value: -3
+ 3*v2 -3*v3  + 3  =  0; value: 0
+ -2*v0 + 6*v3 -12  =  0; value: 0
+ -5*v0 + 2*v1 -4  =  0; value: 0
0: 1 4 5 
1: 2 5 
2: 1 3 
3: 3 4 
optimal: oo
+ -9*v2  + 5  <=  0; value: -4
+ 9*v2 -10  <  0; value: -1
+ 15*v2 -18  <=  0; value: -3
- 3*v2 -3*v3  + 3  =  0; value: 0
- -2*v0 + 6*v3 -12  =  0; value: 0
- -5*v0 + 2*v1 -4  =  0; value: 0
0: 1 4 5 2 
1: 2 5 
2: 1 3 2 
3: 3 4 1 2 
0: 0 -> 0
1: 2 -> 2
2: 1 -> 1
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 4
+ 6*v0 + v1 + 3*v3 -55  <=  0; value: -14
+ -6*v0 + 3*v1 -1*v2  + 16  <  0; value: -3
+ -6*v0 -1*v1 -5*v2  + 25  <  0; value: -6
+ -4*v1  + 8  =  0; value: 0
+  <=  0; value: 0
0: 1 2 3 
1: 1 2 3 4 
2: 2 3 
3: 1 
optimal: oo
+ -1*v3  + 41/3  <=  0; value: 26/3
- 6*v0 + 3*v3 -53  <=  0; value: 0
+ -1*v2 + 3*v3 -31  <  0; value: -17
+ -5*v2 + 3*v3 -30  <  0; value: -20
- -4*v1  + 8  =  0; value: 0
+  <=  0; value: 0
0: 1 2 3 
1: 1 2 3 4 
2: 2 3 
3: 1 2 3 
0: 4 -> 19/3
1: 2 -> 2
2: 1 -> 1
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -2
+ -5*v2  + 10  <=  0; value: 0
+ 4*v0 -6*v1 + 6*v2 -7  <  0; value: -1
+ -6*v0 -2*v1 -1*v2  + 1  <  0; value: -3
+ 4*v2 -2*v3 -4  =  0; value: 0
+ -2*v0 -3*v3 -1  <=  0; value: -7
0: 2 3 5 
1: 2 3 
2: 1 2 3 4 
3: 4 5 
optimal: oo
+ 2/3*v0 -5/3  <  0; value: -5/3
- -5*v2  + 10  <=  0; value: 0
- 4*v0 -6*v1 + 6*v2 -7  <  0; value: -1/2
+ -22/3*v0 -8/3  <=  0; value: -8/3
+ -2*v3  + 4  =  0; value: 0
+ -2*v0 -3*v3 -1  <=  0; value: -7
0: 2 3 5 
1: 2 3 
2: 1 2 3 4 
3: 4 5 
0: 0 -> 0
1: 1 -> 11/12
2: 2 -> 2
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -2
+ -5*v1 + 2*v2 -4  <  0; value: -1
+ -5*v1 -4*v2  + 14  <=  0; value: -7
+ 6*v1 + v2 -19  <  0; value: -9
+ -2*v0 -1*v1 + 5*v3 -19  <  0; value: -10
+ -5*v0 + v3 -4  <  0; value: -2
0: 4 5 
1: 1 2 3 4 
2: 1 2 3 
3: 4 5 
optimal: oo
+ 2*v0 -4/5  <  0; value: -4/5
- -5*v1 + 2*v2 -4  <  0; value: -3/2
- -6*v2  + 18  <=  0; value: 0
+ -68/5  <  0; value: -68/5
+ -2*v0 + 5*v3 -97/5  <=  0; value: -47/5
+ -5*v0 + v3 -4  <  0; value: -2
0: 4 5 
1: 1 2 3 4 
2: 1 2 3 4 
3: 4 5 
0: 0 -> 0
1: 1 -> 7/10
2: 4 -> 3
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 2
+ 5*v2  <=  0; value: 0
+ 3*v0 + 6*v3 -58  <=  0; value: -31
+ 5*v1 + 2*v2 -6*v3 -8  =  0; value: 0
+ 5*v0 + 5*v1 + 4*v2 -72  <  0; value: -27
+ 5*v0 -4*v1 -14  <  0; value: -5
0: 2 4 5 
1: 3 4 5 
2: 1 3 4 
3: 2 3 
optimal: oo
+ -1/2*v0  + 7  <  0; value: 9/2
+ 5*v2  <=  0; value: 0
+ 37/4*v0 + 2*v2 -167/2  <  0; value: -149/4
- 5*v1 + 2*v2 -6*v3 -8  =  0; value: 0
+ 45/4*v0 + 4*v2 -179/2  <  0; value: -133/4
- 5*v0 + 8/5*v2 -24/5*v3 -102/5  <  0; value: -5/2
0: 2 4 5 
1: 3 4 5 
2: 1 3 4 5 2 
3: 2 3 5 4 
0: 5 -> 5
1: 4 -> 27/8
2: 0 -> 0
3: 2 -> 71/48
+ 2*v0 -2*v1  <=  0; value: -4
+ 2*v1 + 5*v3 -75  <=  0; value: -40
+ -6*v0 -1*v1 -2*v3 -24  <=  0; value: -57
+ -3*v0 -5*v1 -4*v3 -46  <=  0; value: -100
+ 3*v0 -3*v1 -2  <  0; value: -8
+ -6*v0 -6*v2  + 36  =  0; value: 0
0: 2 3 4 5 
1: 1 2 3 4 
2: 5 
3: 1 2 3 
optimal: (4/3 -e*1)
+  + 4/3  <  0; value: 4/3
+ 2*v0 + 5*v3 -229/3  <  0; value: -136/3
+ -7*v0 -2*v3 -70/3  <=  0; value: -163/3
+ -8*v0 -4*v3 -128/3  <=  0; value: -260/3
- 3*v0 -3*v1 -2  <  0; value: -3
+ -6*v0 -6*v2  + 36  =  0; value: 0
0: 2 3 4 5 1 
1: 1 2 3 4 
2: 5 
3: 1 2 3 
0: 3 -> 3
1: 5 -> 10/3
2: 3 -> 3
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -8
+ -6*v0 -3*v3  + 4  <=  0; value: -2
+ -4*v0 + 5*v2  =  0; value: 0
+ 5*v0  <=  0; value: 0
+ -3*v1 + 3*v2 + 4*v3  + 2  <  0; value: -2
+ v0 -6*v2  =  0; value: 0
0: 1 2 3 5 
1: 4 
2: 2 4 5 
3: 1 4 
optimal: (-44/9 -e*1)
+ -44/9  <  0; value: -44/9
- -6*v0 -3*v3  + 4  <=  0; value: 0
- -4*v0 + 5*v2  =  0; value: 0
- 5*v0  <=  0; value: 0
- -3*v1 + 3*v2 + 4*v3  + 2  <  0; value: -7/3
+  =  0; value: 0
0: 1 2 3 5 
1: 4 
2: 2 4 5 
3: 1 4 
0: 0 -> 0
1: 4 -> 29/9
2: 0 -> 0
3: 2 -> 4/3
+ 2*v0 -2*v1  <=  0; value: 2
+ -3*v1 + 6*v3  <=  0; value: 0
+ -5*v0 + 4*v1  + 5  =  0; value: 0
+  <=  0; value: 0
+ v0 -2*v2 -1  =  0; value: 0
+ 2*v1 -1*v3  =  0; value: 0
0: 2 4 
1: 1 2 5 
2: 4 
3: 1 5 
optimal: 2
+  + 2  <=  0; value: 2
- -3*v1 + 6*v3  <=  0; value: 0
- -5*v0  + 5  =  0; value: 0
+  <=  0; value: 0
+ -2*v2  =  0; value: 0
- 3*v3  =  0; value: 0
0: 2 4 
1: 1 2 5 
2: 4 
3: 1 5 2 
0: 1 -> 1
1: 0 -> 0
2: 0 -> 0
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 0
+ -4*v3  <=  0; value: 0
+ -2*v0 + 6*v2 -24  <=  0; value: 0
+ 2*v0 + 4*v2 -37  <=  0; value: -21
+ -6*v1 + 4*v2 -1*v3 -16  =  0; value: 0
+ v0 -3*v1  <=  0; value: 0
0: 2 3 5 
1: 4 5 
2: 2 3 4 
3: 1 4 
optimal: 0
+  <=  0; value: 0
- 8*v0 -16*v2  + 64  <=  0; value: 0
- 2*v2 -8  <=  0; value: 0
+ -21  <=  0; value: -21
- -6*v1 + 4*v2 -1*v3 -16  =  0; value: 0
- v0 -2*v2 + 1/2*v3  + 8  <=  0; value: 0
0: 2 3 5 1 
1: 4 5 
2: 2 3 4 5 1 
3: 1 4 5 
0: 0 -> 0
1: 0 -> 0
2: 4 -> 4
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 8
+ -5*v3  + 20  =  0; value: 0
+ 4*v0 -6*v1 + 2*v3 -69  <=  0; value: -45
+ v2 -6*v3  + 19  =  0; value: 0
+ -1*v0 + v1 -2*v2 -13  <=  0; value: -27
+ 6*v1 -5*v2 -4*v3 -29  <=  0; value: -70
0: 2 4 
1: 2 4 5 
2: 3 4 5 
3: 1 2 3 5 
optimal: 253/6
+  + 253/6  <=  0; value: 253/6
- -5*v3  + 20  =  0; value: 0
- 4*v0 -6*v1 + 2*v3 -69  <=  0; value: 0
- v2 -5  =  0; value: 0
+ -529/12  <=  0; value: -529/12
- 4*v0 -5*v2 -106  <=  0; value: 0
0: 2 4 5 
1: 2 4 5 
2: 3 4 5 
3: 1 2 3 5 4 
0: 4 -> 131/4
1: 0 -> 35/3
2: 5 -> 5
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -10
+ 3*v2 -1*v3 -26  <  0; value: -14
+ 3*v2 -33  <=  0; value: -18
+ -4*v0 -1*v2 + 3*v3 -8  <=  0; value: -4
+ 5*v0 -2*v2  + 8  <=  0; value: -2
+ 3*v1 + 5*v2 -2*v3 -57  <  0; value: -23
0: 3 4 
1: 5 
2: 1 2 3 4 5 
3: 1 3 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -10
+ 3*v2 -1*v3 -26  <  0; value: -14
+ 3*v2 -33  <=  0; value: -18
+ -4*v0 -1*v2 + 3*v3 -8  <=  0; value: -4
+ 5*v0 -2*v2  + 8  <=  0; value: -2
+ 3*v1 + 5*v2 -2*v3 -57  <  0; value: -23
0: 3 4 
1: 5 
2: 1 2 3 4 5 
3: 1 3 5 
0: 0 -> 0
1: 5 -> 5
2: 5 -> 5
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -2
+ -2*v1  + 4  <=  0; value: -2
+ 4*v1 -31  <=  0; value: -19
+ -6*v2 -2*v3  + 16  =  0; value: 0
+ -3*v2 + 2*v3  <=  0; value: -2
+ -1*v2  + 2  <=  0; value: 0
0: 
1: 1 2 
2: 3 4 5 
3: 3 4 
optimal: oo
+ 2*v0 -4  <=  0; value: 0
- -2*v1  + 4  <=  0; value: 0
+ -23  <=  0; value: -23
+ -6*v2 -2*v3  + 16  =  0; value: 0
+ -3*v2 + 2*v3  <=  0; value: -2
+ -1*v2  + 2  <=  0; value: 0
0: 
1: 1 2 
2: 3 4 5 
3: 3 4 
0: 2 -> 2
1: 3 -> 2
2: 2 -> 2
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -2
+ -1*v1 + 2*v2 + 6*v3 -36  <=  0; value: -11
+ 4*v2 -2*v3  <=  0; value: 0
+ -3*v1 + 5*v2 -1  <=  0; value: 0
+ -3*v1 -1*v2  <=  0; value: -11
+ -4*v0  + 8  =  0; value: 0
0: 5 
1: 1 3 4 
2: 1 2 3 4 
3: 1 2 
optimal: 37/9
+  + 37/9  <=  0; value: 37/9
+ 6*v3 -641/18  <=  0; value: -209/18
+ -2*v3  + 2/3  <=  0; value: -22/3
- -3*v1 + 5*v2 -1  <=  0; value: 0
- -6*v2  + 1  <=  0; value: 0
- -4*v0  + 8  =  0; value: 0
0: 5 
1: 1 3 4 
2: 1 2 3 4 
3: 1 2 
0: 2 -> 2
1: 3 -> -1/18
2: 2 -> 1/6
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -4
+ -1*v1 + 4*v3 -4  =  0; value: 0
+ -3*v0 -1*v3  + 4  <  0; value: -4
+ 2*v1 -2*v2 -9  <=  0; value: -5
+ -3*v0  + 4  <=  0; value: -2
+ -1*v1 + 4*v3 -8  <=  0; value: -4
0: 2 4 
1: 1 3 5 
2: 3 
3: 1 2 5 
optimal: oo
+ 26*v0 -24  <  0; value: 28
- -1*v1 + 4*v3 -4  =  0; value: 0
- -3*v0 -1*v3  + 4  <  0; value: -1
+ -24*v0 -2*v2  + 15  <  0; value: -37
+ -3*v0  + 4  <=  0; value: -2
+ -4  <=  0; value: -4
0: 2 4 3 
1: 1 3 5 
2: 3 
3: 1 2 5 3 
0: 2 -> 2
1: 4 -> -8
2: 2 -> 2
3: 2 -> -1
+ 2*v0 -2*v1  <=  0; value: -6
+ 2*v0 -4*v1 + 5*v2 -5  <  0; value: -1
+ 3*v0 + v1 + 2*v3 -51  <=  0; value: -30
+ -4*v0 -4*v3  + 28  =  0; value: 0
+ 4*v0 + 2*v2 -16  =  0; value: 0
+ -1*v1 -2*v3  + 15  =  0; value: 0
0: 1 2 3 4 
1: 1 2 5 
2: 1 4 
3: 2 3 5 
optimal: (-47/8 -e*1)
+ -47/8  <  0; value: -47/8
- 8*v2 -33  <  0; value: -1/2
+ -483/16  <  0; value: -483/16
- -4*v0 -4*v3  + 28  =  0; value: 0
- 4*v0 + 2*v2 -16  =  0; value: 0
- -1*v1 -2*v3  + 15  =  0; value: 0
0: 1 2 3 4 
1: 1 2 5 
2: 1 4 2 
3: 2 3 5 1 
0: 2 -> 63/32
1: 5 -> 79/16
2: 4 -> 65/16
3: 5 -> 161/32
+ 2*v0 -2*v1  <=  0; value: 2
+ 4*v0 -6*v1 + 4*v3  + 2  =  0; value: 0
+ 2*v0 -8  =  0; value: 0
+ -3*v1 -6*v2 -4*v3 -2  <  0; value: -17
+ -2*v1  + 3  <  0; value: -3
+ 6*v0 -2*v1 + 6*v2 -50  <=  0; value: -26
0: 1 2 5 
1: 1 3 4 5 
2: 3 5 
3: 1 3 
optimal: (5 -e*1)
+  + 5  <  0; value: 5
- 4*v0 -6*v1 + 4*v3  + 2  =  0; value: 0
- 2*v0 -8  =  0; value: 0
+ -6*v2  + 5/2  <=  0; value: -7/2
- -4/3*v0 -4/3*v3  + 7/3  <  0; value: -4/3
+ 6*v2 -29  <=  0; value: -23
0: 1 2 5 3 4 
1: 1 3 4 5 
2: 3 5 
3: 1 3 4 5 
0: 4 -> 4
1: 3 -> 13/6
2: 1 -> 1
3: 0 -> -5/4
+ 2*v0 -2*v1  <=  0; value: -2
+ -6*v0 -3*v2 -2*v3  + 17  <=  0; value: -11
+ 3*v0 + 5*v2 -36  <=  0; value: -13
+ v1 -3*v2 -5  <=  0; value: -15
+ -3*v0 + 3*v1 -6*v3  + 27  <=  0; value: 0
+ 6*v0 + 6*v1 -21  <=  0; value: -3
0: 1 2 4 5 
1: 3 4 5 
2: 1 2 3 
3: 1 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+ -6*v0 -3*v2 -2*v3  + 17  <=  0; value: -11
+ 3*v0 + 5*v2 -36  <=  0; value: -13
+ v1 -3*v2 -5  <=  0; value: -15
+ -3*v0 + 3*v1 -6*v3  + 27  <=  0; value: 0
+ 6*v0 + 6*v1 -21  <=  0; value: -3
0: 1 2 4 5 
1: 3 4 5 
2: 1 2 3 
3: 1 4 
0: 1 -> 1
1: 2 -> 2
2: 4 -> 4
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 6
+ -5*v1 + v2  + 7  <=  0; value: -2
+ 5*v1 + 3*v3 -26  <=  0; value: -16
+ -3*v1 -4*v2 -5*v3 -1  <=  0; value: -11
+ 4*v1 -5*v2 -2*v3 -3  <=  0; value: 0
+ v0 + v2 -2*v3 -9  <=  0; value: -3
0: 5 
1: 1 2 3 4 
2: 1 3 4 5 
3: 2 3 4 5 
optimal: 2712/53
+  + 2712/53  <=  0; value: 2712/53
- -5*v1 + v2  + 7  <=  0; value: 0
- 53/21*v3 -386/21  <=  0; value: 0
+ -1511/53  <=  0; value: -1511/53
- -21/5*v2 -2*v3  + 13/5  <=  0; value: 0
- v0 -1400/53  <=  0; value: 0
0: 5 
1: 1 2 3 4 
2: 1 3 4 5 2 
3: 2 3 4 5 
0: 5 -> 1400/53
1: 2 -> 44/53
2: 1 -> -151/53
3: 0 -> 386/53
+ 2*v0 -2*v1  <=  0; value: 6
+ 3*v1 -10  <=  0; value: -4
+ -5*v0 + 6*v3  + 19  =  0; value: 0
+ 6*v1 -1*v2 -32  <=  0; value: -21
+ -6*v0 + v1 + 3*v3 -2  <=  0; value: -27
+ 5*v0 + v3 -43  <=  0; value: -17
0: 2 4 5 
1: 1 3 4 
2: 3 
3: 2 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 6
+ 3*v1 -10  <=  0; value: -4
+ -5*v0 + 6*v3  + 19  =  0; value: 0
+ 6*v1 -1*v2 -32  <=  0; value: -21
+ -6*v0 + v1 + 3*v3 -2  <=  0; value: -27
+ 5*v0 + v3 -43  <=  0; value: -17
0: 2 4 5 
1: 1 3 4 
2: 3 
3: 2 4 5 
0: 5 -> 5
1: 2 -> 2
2: 1 -> 1
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -6
+ -3*v1 + 4*v2 -4  <=  0; value: -9
+ 5*v0 -1*v1  + 3  <=  0; value: 0
+ -5*v0 + 4*v3 -16  <=  0; value: -4
+ -3*v0 + 5*v1 -4*v2 -31  <=  0; value: -20
+ -1*v0 + 4*v1 -33  <  0; value: -21
0: 2 3 4 5 
1: 1 2 4 5 
2: 1 4 
3: 3 
optimal: oo
+ -32/5*v3  + 98/5  <=  0; value: 2/5
- -15*v0 + 4*v2 -13  <=  0; value: 0
- 5*v0 -1*v1  + 3  <=  0; value: 0
- -4/3*v2 + 4*v3 -35/3  <=  0; value: 0
+ 28/5*v3 -257/5  <=  0; value: -173/5
+ 76/5*v3 -409/5  <  0; value: -181/5
0: 2 3 4 5 1 
1: 1 2 4 5 
2: 1 4 3 5 
3: 3 4 5 
0: 0 -> -4/5
1: 3 -> -1
2: 1 -> 1/4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 8
+ -5*v0  + 1  <=  0; value: -19
+ -2*v0 + 4*v2 -12  =  0; value: 0
+ -5*v0 + 6*v1  + 19  <=  0; value: -1
+ -1*v1  <=  0; value: 0
+ -5*v1 + 6*v2 -30  =  0; value: 0
0: 1 2 3 
1: 3 4 5 
2: 2 5 
3: 
optimal: 8
+  + 8  <=  0; value: 8
+ -19  <=  0; value: -19
- -2*v0 + 4*v2 -12  =  0; value: 0
+ -1  <=  0; value: -1
- -1*v1  <=  0; value: 0
- 6*v2 -30  =  0; value: 0
0: 1 2 3 
1: 3 4 5 
2: 2 5 1 3 
3: 
0: 4 -> 4
1: 0 -> 0
2: 5 -> 5
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -4
+ -5*v2 -19  <=  0; value: -39
+ -2*v0 -3*v2 + 4*v3 -3  <=  0; value: -7
+ -3*v0 + v1  + 2  =  0; value: 0
+ 5*v1 -6*v2 -2  <=  0; value: -6
+ -1*v0 -5*v1 -3*v2  <=  0; value: -34
0: 2 3 5 
1: 3 4 5 
2: 1 2 4 5 
3: 2 
optimal: oo
+ 3/4*v2  + 3/2  <=  0; value: 9/2
+ -5*v2 -19  <=  0; value: -39
+ -21/8*v2 + 4*v3 -17/4  <=  0; value: -11/4
- -3*v0 + v1  + 2  =  0; value: 0
+ -141/16*v2 -21/8  <=  0; value: -303/8
- -16*v0 -3*v2  + 10  <=  0; value: 0
0: 2 3 5 4 
1: 3 4 5 
2: 1 2 4 5 
3: 2 
0: 2 -> -1/8
1: 4 -> -19/8
2: 4 -> 4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ -5*v1 -6*v2 -9  <=  0; value: -19
+ -3*v3  + 15  =  0; value: 0
+ -1*v0  + 2  =  0; value: 0
+ -4*v0 -5*v2  + 1  <=  0; value: -7
+ -6*v1 + 3*v2 -3  <=  0; value: -15
0: 3 4 
1: 1 5 
2: 1 4 5 
3: 2 
optimal: 98/17
+  + 98/17  <=  0; value: 98/17
- -17/2*v2 -13/2  <=  0; value: 0
+ -3*v3  + 15  =  0; value: 0
- -1*v0  + 2  =  0; value: 0
+ -54/17  <=  0; value: -54/17
- -6*v1 + 3*v2 -3  <=  0; value: 0
0: 3 4 
1: 1 5 
2: 1 4 5 
3: 2 
0: 2 -> 2
1: 2 -> -15/17
2: 0 -> -13/17
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 2
+ 4*v0 + 4*v1 + 5*v2 -114  <=  0; value: -69
+ -1*v0 + 6*v2 -1*v3 -56  <  0; value: -34
+ -3*v1 -5*v2 + 3*v3 -13  <=  0; value: -29
+ -1*v0 -1*v1 -4*v3 -16  <  0; value: -41
+ -1*v0 + 2*v2 -17  <  0; value: -10
0: 1 2 4 5 
1: 1 3 4 
2: 1 2 3 5 
3: 2 3 4 
optimal: (11071/67 -e*1)
+  + 11071/67  <  0; value: 11071/67
- 268/85*v0 -2445/17  <  0; value: -268/85
- -4/5*v0 + 17/3*v2 -161/3  <=  0; value: 0
- -3*v1 -5*v2 + 3*v3 -13  <=  0; value: 0
- -1*v0 + 5/3*v2 -5*v3 -35/3  <  0; value: -5
+ -8253/268  <  0; value: -8253/268
0: 1 2 4 5 
1: 1 3 4 
2: 1 2 3 5 4 
3: 2 3 4 1 
0: 3 -> 11957/268
1: 2 -> -811321/22780
2: 5 -> 89806/5695
3: 5 -> -113901/22780
+ 2*v0 -2*v1  <=  0; value: -6
+ 3*v0 + 3*v1 -32  <=  0; value: -11
+ -3*v0 -5*v2  + 6  =  0; value: 0
+ -1*v1 + 4*v2  + 2  <  0; value: -3
+ -1*v0 -1*v1  <  0; value: -7
+ -2*v0 + 5*v3 -11  <=  0; value: -5
0: 1 2 4 5 
1: 1 3 4 
2: 2 3 
3: 5 
optimal: (136/7 -e*1)
+  + 136/7  <  0; value: 136/7
+ -32  <  0; value: -32
- -3*v0 -5*v2  + 6  =  0; value: 0
- -1*v1 + 4*v2  + 2  <  0; value: -1
- 7/5*v0 -34/5  <=  0; value: 0
+ 5*v3 -145/7  <=  0; value: -75/7
0: 1 2 4 5 
1: 1 3 4 
2: 2 3 4 1 
3: 5 
0: 2 -> 34/7
1: 5 -> -27/7
2: 0 -> -12/7
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 2
+ 6*v1 -6*v3 -9  <=  0; value: -3
+ 3*v0 -2*v1 -12  <=  0; value: -7
+ -2*v0 + 6*v1 -6*v2 -12  <=  0; value: -6
+ -2*v2  <=  0; value: 0
+ -4*v1 -5*v3 -4  <=  0; value: -17
0: 2 3 
1: 1 2 3 5 
2: 3 4 
3: 1 5 
optimal: oo
+ 5/6*v3  + 26/3  <=  0; value: 19/2
+ -27/2*v3 -15  <=  0; value: -57/2
- 3*v0 -2*v1 -12  <=  0; value: 0
+ -6*v2 -35/6*v3 -74/3  <=  0; value: -61/2
+ -2*v2  <=  0; value: 0
- -6*v0 -5*v3  + 20  <=  0; value: 0
0: 2 3 5 1 
1: 1 2 3 5 
2: 3 4 
3: 1 5 3 
0: 3 -> 5/2
1: 2 -> -9/4
2: 0 -> 0
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -2
+ -3*v0  <=  0; value: -9
+ -4*v0 -5*v1 + v3  + 27  =  0; value: 0
+ v0 -3*v2 + 6*v3 -18  <=  0; value: 0
+ -6*v2 -5*v3  + 55  =  0; value: 0
+ -6*v0 -5*v2  + 43  =  0; value: 0
0: 1 2 3 5 
1: 2 
2: 3 4 5 
3: 2 3 4 
optimal: -2
+ -2  <=  0; value: -2
+ -9  <=  0; value: -9
- -4*v0 -5*v1 + v3  + 27  =  0; value: 0
- 331/25*v0 -993/25  <=  0; value: 0
- -6*v2 -5*v3  + 55  =  0; value: 0
- -6*v0 -5*v2  + 43  =  0; value: 0
0: 1 2 3 5 
1: 2 
2: 3 4 5 
3: 2 3 4 
0: 3 -> 3
1: 4 -> 4
2: 5 -> 5
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 4
+ 4*v0 + 3*v1 -22  =  0; value: 0
+ 2*v0 -1*v1 -2*v3 -10  <=  0; value: -6
+ 2*v0 -6*v1 -5*v3  + 9  =  0; value: 0
+ v0 + 6*v1 -1*v3 -15  <=  0; value: 0
+ -5*v0 -6*v2  + 24  <  0; value: -8
0: 1 2 3 4 5 
1: 1 2 3 4 
2: 5 
3: 2 3 4 
optimal: oo
+ 7/3*v3  + 5/3  <=  0; value: 4
- 4*v0 + 3*v1 -22  =  0; value: 0
+ -1/3*v3 -17/3  <=  0; value: -6
- 10*v0 -5*v3 -35  =  0; value: 0
+ -9/2*v3  + 9/2  <=  0; value: 0
+ -6*v2 -5/2*v3  + 13/2  <  0; value: -8
0: 1 2 3 4 5 
1: 1 2 3 4 
2: 5 
3: 2 3 4 5 
0: 4 -> 4
1: 2 -> 2
2: 2 -> 2
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -4
+ v0 + 2*v3 -12  <=  0; value: 0
+ v0 + 6*v3 -32  =  0; value: 0
+ -4*v1 -6*v2  + 15  <=  0; value: -31
+ -6*v0 -4*v2 + 3*v3  + 17  =  0; value: 0
+ -1*v0 -2*v1 -3*v2  + 12  <  0; value: -13
0: 1 2 4 5 
1: 3 5 
2: 3 4 5 
3: 1 2 4 
optimal: (9 -e*1)
+  + 9  <  0; value: 9
- v0 + 2*v3 -12  <=  0; value: 0
- -2*v0  + 4  =  0; value: 0
+ -5  <=  0; value: -5
- -6*v0 -4*v2 + 3*v3  + 17  =  0; value: 0
- -1*v0 -2*v1 -3*v2  + 12  <  0; value: -2
0: 1 2 4 5 3 
1: 3 5 
2: 3 4 5 
3: 1 2 4 
0: 2 -> 2
1: 4 -> -3/2
2: 5 -> 5
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -8
+ -1*v2 -6*v3  + 2  <  0; value: -2
+ -1*v2 -2*v3  + 4  <=  0; value: 0
+ 3*v0 -5*v2  + 7  <=  0; value: -13
+ -3*v0 -3*v1 + 2*v2  + 4  <=  0; value: 0
+ v1 + 6*v3 -10  <=  0; value: -6
0: 3 4 
1: 4 5 
2: 1 2 3 4 
3: 1 2 5 
optimal: -40/9
+ -40/9  <=  0; value: -40/9
+ -43/6  <  0; value: -43/6
- -1*v2 -2*v3  + 4  <=  0; value: 0
- 36/7*v0 -1/7  <=  0; value: 0
- -3*v0 -3*v1 + 2*v2  + 4  <=  0; value: 0
- -1*v0 + 14/3*v3 -6  <=  0; value: 0
0: 3 4 5 1 
1: 4 5 
2: 1 2 3 4 5 
3: 1 2 5 3 
0: 0 -> 1/36
1: 4 -> 9/4
2: 4 -> 17/12
3: 0 -> 31/24
+ 2*v0 -2*v1  <=  0; value: -4
+ -3*v2 -4*v3  <=  0; value: 0
+ -5*v0 -2*v1 + v2 -19  <=  0; value: -44
+ 3*v3  <=  0; value: 0
+ 4*v0 -5*v2 -16  <=  0; value: -4
+ -1*v1 + 2*v3 -2  <=  0; value: -7
0: 2 4 
1: 2 5 
2: 1 2 4 
3: 1 3 5 
optimal: oo
+ 23/4*v0  + 61/4  <=  0; value: 65/2
- -3*v2 -4*v3  <=  0; value: 0
- -5*v0 + 4*v2 -15  <=  0; value: 0
+ -45/16*v0 -135/16  <=  0; value: -135/8
+ -9/4*v0 -139/4  <=  0; value: -83/2
- -1*v1 + 2*v3 -2  <=  0; value: 0
0: 2 4 3 
1: 2 5 
2: 1 2 4 3 
3: 1 3 5 2 
0: 3 -> 3
1: 5 -> -53/4
2: 0 -> 15/2
3: 0 -> -45/8
+ 2*v0 -2*v1  <=  0; value: -2
+ -3*v0 + 2*v2 -5*v3 -2  <  0; value: -1
+ -6*v2 -2*v3  + 4  <=  0; value: -16
+ -4*v0 -5*v1 -3*v3  + 2  <  0; value: -6
+ v0 + 3*v3 -3  =  0; value: 0
+ 6*v0  =  0; value: 0
0: 1 3 4 5 
1: 3 
2: 1 2 
3: 1 2 3 4 
optimal: (2/5 -e*1)
+  + 2/5  <  0; value: 2/5
+ 2*v2 -7  <  0; value: -1
+ -6*v2  + 2  <=  0; value: -16
- -4*v0 -5*v1 -3*v3  + 2  <  0; value: -3
- v0 + 3*v3 -3  =  0; value: 0
- 6*v0  =  0; value: 0
0: 1 3 4 5 2 
1: 3 
2: 1 2 
3: 1 2 3 4 
0: 0 -> 0
1: 1 -> 2/5
2: 3 -> 3
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 2
+ 4*v0 + v1 + 2*v2 -38  <=  0; value: -24
+ 2*v2 -1*v3 -8  <  0; value: -2
+ -5*v0 -6*v2 -7  <=  0; value: -42
+ -3*v2  + 11  <=  0; value: -4
+ 4*v0 -6*v1 -6  <=  0; value: -2
0: 1 3 5 
1: 1 5 
2: 1 2 3 4 
3: 2 
optimal: 137/21
+  + 137/21  <=  0; value: 137/21
- 14/3*v0 + 2*v2 -39  <=  0; value: 0
+ -1*v3 -2/3  <  0; value: -14/3
+ -881/14  <=  0; value: -881/14
- -3*v2  + 11  <=  0; value: 0
- 4*v0 -6*v1 -6  <=  0; value: 0
0: 1 3 5 
1: 1 5 
2: 1 2 3 4 
3: 2 
0: 1 -> 95/14
1: 0 -> 74/21
2: 5 -> 11/3
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -8
+ -6*v0 -2*v2  + 8  =  0; value: 0
+ 3*v0 + 6*v1 -3*v3 -18  <=  0; value: -3
+ -4*v1 -3*v2 -18  <=  0; value: -46
+ -1*v0 + 6*v1 -3*v3 -43  <=  0; value: -28
+ -5*v0 + 3*v3 -9  =  0; value: 0
0: 1 2 4 5 
1: 2 3 4 
2: 1 3 
3: 2 4 5 
optimal: oo
+ -3/2*v3  + 39/2  <=  0; value: 15
- -6*v0 -2*v2  + 8  =  0; value: 0
+ 69/10*v3 -927/10  <=  0; value: -72
- -4*v1 -3*v2 -18  <=  0; value: 0
+ 9/2*v3 -221/2  <=  0; value: -97
- -5*v0 + 3*v3 -9  =  0; value: 0
0: 1 2 4 5 
1: 2 3 4 
2: 1 3 2 4 
3: 2 4 5 
0: 0 -> 0
1: 4 -> -15/2
2: 4 -> 4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ 5*v1 + 2*v2 + 5*v3 -78  <  0; value: -46
+ 3*v0 -5*v1 + v2  <  0; value: -7
+ -6*v1 -4*v2  + 28  =  0; value: 0
+ -4*v0 + 5*v1 + 4*v3 -21  <=  0; value: -9
+ -3*v0 + 4*v1 -5*v3  + 1  <=  0; value: -5
0: 2 4 5 
1: 1 2 3 4 5 
2: 1 2 3 
3: 1 4 5 
optimal: oo
+ -35/6*v3  + 70  <  0; value: 175/3
- 12/13*v0 + 5*v3 -804/13  <  0; value: -12/13
- 3*v0 + 13/3*v2 -70/3  <  0; value: -13/3
- -6*v1 -4*v2  + 28  =  0; value: 0
+ 79/6*v3 -129  <  0; value: -308/3
+ 5/4*v3 -72  <  0; value: -139/2
0: 2 4 5 1 
1: 1 2 3 4 5 
2: 1 2 3 4 5 
3: 1 4 5 
0: 4 -> 331/6
1: 4 -> 1061/39
2: 1 -> -879/26
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -6
+ 4*v1 + 6*v2 -6*v3 -34  =  0; value: 0
+ -1*v1 + 4*v3 -4  =  0; value: 0
+ 6*v2 -1*v3 -28  =  0; value: 0
+ -6*v0 + 4*v1 -6*v2  + 9  <=  0; value: -11
+ -1*v3  + 2  =  0; value: 0
0: 4 
1: 1 2 4 
2: 1 3 4 
3: 1 2 3 5 
optimal: oo
+ 2*v0 -8  <=  0; value: -6
- 4*v1 + 6*v2 -6*v3 -34  =  0; value: 0
- 3/2*v2 + 5/2*v3 -25/2  =  0; value: 0
- 33/5*v2 -33  =  0; value: 0
+ -6*v0 -5  <=  0; value: -11
+  =  0; value: 0
0: 4 
1: 1 2 4 
2: 1 3 4 2 5 
3: 1 2 3 5 4 
0: 1 -> 1
1: 4 -> 4
2: 5 -> 5
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 0
+ 3*v1 -4*v2 -3*v3  + 29  <  0; value: -3
+ v1  =  0; value: 0
+ 6*v1 + 3*v2 -25  <=  0; value: -10
+  =  0; value: 0
+ 6*v1 + 3*v2 -41  <=  0; value: -26
0: 
1: 1 2 3 5 
2: 1 3 5 
3: 1 
optimal: oo
+ 2*v0  <=  0; value: 0
+ -4*v2 -3*v3  + 29  <  0; value: -3
- v1  =  0; value: 0
+ 3*v2 -25  <=  0; value: -10
+  =  0; value: 0
+ 3*v2 -41  <=  0; value: -26
0: 
1: 1 2 3 5 
2: 1 3 5 
3: 1 
0: 0 -> 0
1: 0 -> 0
2: 5 -> 5
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 4
+ -6*v0 -5*v3 -11  <  0; value: -29
+ -2*v0 + 3*v1  + 2  <  0; value: -1
+ -3*v2 + 3*v3  <=  0; value: 0
+ -6*v2 -4*v3  <=  0; value: 0
+ 3*v0 -3*v1 -15  <  0; value: -9
0: 1 2 5 
1: 2 5 
2: 3 4 
3: 1 3 4 
optimal: (10 -e*1)
+  + 10  <  0; value: 10
+ -6*v0 -5*v3 -11  <  0; value: -29
+ v0 -13  <  0; value: -10
+ -3*v2 + 3*v3  <=  0; value: 0
+ -6*v2 -4*v3  <=  0; value: 0
- 3*v0 -3*v1 -15  <  0; value: -3
0: 1 2 5 
1: 2 5 
2: 3 4 
3: 1 3 4 
0: 3 -> 3
1: 1 -> -1
2: 0 -> 0
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 2
+ -6*v1  <=  0; value: 0
+ -4*v3  + 9  <  0; value: -3
+ 2*v1  <=  0; value: 0
+ -6*v0 + v1  + 4  <=  0; value: -2
+ 5*v1 + 6*v3 -37  <  0; value: -19
0: 4 
1: 1 3 4 5 
2: 
3: 2 5 
optimal: oo
+ 2*v0  <=  0; value: 2
- -6*v1  <=  0; value: 0
+ -4*v3  + 9  <  0; value: -3
+  <=  0; value: 0
+ -6*v0  + 4  <=  0; value: -2
+ 6*v3 -37  <  0; value: -19
0: 4 
1: 1 3 4 5 
2: 
3: 2 5 
0: 1 -> 1
1: 0 -> 0
2: 1 -> 1
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -2
+ 5*v0 + v2 -14  <  0; value: -4
+ -6*v2 + 6*v3  + 17  <=  0; value: -7
+ v1 -4*v3  <=  0; value: -2
+ -2*v0  + 2  =  0; value: 0
+ 6*v1 -1*v3 -14  <  0; value: -3
0: 1 4 
1: 3 5 
2: 1 2 
3: 2 3 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+ 5*v0 + v2 -14  <  0; value: -4
+ -6*v2 + 6*v3  + 17  <=  0; value: -7
+ v1 -4*v3  <=  0; value: -2
+ -2*v0  + 2  =  0; value: 0
+ 6*v1 -1*v3 -14  <  0; value: -3
0: 1 4 
1: 3 5 
2: 1 2 
3: 2 3 5 
0: 1 -> 1
1: 2 -> 2
2: 5 -> 5
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 0
+  <=  0; value: 0
+ 5*v3 -47  <  0; value: -27
+ 5*v0 -4*v1 -5  <  0; value: -1
+ 6*v0 + 4*v2 -108  <  0; value: -68
+ -1*v1 -2*v2 -3*v3  + 24  =  0; value: 0
0: 3 4 
1: 3 5 
2: 4 5 
3: 2 5 
optimal: oo
+ 4/5*v2  + 92/25  <  0; value: 172/25
+  <=  0; value: 0
- -25/12*v0 -10/3*v2 -59/12  <=  0; value: 0
- 5*v0 + 8*v2 + 12*v3 -101  <  0; value: -12
+ -28/5*v2 -3054/25  <  0; value: -3614/25
- -1*v1 -2*v2 -3*v3  + 24  =  0; value: 0
0: 3 4 2 
1: 3 5 
2: 4 5 3 2 
3: 2 5 3 
0: 4 -> -219/25
1: 4 -> -46/5
2: 4 -> 4
3: 4 -> 42/5
+ 2*v0 -2*v1  <=  0; value: -8
+ -4*v0 + v3  + 2  <=  0; value: 0
+ 4*v0 -2*v1 -6*v2  + 12  <  0; value: -12
+ 3*v1 + 3*v2 -26  <=  0; value: -2
+ -6*v0 + 3*v2 -1*v3 -2  <  0; value: -1
+ -1*v0 + 6*v3 -25  <=  0; value: -14
0: 1 2 4 5 
1: 2 3 
2: 2 3 4 
3: 1 4 5 
optimal: (390/23 -e*1)
+  + 390/23  <  0; value: 390/23
- -4*v0 + v3  + 2  <=  0; value: 0
- 4*v0 -2*v1 -6*v2  + 12  <  0; value: -2
+ -702/23  <  0; value: -702/23
- -6*v0 + 3*v2 -1*v3 -2  <  0; value: -3
- 23*v0 -37  <=  0; value: 0
0: 1 2 4 5 3 
1: 2 3 
2: 2 3 4 
3: 1 4 5 3 
0: 1 -> 37/23
1: 5 -> -66/23
2: 3 -> 301/69
3: 2 -> 102/23
+ 2*v0 -2*v1  <=  0; value: 6
+ -4*v0 -4*v3 -14  <  0; value: -38
+ v0 -1*v1 -3*v2 -1  <=  0; value: -10
+ -2*v0 -2*v1  + 14  =  0; value: 0
+ -1*v1 -1*v3  + 2  <=  0; value: -1
+ -3*v0 + v3 -13  <  0; value: -27
0: 1 2 3 5 
1: 2 3 4 
2: 2 
3: 1 4 5 
optimal: oo
+ 6*v2  + 2  <=  0; value: 26
+ -12*v2 -26  <  0; value: -74
- -3*v2 + 2*v3  + 2  <=  0; value: 0
- -2*v0 -2*v1  + 14  =  0; value: 0
- v0 -1*v3 -5  <=  0; value: 0
+ -3*v2 -26  <  0; value: -38
0: 1 2 3 5 4 
1: 2 3 4 
2: 2 1 5 
3: 1 4 5 2 
0: 5 -> 10
1: 2 -> -3
2: 4 -> 4
3: 1 -> 5
+ 2*v0 -2*v1  <=  0; value: 0
+ -4*v0 + 6*v1  <=  0; value: 0
+ -6*v1  <=  0; value: 0
+ -4*v2 -3  <=  0; value: -7
+ 3*v0 + 3*v2 -7  <=  0; value: -4
+ -1*v1  <=  0; value: 0
0: 1 4 
1: 1 2 5 
2: 3 4 
3: 
optimal: 37/6
+  + 37/6  <=  0; value: 37/6
+ -37/3  <=  0; value: -37/3
- -6*v1  <=  0; value: 0
- -4*v2 -3  <=  0; value: 0
- 3*v0 + 3*v2 -7  <=  0; value: 0
+  <=  0; value: 0
0: 1 4 
1: 1 2 5 
2: 3 4 1 
3: 
0: 0 -> 37/12
1: 0 -> 0
2: 1 -> -3/4
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -2
+ -3*v0 -1*v3  + 4  <=  0; value: -6
+ -3*v0  + 9  =  0; value: 0
+ 5*v0 -1*v2 -6*v3 -18  <=  0; value: -10
+ -3*v0 -6*v1 -4*v2  + 32  <=  0; value: -5
+ -3*v0 -4*v3  + 5  <=  0; value: -8
0: 1 2 3 4 5 
1: 4 
2: 3 4 
3: 1 3 5 
optimal: oo
+ 3*v0 + 4/3*v2 -32/3  <=  0; value: -1/3
+ -3*v0 -1*v3  + 4  <=  0; value: -6
+ -3*v0  + 9  =  0; value: 0
+ 5*v0 -1*v2 -6*v3 -18  <=  0; value: -10
- -3*v0 -6*v1 -4*v2  + 32  <=  0; value: 0
+ -3*v0 -4*v3  + 5  <=  0; value: -8
0: 1 2 3 4 5 
1: 4 
2: 3 4 
3: 1 3 5 
0: 3 -> 3
1: 4 -> 19/6
2: 1 -> 1
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 2
+ 3*v1 -3*v3 -2  <=  0; value: -11
+ -1*v1 -4*v2 -5  <  0; value: -23
+ -1*v2  + 1  <=  0; value: -3
+ -2*v0 + 5*v1 -4  =  0; value: 0
+ -4*v0 -4*v2  + 28  =  0; value: 0
0: 4 5 
1: 1 2 4 
2: 2 3 5 
3: 1 
optimal: 28/5
+  + 28/5  <=  0; value: 28/5
+ -3*v3  + 38/5  <=  0; value: -37/5
+ -61/5  <  0; value: -61/5
- -1*v2  + 1  <=  0; value: 0
- -2*v0 + 5*v1 -4  =  0; value: 0
- -4*v0 -4*v2  + 28  =  0; value: 0
0: 4 5 2 1 
1: 1 2 4 
2: 2 3 5 1 
3: 1 
0: 3 -> 6
1: 2 -> 16/5
2: 4 -> 1
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 2
+ 5*v3 -19  <  0; value: -9
+ 6*v0 -3*v1 -15  =  0; value: 0
+ -5*v1 -6*v3  + 9  <=  0; value: -18
+ 4*v0 -1*v3 -16  <=  0; value: -2
+ -6*v0 + v2  + 18  <  0; value: -6
0: 2 4 5 
1: 2 3 
2: 5 
3: 1 3 4 
optimal: (194/25 -e*1)
+  + 194/25  <  0; value: 194/25
- 5*v3 -19  <  0; value: -9/2
- 6*v0 -3*v1 -15  =  0; value: 0
- -5/3*v2 -6*v3  + 4  <=  0; value: 0
+ -383/25  <  0; value: -383/25
- -6*v0 + v2  + 18  <  0; value: -6
0: 2 4 5 3 
1: 2 3 
2: 5 3 4 
3: 1 3 4 
0: 4 -> 133/50
1: 3 -> 8/25
2: 0 -> -201/25
3: 2 -> 29/10
+ 2*v0 -2*v1  <=  0; value: 4
+ -5*v0 -5*v1  + 32  <  0; value: -8
+ -6*v3  + 24  =  0; value: 0
+ 5*v0 -45  <=  0; value: -20
+ 5*v0 -3*v1 -16  =  0; value: 0
+ -1*v0 + 3*v1 + 5*v3 -66  <  0; value: -42
0: 1 3 4 5 
1: 1 4 5 
2: 
3: 2 5 
optimal: (24/5 -e*1)
+  + 24/5  <  0; value: 24/5
- -40/3*v0  + 176/3  <  0; value: -4
+ -6*v3  + 24  =  0; value: 0
+ -23  <  0; value: -23
- 5*v0 -3*v1 -16  =  0; value: 0
+ 5*v3 -322/5  <  0; value: -222/5
0: 1 3 4 5 
1: 1 4 5 
2: 
3: 2 5 
0: 5 -> 47/10
1: 3 -> 5/2
2: 4 -> 4
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 6
+ 6*v0 + 3*v1 -95  <=  0; value: -59
+ -6*v2  + 6  =  0; value: 0
+ 5*v2 + 4*v3 -33  <  0; value: -16
+ v0 -5*v3  + 10  <=  0; value: 0
+ 2*v0 -10  =  0; value: 0
0: 1 4 5 
1: 1 
2: 2 3 
3: 3 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 6
+ 6*v0 + 3*v1 -95  <=  0; value: -59
+ -6*v2  + 6  =  0; value: 0
+ 5*v2 + 4*v3 -33  <  0; value: -16
+ v0 -5*v3  + 10  <=  0; value: 0
+ 2*v0 -10  =  0; value: 0
0: 1 4 5 
1: 1 
2: 2 3 
3: 3 4 
0: 5 -> 5
1: 2 -> 2
2: 1 -> 1
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 2
+ 6*v2 + v3 -10  <  0; value: -2
+ -3*v0 + 2*v1 + 5*v3 -6  =  0; value: 0
+ v0 -1*v3  <=  0; value: 0
+ 4*v0 + 4*v1 -5*v3 -3  <=  0; value: -1
+ -1*v1 -6*v3  + 8  <=  0; value: -5
0: 2 3 4 
1: 2 4 5 
2: 1 
3: 1 2 3 4 5 
optimal: oo
+ -1*v0 -30*v2  + 44  <  0; value: 12
- 6*v2 + v3 -10  <  0; value: -1
- -3*v0 + 2*v1 + 5*v3 -6  =  0; value: 0
+ v0 + 6*v2 -10  <  0; value: -2
+ 10*v0 + 90*v2 -141  <  0; value: -31
+ -3/2*v0 + 21*v2 -30  <  0; value: -12
0: 2 3 4 5 
1: 2 4 5 
2: 1 3 4 5 
3: 1 2 3 4 5 
0: 2 -> 2
1: 1 -> -3/2
2: 1 -> 1
3: 2 -> 3
+ 2*v0 -2*v1  <=  0; value: 10
+ 4*v1 -6*v2 -7  <=  0; value: -37
+ 2*v1 + 2*v2 -6*v3 -16  <=  0; value: -6
+ v0 + 3*v1 -4*v3 -5  =  0; value: 0
+ -5*v2 + 6*v3  + 3  <=  0; value: -22
+ -1*v1 -6*v2 -19  <=  0; value: -49
0: 3 
1: 1 2 3 5 
2: 1 2 4 5 
3: 2 3 4 
optimal: oo
+ 52/17*v0  + 178/17  <=  0; value: 438/17
+ -45/17*v0 -241/17  <=  0; value: -466/17
- -2/3*v0 + 2*v2 -10/3*v3 -38/3  <=  0; value: 0
- v0 + 3*v1 -4*v3 -5  =  0; value: 0
+ -45/34*v0 -282/17  <=  0; value: -789/34
- 3/5*v0 -34/5*v2 -78/5  <=  0; value: 0
0: 3 5 1 2 4 
1: 1 2 3 5 
2: 1 2 4 5 
3: 2 3 4 5 1 
0: 5 -> 5
1: 0 -> -134/17
2: 5 -> -63/34
3: 0 -> -201/34
+ 2*v0 -2*v1  <=  0; value: 6
+ v0 -4*v2 -2*v3  + 1  <=  0; value: -10
+ 6*v0 + 6*v1 + 3*v2 -71  <=  0; value: -44
+ -3*v0  + 4  <=  0; value: -5
+ 4*v0 + 2*v3 -39  <=  0; value: -25
+  =  0; value: 0
0: 1 2 3 4 
1: 2 
2: 1 2 
3: 1 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 6
+ v0 -4*v2 -2*v3  + 1  <=  0; value: -10
+ 6*v0 + 6*v1 + 3*v2 -71  <=  0; value: -44
+ -3*v0  + 4  <=  0; value: -5
+ 4*v0 + 2*v3 -39  <=  0; value: -25
+  =  0; value: 0
0: 1 2 3 4 
1: 2 
2: 1 2 
3: 1 4 
0: 3 -> 3
1: 0 -> 0
2: 3 -> 3
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -6
+ -4*v1 -6*v2 + 3*v3  + 24  <  0; value: -13
+ -6*v2 -19  <=  0; value: -49
+ -3*v0 + 4*v1 + 3*v2 -76  <=  0; value: -48
+ -3*v0  + 1  <  0; value: -2
+ v2 -5  <=  0; value: 0
0: 3 4 
1: 1 3 
2: 1 2 3 5 
3: 1 
optimal: oo
+ 2*v0 + 3*v2 -3/2*v3 -12  <  0; value: 1/2
- -4*v1 -6*v2 + 3*v3  + 24  <  0; value: -4
+ -6*v2 -19  <=  0; value: -49
+ -3*v0 -3*v2 + 3*v3 -52  <  0; value: -61
+ -3*v0  + 1  <  0; value: -2
+ v2 -5  <=  0; value: 0
0: 3 4 
1: 1 3 
2: 1 2 3 5 
3: 1 3 
0: 1 -> 1
1: 4 -> 7/4
2: 5 -> 5
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 6
+ 3*v0 + 5*v1 -25  =  0; value: 0
+ -6*v2  + 24  =  0; value: 0
+ 3*v0 -3*v2 -3  =  0; value: 0
+ -4*v0 -6*v3  + 18  <=  0; value: -20
+ v3 -8  <=  0; value: -5
0: 1 3 4 
1: 1 
2: 2 3 
3: 4 5 
optimal: 6
+  + 6  <=  0; value: 6
- 3*v0 + 5*v1 -25  =  0; value: 0
- -6*v2  + 24  =  0; value: 0
- 3*v0 -3*v2 -3  =  0; value: 0
+ -6*v3 -2  <=  0; value: -20
+ v3 -8  <=  0; value: -5
0: 1 3 4 
1: 1 
2: 2 3 4 
3: 4 5 
0: 5 -> 5
1: 2 -> 2
2: 4 -> 4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ -5*v0 + 5*v1  <=  0; value: 0
+ -2*v0 -2*v2  + 8  <=  0; value: 0
+ 6*v0 -5*v1 -1  <=  0; value: 0
+ -2*v1 -1  <=  0; value: -3
+ 4*v2 + 5*v3 -12  =  0; value: 0
0: 1 2 3 
1: 1 3 4 
2: 2 5 
3: 5 
optimal: 1/2
+  + 1/2  <=  0; value: 1/2
+ -5/4  <=  0; value: -5/4
- -2*v0 -2*v2  + 8  <=  0; value: 0
- 6*v0 -5*v1 -1  <=  0; value: 0
- -3*v3 -3  <=  0; value: 0
- 4*v2 + 5*v3 -12  =  0; value: 0
0: 1 2 3 4 
1: 1 3 4 
2: 2 5 4 1 
3: 5 4 1 
0: 1 -> -1/4
1: 1 -> -1/2
2: 3 -> 17/4
3: 0 -> -1
+ 2*v0 -2*v1  <=  0; value: 8
+ -2*v1 -6*v3  + 14  =  0; value: 0
+ -2*v1 -4*v3 -9  <=  0; value: -19
+ 4*v2 + 5*v3 -22  =  0; value: 0
+ -2*v0 -5*v2  + 25  =  0; value: 0
+ 4*v1 -9  <  0; value: -5
0: 4 
1: 1 2 5 
2: 3 4 
3: 1 2 3 
optimal: 995/8
+  + 995/8  <=  0; value: 995/8
- -2*v1 -6*v3  + 14  =  0; value: 0
- 16/25*v0 -111/5  <=  0; value: 0
- 4*v2 + 5*v3 -22  =  0; value: 0
- -2*v0 -5*v2  + 25  =  0; value: 0
+ -119  <  0; value: -119
0: 4 2 5 
1: 1 2 5 
2: 3 4 2 5 
3: 1 2 3 5 
0: 5 -> 555/16
1: 1 -> -55/2
2: 3 -> -71/8
3: 2 -> 23/2
+ 2*v0 -2*v1  <=  0; value: 8
+ 2*v2 -2  <=  0; value: 0
+ -1*v2 -1*v3  + 1  <=  0; value: -1
+ -1*v0 + 6*v2 -5  <=  0; value: -3
+ 4*v3 -4  =  0; value: 0
+ -6*v0 + v2 -5*v3  + 28  =  0; value: 0
0: 3 5 
1: 
2: 1 2 3 5 
3: 2 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 8
+ 2*v2 -2  <=  0; value: 0
+ -1*v2 -1*v3  + 1  <=  0; value: -1
+ -1*v0 + 6*v2 -5  <=  0; value: -3
+ 4*v3 -4  =  0; value: 0
+ -6*v0 + v2 -5*v3  + 28  =  0; value: 0
0: 3 5 
1: 
2: 1 2 3 5 
3: 2 4 5 
0: 4 -> 4
1: 0 -> 0
2: 1 -> 1
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -6
+ 4*v1 + 4*v2 -45  <=  0; value: -9
+ -3*v0 -4*v3 -4  <=  0; value: -10
+ -1*v0 + 6*v2 -55  <=  0; value: -33
+ v0 + 6*v3 -2  =  0; value: 0
+ 6*v0 + v2 -39  <=  0; value: -23
0: 2 3 4 5 
1: 1 
2: 1 3 5 
3: 2 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -6
+ 4*v1 + 4*v2 -45  <=  0; value: -9
+ -3*v0 -4*v3 -4  <=  0; value: -10
+ -1*v0 + 6*v2 -55  <=  0; value: -33
+ v0 + 6*v3 -2  =  0; value: 0
+ 6*v0 + v2 -39  <=  0; value: -23
0: 2 3 4 5 
1: 1 
2: 1 3 5 
3: 2 4 
0: 2 -> 2
1: 5 -> 5
2: 4 -> 4
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 2
+ 6*v0 + 6*v1 + 5*v3 -98  <  0; value: -43
+ -5*v0 -3*v3  + 28  <=  0; value: -2
+ -4*v0 -5*v1 -13  <  0; value: -35
+ -6*v0 + 2*v3  + 8  =  0; value: 0
+ v2  <=  0; value: 0
0: 1 2 3 4 
1: 1 3 
2: 5 
3: 1 2 4 
optimal: (314/9 -e*1)
+  + 314/9  <  0; value: 314/9
- 27/5*v3 -112  <  0; value: -27/5
+ -6112/81  <  0; value: -6112/81
- -4*v0 -5*v1 -13  <  0; value: -5
- -6*v0 + 2*v3  + 8  =  0; value: 0
+ v2  <=  0; value: 0
0: 1 2 3 4 
1: 1 3 
2: 5 
3: 1 2 4 
0: 3 -> 641/81
1: 2 -> -3212/405
2: 0 -> 0
3: 5 -> 533/27
+ 2*v0 -2*v1  <=  0; value: -2
+ v0 -1*v1 + 6*v2 -20  <=  0; value: -3
+ -1*v1 -2*v2 + 3*v3  + 6  <=  0; value: -1
+ 2*v0 -6  =  0; value: 0
+ 5*v1 -1*v2 -18  <  0; value: -1
+ 4*v1 -1*v3 -30  <  0; value: -15
0: 1 3 
1: 1 2 4 5 
2: 1 2 4 
3: 2 5 
optimal: oo
+ -12*v2  + 40  <=  0; value: 4
- v0 + 8*v2 -3*v3 -26  <=  0; value: 0
- -1*v1 -2*v2 + 3*v3  + 6  <=  0; value: 0
+ 2*v0 -6  =  0; value: 0
+ 5*v0 + 29*v2 -118  <  0; value: -16
+ 11/3*v0 + 64/3*v2 -304/3  <  0; value: -79/3
0: 1 3 5 4 
1: 1 2 4 5 
2: 1 2 4 5 
3: 2 5 1 4 
0: 3 -> 3
1: 4 -> 1
2: 3 -> 3
3: 1 -> 1/3
+ 2*v0 -2*v1  <=  0; value: -8
+ -3*v0 -1  <=  0; value: -4
+ -3*v1 + 4*v2 -2  <  0; value: -1
+ 5*v0 + 4*v1 + v2 -34  <=  0; value: -5
+  =  0; value: 0
+ 5*v1 -70  <=  0; value: -45
0: 1 3 
1: 2 3 5 
2: 2 3 
3: 
optimal: oo
+ 2*v0 -8/3*v2  + 4/3  <  0; value: -22/3
+ -3*v0 -1  <=  0; value: -4
- -3*v1 + 4*v2 -2  <  0; value: -1/2
+ 5*v0 + 19/3*v2 -110/3  <  0; value: -19/3
+  =  0; value: 0
+ 20/3*v2 -220/3  <  0; value: -140/3
0: 1 3 
1: 2 3 5 
2: 2 3 5 
3: 
0: 1 -> 1
1: 5 -> 29/6
2: 4 -> 4
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 10
+ 3*v3 -12  <=  0; value: -6
+ -4*v2 + 6*v3  + 2  <=  0; value: -6
+ -2*v2  + 9  <  0; value: -1
+ -4*v2 -3*v3 -9  <  0; value: -35
+ -4*v0 + 6*v2 -21  <=  0; value: -11
0: 5 
1: 
2: 2 3 4 5 
3: 1 2 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 10
+ 3*v3 -12  <=  0; value: -6
+ -4*v2 + 6*v3  + 2  <=  0; value: -6
+ -2*v2  + 9  <  0; value: -1
+ -4*v2 -3*v3 -9  <  0; value: -35
+ -4*v0 + 6*v2 -21  <=  0; value: -11
0: 5 
1: 
2: 2 3 4 5 
3: 1 2 4 
0: 5 -> 5
1: 0 -> 0
2: 5 -> 5
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -6
+ 4*v0  =  0; value: 0
+ -2*v1 + 6*v3 -18  <=  0; value: -6
+ -6*v2 -5*v3 -35  <  0; value: -80
+ 4*v0 + 3*v1 + 3*v3 -51  <=  0; value: -33
+ -3*v0 -2*v2 -8  <=  0; value: -18
0: 1 4 5 
1: 2 4 
2: 3 5 
3: 2 3 4 
optimal: oo
+ 2*v0 + 36/5*v2  + 60  <  0; value: 96
+ 4*v0  =  0; value: 0
- -2*v1 + 6*v3 -18  <=  0; value: 0
- -6*v2 -5*v3 -35  <  0; value: -5
+ 4*v0 -72/5*v2 -162  <  0; value: -234
+ -3*v0 -2*v2 -8  <=  0; value: -18
0: 1 4 5 
1: 2 4 
2: 3 5 4 
3: 2 3 4 
0: 0 -> 0
1: 3 -> -45
2: 5 -> 5
3: 3 -> -12
+ 2*v0 -2*v1  <=  0; value: 4
+ -2*v2 + 2*v3  <=  0; value: 0
+ -1*v1 + 4*v3  + 3  =  0; value: 0
+ -3*v2 + 2*v3  <=  0; value: 0
+ 6*v1 -2*v3 -18  =  0; value: 0
+ -6*v1 -4*v2  + 18  =  0; value: 0
0: 
1: 2 4 5 
2: 1 3 5 
3: 1 2 3 4 
optimal: oo
+ 2*v0 -6  <=  0; value: 4
+ -2*v2  <=  0; value: 0
- -1*v1 + 4*v3  + 3  =  0; value: 0
+ -3*v2  <=  0; value: 0
- 22*v3  =  0; value: 0
+ -4*v2  =  0; value: 0
0: 
1: 2 4 5 
2: 1 3 5 
3: 1 2 3 4 5 
0: 5 -> 5
1: 3 -> 3
2: 0 -> 0
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -2
+ 6*v2 -44  <  0; value: -26
+ v0 + 3*v2 -21  <  0; value: -11
+ 3*v0 + 5*v2 -3*v3 -45  <=  0; value: -27
+ -2*v0 + 6*v2 -22  <  0; value: -6
+ -3*v0 + v1 + 3*v2 -13  <  0; value: -5
0: 2 3 4 5 
1: 5 
2: 1 2 3 4 5 
3: 3 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+ 6*v2 -44  <  0; value: -26
+ v0 + 3*v2 -21  <  0; value: -11
+ 3*v0 + 5*v2 -3*v3 -45  <=  0; value: -27
+ -2*v0 + 6*v2 -22  <  0; value: -6
+ -3*v0 + v1 + 3*v2 -13  <  0; value: -5
0: 2 3 4 5 
1: 5 
2: 1 2 3 4 5 
3: 3 
0: 1 -> 1
1: 2 -> 2
2: 3 -> 3
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 0
+ 3*v0 -6*v3 -12  =  0; value: 0
+ 2*v0 + 2*v1 + 4*v3 -42  <=  0; value: -26
+ 2*v1 + 4*v2 -5*v3 -45  <=  0; value: -29
+ 2*v0 + v2 -19  <  0; value: -9
+ v3  <=  0; value: 0
0: 1 2 4 
1: 2 3 
2: 3 4 
3: 1 2 3 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 0
+ 3*v0 -6*v3 -12  =  0; value: 0
+ 2*v0 + 2*v1 + 4*v3 -42  <=  0; value: -26
+ 2*v1 + 4*v2 -5*v3 -45  <=  0; value: -29
+ 2*v0 + v2 -19  <  0; value: -9
+ v3  <=  0; value: 0
0: 1 2 4 
1: 2 3 
2: 3 4 
3: 1 2 3 5 
0: 4 -> 4
1: 4 -> 4
2: 2 -> 2
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 2
+ -2*v1 + 3*v2 -6*v3  + 1  <  0; value: -26
+ -3*v1 + 4*v3 -18  <=  0; value: -11
+ -4*v2  + 4  =  0; value: 0
+ v1 + 6*v3 -64  <  0; value: -37
+ 3*v0 + v1 -5*v3  + 5  =  0; value: 0
0: 5 
1: 1 2 4 5 
2: 1 3 
3: 1 2 4 5 
optimal: (478/39 -e*1)
+  + 478/39  <  0; value: 478/39
- -78/11*v0 + 3*v2  + 169/11  <  0; value: -5
- 9*v0 -11*v3 -3  <=  0; value: 0
- -4*v2  + 4  =  0; value: 0
+ -734/13  <  0; value: -734/13
- 3*v0 + v1 -5*v3  + 5  =  0; value: 0
0: 5 1 2 4 
1: 1 2 4 5 
2: 1 3 4 
3: 1 2 4 5 
0: 4 -> 257/78
1: 3 -> -36/13
2: 1 -> 1
3: 4 -> 63/26
+ 2*v0 -2*v1  <=  0; value: -2
+ -3*v1 -2*v2  + 9  =  0; value: 0
+ 4*v1 -6*v3  + 6  =  0; value: 0
+ -3*v0 + 2*v1 + 6*v3 -50  <=  0; value: -32
+ 2*v1 -5*v2 -6  =  0; value: 0
+ 2*v0 + 4*v1 -1*v2 -47  <=  0; value: -31
0: 3 5 
1: 1 2 3 4 5 
2: 1 4 5 
3: 2 3 
optimal: 29
+  + 29  <=  0; value: 29
- -3*v1 -2*v2  + 9  =  0; value: 0
+ -6*v3  + 18  =  0; value: 0
+ 6*v3 -193/2  <=  0; value: -157/2
- -19/3*v2  =  0; value: 0
- 2*v0 -35  <=  0; value: 0
0: 3 5 
1: 1 2 3 4 5 
2: 1 4 5 2 3 
3: 2 3 
0: 2 -> 35/2
1: 3 -> 3
2: 0 -> 0
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ -2*v3  <=  0; value: 0
+ -2*v2 -3*v3  + 4  <  0; value: -4
+ -3*v2 -1*v3  + 10  <  0; value: -2
+ 6*v1 -6  =  0; value: 0
+ -3*v0 + 5*v2 -39  <=  0; value: -22
0: 5 
1: 4 
2: 2 3 5 
3: 1 2 3 
optimal: oo
+ 2*v0 -2  <=  0; value: 0
+ -2*v3  <=  0; value: 0
+ -2*v2 -3*v3  + 4  <  0; value: -4
+ -3*v2 -1*v3  + 10  <  0; value: -2
- 6*v1 -6  =  0; value: 0
+ -3*v0 + 5*v2 -39  <=  0; value: -22
0: 5 
1: 4 
2: 2 3 5 
3: 1 2 3 
0: 1 -> 1
1: 1 -> 1
2: 4 -> 4
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 2
+ 4*v0 -4*v1 -5  <  0; value: -1
+ 5*v1 -5*v3 -6  <=  0; value: -31
+ 6*v0 -4*v2 -4  <=  0; value: -2
+ v3 -7  <=  0; value: -2
+ -2*v2 -1*v3 -2  <=  0; value: -9
0: 1 3 
1: 1 2 
2: 3 5 
3: 2 4 5 
optimal: (5/2 -e*1)
+  + 5/2  <  0; value: 5/2
- 4*v0 -4*v1 -5  <  0; value: -1/2
+ 5*v0 -5*v3 -49/4  <  0; value: -129/4
+ 6*v0 -4*v2 -4  <=  0; value: -2
+ v3 -7  <=  0; value: -2
+ -2*v2 -1*v3 -2  <=  0; value: -9
0: 1 3 2 
1: 1 2 
2: 3 5 
3: 2 4 5 
0: 1 -> 1
1: 0 -> -1/8
2: 1 -> 1
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -2
+  =  0; value: 0
+ 6*v0 + 4*v2 -16  =  0; value: 0
+ -1*v0 + 4*v1 + 3*v2 -24  <=  0; value: -11
+ -2*v0 + 5*v1 + 3*v3 -47  <=  0; value: -27
+ 6*v0 -3*v2 -9  =  0; value: 0
0: 2 3 4 5 
1: 3 4 
2: 2 3 5 
3: 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+  =  0; value: 0
+ 6*v0 + 4*v2 -16  =  0; value: 0
+ -1*v0 + 4*v1 + 3*v2 -24  <=  0; value: -11
+ -2*v0 + 5*v1 + 3*v3 -47  <=  0; value: -27
+ 6*v0 -3*v2 -9  =  0; value: 0
0: 2 3 4 5 
1: 3 4 
2: 2 3 5 
3: 4 
0: 2 -> 2
1: 3 -> 3
2: 1 -> 1
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ v3 -4  =  0; value: 0
+ 3*v0 + 2*v2 -19  <=  0; value: -7
+ -3*v1 + 5*v2 -6  <=  0; value: -18
+ -6*v1 + v3 -18  <  0; value: -38
+ -4*v2  =  0; value: 0
0: 2 
1: 3 4 
2: 2 3 5 
3: 1 4 
optimal: 50/3
+  + 50/3  <=  0; value: 50/3
+ v3 -4  =  0; value: 0
- 3*v0 -19  <=  0; value: 0
- -3*v1 + 5*v2 -6  <=  0; value: 0
+ v3 -6  <  0; value: -2
- -4*v2  =  0; value: 0
0: 2 
1: 3 4 
2: 2 3 5 4 
3: 1 4 
0: 4 -> 19/3
1: 4 -> -2
2: 0 -> 0
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -2
+ 6*v0 -4*v3 -19  <=  0; value: -11
+ 6*v1 -1*v2 + 2*v3 -37  <=  0; value: -22
+ 4*v0 + 5*v3 -24  <=  0; value: -11
+ 5*v2 + v3 -31  <  0; value: -5
+ 6*v0 -1*v2 -6*v3 -2  <=  0; value: -1
0: 1 3 5 
1: 2 
2: 2 4 5 
3: 1 2 3 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+ 6*v0 -4*v3 -19  <=  0; value: -11
+ 6*v1 -1*v2 + 2*v3 -37  <=  0; value: -22
+ 4*v0 + 5*v3 -24  <=  0; value: -11
+ 5*v2 + v3 -31  <  0; value: -5
+ 6*v0 -1*v2 -6*v3 -2  <=  0; value: -1
0: 1 3 5 
1: 2 
2: 2 4 5 
3: 1 2 3 4 5 
0: 2 -> 2
1: 3 -> 3
2: 5 -> 5
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -2
+ -6*v0 -4*v1 + v2  + 2  <=  0; value: -8
+ -2*v0 + 3*v2 -4*v3 -2  <=  0; value: -12
+ 4*v0 -4*v3  + 16  =  0; value: 0
+ -5*v1  + 5  <  0; value: -5
+ 2*v0 -2*v1 + 6*v3 -78  <=  0; value: -50
0: 1 2 3 5 
1: 1 4 5 
2: 1 2 
3: 2 3 5 
optimal: (12 -e*1)
+  + 12  <  0; value: 12
+ v2 -44  <=  0; value: -40
+ 3*v2 -60  <=  0; value: -48
- 4*v0 -4*v3  + 16  =  0; value: 0
- -5*v1  + 5  <  0; value: -5/2
- 8*v3 -88  <=  0; value: 0
0: 1 2 3 5 
1: 1 4 5 
2: 1 2 
3: 2 3 5 1 
0: 1 -> 7
1: 2 -> 3/2
2: 4 -> 4
3: 5 -> 11
+ 2*v0 -2*v1  <=  0; value: 2
+ 5*v0 -1*v3 -14  <=  0; value: -3
+ 4*v1 + 3*v2 -14  =  0; value: 0
+ v0 + 5*v1 + 6*v3 -94  <=  0; value: -57
+ 6*v0 + 3*v1 -60  <  0; value: -36
+ -2*v2 -2  <=  0; value: -6
0: 1 3 4 
1: 2 3 4 
2: 2 5 
3: 1 3 
optimal: oo
+ 2*v0 + 3/2*v2 -7  <=  0; value: 2
+ 5*v0 -1*v3 -14  <=  0; value: -3
- 4*v1 + 3*v2 -14  =  0; value: 0
+ v0 -15/4*v2 + 6*v3 -153/2  <=  0; value: -57
+ 6*v0 -9/4*v2 -99/2  <  0; value: -36
+ -2*v2 -2  <=  0; value: -6
0: 1 3 4 
1: 2 3 4 
2: 2 5 3 4 
3: 1 3 
0: 3 -> 3
1: 2 -> 2
2: 2 -> 2
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -4
+ 4*v1 -3*v2  + 1  =  0; value: 0
+ 2*v0 -6*v1 -6  <=  0; value: -18
+ 2*v0 -6*v2 + 6*v3  + 18  <=  0; value: 0
+ 3*v2 -9  =  0; value: 0
+ 5*v2 -15  =  0; value: 0
0: 2 3 
1: 1 2 
2: 1 3 4 5 
3: 3 
optimal: 14
+  + 14  <=  0; value: 14
- 4*v1 -3*v2  + 1  =  0; value: 0
- 2*v0 -18  <=  0; value: 0
- 2*v0 -6*v2 + 6*v3  + 18  <=  0; value: 0
- v0 + 3*v3  =  0; value: 0
+  =  0; value: 0
0: 2 3 4 5 
1: 1 2 
2: 1 3 4 5 2 
3: 3 4 5 2 
0: 0 -> 9
1: 2 -> 2
2: 3 -> 3
3: 0 -> -3
+ 2*v0 -2*v1  <=  0; value: -6
+ 6*v1 + 3*v2 -3*v3 -35  <=  0; value: -14
+ 2*v1 + 4*v2 -18  =  0; value: 0
+ -6*v1 -5*v3  + 32  <=  0; value: -23
+ -6*v0 -2*v1 -4*v3  + 42  =  0; value: 0
+ -2*v0 + v3 -2  <=  0; value: -1
0: 4 5 
1: 1 2 3 4 
2: 1 2 
3: 1 3 4 5 
optimal: 6
+  + 6  <=  0; value: 6
+ -179/4  <=  0; value: -179/4
- 2*v1 + 4*v2 -18  =  0; value: 0
- 32*v0 -80  <=  0; value: 0
- -6*v0 + 4*v2 -4*v3  + 24  =  0; value: 0
- -2*v0 + v3 -2  <=  0; value: 0
0: 4 5 3 1 
1: 1 2 3 4 
2: 1 2 3 4 
3: 1 3 4 5 
0: 2 -> 5/2
1: 5 -> -1/2
2: 2 -> 19/4
3: 5 -> 7
+ 2*v0 -2*v1  <=  0; value: 4
+ -5*v2  + 5  =  0; value: 0
+ -6*v0 -4*v1 -7  <  0; value: -19
+ -1*v1  <=  0; value: 0
+ 6*v1 + 6*v2 -3*v3  + 6  =  0; value: 0
+ v2 -2  <  0; value: -1
0: 2 
1: 2 3 4 
2: 1 4 5 
3: 4 
optimal: oo
+ 2*v0  <=  0; value: 4
+ -5*v2  + 5  =  0; value: 0
+ -6*v0 -7  <  0; value: -19
- -1*v1  <=  0; value: 0
+ 6*v2 -3*v3  + 6  =  0; value: 0
+ v2 -2  <  0; value: -1
0: 2 
1: 2 3 4 
2: 1 4 5 
3: 4 
0: 2 -> 2
1: 0 -> 0
2: 1 -> 1
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -4
+ -6*v2 + 4*v3  + 14  =  0; value: 0
+ -1*v1 -4*v2  + 15  =  0; value: 0
+ -2*v0 -1*v1 + 2*v3  + 1  <=  0; value: -2
+ -4*v1 + 6*v2 -14  <=  0; value: -8
+ -4*v0 + 6*v3 -3  <  0; value: -1
0: 3 5 
1: 2 3 4 
2: 1 2 4 
3: 1 3 5 
optimal: (1/22 -e*1)
+  + 1/22  <  0; value: 1/22
- -6*v2 + 4*v3  + 14  =  0; value: 0
- -1*v1 -4*v2  + 15  =  0; value: 0
+ -13/22  <=  0; value: -13/22
- 88/9*v0 -46/3  <=  0; value: 0
- -4*v0 + 6*v3 -3  <  0; value: -18/11
0: 3 5 4 
1: 2 3 4 
2: 1 2 4 3 
3: 1 3 5 4 
0: 1 -> 69/44
1: 3 -> 25/11
2: 3 -> 35/11
3: 1 -> 14/11
+ 2*v0 -2*v1  <=  0; value: 0
+ 3*v0 -3*v1  <=  0; value: 0
+ -4*v0 -6*v1 + v2  + 28  =  0; value: 0
+ 2*v0 -4*v1 -5*v2 -15  <=  0; value: -31
+ 3*v0 -2*v2 + 6*v3 -35  <  0; value: -18
+ -1*v0 -5*v1  + 9  <  0; value: -9
0: 1 2 3 4 5 
1: 1 2 3 5 
2: 2 3 4 
3: 4 
optimal: 0
+  <=  0; value: 0
- 3*v0 -3*v1  <=  0; value: 0
+ -10*v0 + v2  + 28  =  0; value: 0
+ -2*v0 -5*v2 -15  <=  0; value: -31
+ 3*v0 -2*v2 + 6*v3 -35  <  0; value: -18
+ -6*v0  + 9  <  0; value: -9
0: 1 2 3 4 5 
1: 1 2 3 5 
2: 2 3 4 
3: 4 
0: 3 -> 3
1: 3 -> 3
2: 2 -> 2
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -6
+ v1 + 5*v2 + 4*v3 -47  <=  0; value: -29
+ 6*v0 + 6*v1 -18  =  0; value: 0
+ -2*v0 -3*v3  <=  0; value: 0
+ 4*v1 -12  <=  0; value: 0
+ -3*v0 + 3*v1 -3*v2  <=  0; value: 0
0: 2 3 5 
1: 1 2 4 5 
2: 1 5 
3: 1 3 
optimal: oo
+ 4*v0 -6  <=  0; value: -6
+ -1*v0 + 5*v2 + 4*v3 -44  <=  0; value: -29
- 6*v0 + 6*v1 -18  =  0; value: 0
+ -2*v0 -3*v3  <=  0; value: 0
+ -4*v0  <=  0; value: 0
+ -6*v0 -3*v2  + 9  <=  0; value: 0
0: 2 3 5 1 4 
1: 1 2 4 5 
2: 1 5 
3: 1 3 
0: 0 -> 0
1: 3 -> 3
2: 3 -> 3
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -4
+ 6*v0 -6*v1 -2*v2  + 12  =  0; value: 0
+ -6*v0 + 3*v1 -4*v3  + 13  =  0; value: 0
+  <=  0; value: 0
+ 2*v2 + 2*v3 -12  <=  0; value: -4
+ v0 -6*v1 + 5*v3 -3  =  0; value: 0
0: 1 2 5 
1: 1 2 5 
2: 1 4 
3: 2 4 5 
optimal: -37/18
+ -37/18  <=  0; value: -37/18
- 6*v0 -6*v1 -2*v2  + 12  =  0; value: 0
- -3*v0 -1*v2 -4*v3  + 19  =  0; value: 0
+  <=  0; value: 0
- 16*v0 -20  <=  0; value: 0
- -11*v0 -3*v3  + 23  =  0; value: 0
0: 1 2 5 4 
1: 1 2 5 
2: 1 4 2 5 
3: 2 4 5 
0: 1 -> 5/4
1: 3 -> 41/18
2: 0 -> 35/12
3: 4 -> 37/12
+ 2*v0 -2*v1  <=  0; value: -8
+ v3 -8  <=  0; value: -5
+ -3*v0 -6*v3 -2  <=  0; value: -20
+ -4*v0 + 6*v3 -18  =  0; value: 0
+ -3*v1 -2*v3  + 2  <  0; value: -16
+ -1*v0 + 4*v1 + 4*v3 -29  <=  0; value: -1
0: 2 3 5 
1: 4 5 
2: 
3: 1 2 3 4 5 
optimal: (73/3 -e*1)
+  + 73/3  <  0; value: 73/3
- 2/3*v0 -5  <=  0; value: 0
+ -145/2  <=  0; value: -145/2
- -4*v0 + 6*v3 -18  =  0; value: 0
- -3*v1 -2*v3  + 2  <  0; value: -3
+ -139/6  <  0; value: -139/6
0: 2 3 5 1 
1: 4 5 
2: 
3: 1 2 3 4 5 
0: 0 -> 15/2
1: 4 -> -11/3
2: 2 -> 2
3: 3 -> 8
+ 2*v0 -2*v1  <=  0; value: -6
+  <=  0; value: 0
+  <=  0; value: 0
+ v0 + 6*v2 -50  <=  0; value: -24
+ -3*v2 -1*v3  + 17  =  0; value: 0
+ v1 -5  =  0; value: 0
0: 3 
1: 5 
2: 3 4 
3: 4 
optimal: oo
+ 4*v3  + 22  <=  0; value: 42
+  <=  0; value: 0
+  <=  0; value: 0
- v0 + 6*v2 -50  <=  0; value: 0
- -3*v2 -1*v3  + 17  =  0; value: 0
- v1 -5  =  0; value: 0
0: 3 
1: 5 
2: 3 4 
3: 4 
0: 2 -> 26
1: 5 -> 5
2: 4 -> 4
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 0
+ -2*v2 + 4*v3 -4  =  0; value: 0
+ v0 + v3 -4  <=  0; value: -1
+ -4*v0 -3*v3 -7  <=  0; value: -16
+ 3*v1 -3*v3 -7  <=  0; value: -16
+ v1 + 5*v3 -15  =  0; value: 0
0: 2 3 
1: 4 5 
2: 1 
3: 1 2 3 4 5 
optimal: 162
+  + 162  <=  0; value: 162
- -2*v2 + 4*v3 -4  =  0; value: 0
- v0 + 1/2*v2 -3  <=  0; value: 0
- -1*v0 -19  <=  0; value: 0
+ -376  <=  0; value: -376
- v1 + 5*v3 -15  =  0; value: 0
0: 2 3 4 
1: 4 5 
2: 1 2 3 4 
3: 1 2 3 4 5 
0: 0 -> -19
1: 0 -> -100
2: 4 -> 44
3: 3 -> 23
+ 2*v0 -2*v1  <=  0; value: 4
+ 2*v0 -6*v3 -5  <=  0; value: -3
+ -1*v0 + 5*v1 + v2 -10  <=  0; value: 0
+ -5*v1 -6*v2 + v3 -12  <  0; value: -45
+ -4*v1 + v2 -4*v3 -3  <  0; value: -11
+ 2*v0 + v1 + 4*v2 -31  <  0; value: -5
0: 1 2 5 
1: 2 3 4 5 
2: 2 3 4 5 
3: 1 3 4 
optimal: (8695/247 -e*1)
+  + 8695/247  <  0; value: 8695/247
- 494/73*v0 -6731/73  <  0; value: -494/73
+ -20537/494  <=  0; value: -20537/494
- -29/4*v2 + 6*v3 -33/4  <=  0; value: 0
- -4*v1 + v2 -4*v3 -3  <  0; value: -4
- 2*v0 + 73/24*v2 -265/8  <  0; value: -25447/11856
0: 1 2 5 
1: 2 3 4 5 
2: 2 3 4 5 1 
3: 1 3 4 2 5 
0: 4 -> 6237/494
1: 2 -> -2535535/865488
2: 4 -> 67907/36062
3: 1 -> 3159349/865488
+ 2*v0 -2*v1  <=  0; value: 4
+ -5*v1  + 5  =  0; value: 0
+ -2*v1 + v3 -4  <=  0; value: -1
+ 2*v0 -3*v1 -3*v2 -6  <=  0; value: -3
+ -4*v0  + 12  =  0; value: 0
+ -5*v0 -5*v1 -1*v2  + 18  <=  0; value: -2
0: 3 4 5 
1: 1 2 3 5 
2: 3 5 
3: 2 
optimal: 4
+  + 4  <=  0; value: 4
- -5*v1  + 5  =  0; value: 0
+ v3 -6  <=  0; value: -1
+ -3*v2 -3  <=  0; value: -3
- -4*v0  + 12  =  0; value: 0
+ -1*v2 -2  <=  0; value: -2
0: 3 4 5 
1: 1 2 3 5 
2: 3 5 
3: 2 
0: 3 -> 3
1: 1 -> 1
2: 0 -> 0
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -10
+ -6*v1 + 5*v2 + 3*v3 -2  <=  0; value: -1
+ 4*v1 + 4*v3 -28  =  0; value: 0
+ -5*v1 -4*v2  + 45  =  0; value: 0
+ -2*v0 + 5*v2 -62  <  0; value: -37
+ -2*v0 + 3*v1 -4*v3 -17  <=  0; value: -10
0: 4 5 
1: 1 2 3 5 
2: 1 3 4 
3: 1 2 5 
optimal: oo
+ 2*v0 -602/61  <=  0; value: -602/61
- 61/5*v2 -62  <=  0; value: 0
- 4*v1 + 4*v3 -28  =  0; value: 0
- -4*v2 + 5*v3  + 10  =  0; value: 0
+ -2*v0 -2232/61  <  0; value: -2232/61
+ -2*v0 -638/61  <=  0; value: -638/61
0: 4 5 
1: 1 2 3 5 
2: 1 3 4 5 
3: 1 2 5 3 
0: 0 -> 0
1: 5 -> 301/61
2: 5 -> 310/61
3: 2 -> 126/61
+ 2*v0 -2*v1  <=  0; value: -2
+ -6*v0 -3*v1 + 4*v3  + 26  <  0; value: -1
+ -3*v1  + 1  <=  0; value: -14
+ -4*v0 -2*v3  + 20  <=  0; value: -2
+ -3*v1 -3*v2 + v3 -19  <=  0; value: -43
+ 4*v2 -29  <=  0; value: -13
0: 1 3 
1: 1 2 4 
2: 4 5 
3: 1 3 4 
optimal: (181/21 -e*1)
+  + 181/21  <  0; value: 181/21
- -6*v0 -3*v1 + 4*v3  + 26  <  0; value: -3
- 14*v0 -65  <=  0; value: 0
- -4*v0 -2*v3  + 20  <=  0; value: 0
+ -3*v2 -135/7  <=  0; value: -219/7
+ 4*v2 -29  <=  0; value: -13
0: 1 3 2 4 
1: 1 2 4 
2: 4 5 
3: 1 3 4 2 
0: 4 -> 65/14
1: 5 -> 4/3
2: 4 -> 4
3: 3 -> 5/7
+ 2*v0 -2*v1  <=  0; value: -4
+ -3*v1 + 3*v3  + 5  <=  0; value: -10
+ -4*v0 -1*v1  + 7  <=  0; value: -10
+ 6*v0 + 2*v3 -26  <=  0; value: -8
+ -5*v1 -5*v2 -14  <  0; value: -44
+ -3*v0 + 6*v1 -2*v2 -37  <=  0; value: -18
0: 2 3 5 
1: 1 2 4 5 
2: 4 5 
3: 1 3 
optimal: oo
+ 10*v0 -14  <  0; value: 16
- -3*v1 + 3*v3  + 5  <=  0; value: 0
- -4*v0 + v2  + 49/5  <=  0; value: 0
+ -2*v0 -46/3  <  0; value: -64/3
- -5*v2 -5*v3 -67/3  <  0; value: -5
+ -35*v0  + 123/5  <  0; value: -402/5
0: 2 3 5 
1: 1 2 4 5 
2: 4 5 2 3 
3: 1 3 2 4 5 
0: 3 -> 3
1: 5 -> -4
2: 1 -> 11/5
3: 0 -> -17/3
+ 2*v0 -2*v1  <=  0; value: 0
+ -3*v0 -4*v1  =  0; value: 0
+ 5*v0 -3*v1 + 6*v3 -50  <=  0; value: -32
+ -5*v0 -1*v3 -2  <=  0; value: -5
+ -1*v0 + 4*v3 -27  <=  0; value: -15
+ 6*v1 -3*v3  + 9  =  0; value: 0
0: 1 2 3 4 
1: 1 2 5 
2: 
3: 2 3 4 5 
optimal: oo
+ -7/3*v3  + 7  <=  0; value: 0
- -3*v0 -4*v1  =  0; value: 0
+ 7/6*v3 -71/2  <=  0; value: -32
+ 7/3*v3 -12  <=  0; value: -5
+ 14/3*v3 -29  <=  0; value: -15
- -9/2*v0 -3*v3  + 9  =  0; value: 0
0: 1 2 3 4 5 
1: 1 2 5 
2: 
3: 2 3 4 5 
0: 0 -> 0
1: 0 -> 0
2: 4 -> 4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 6
+ 4*v0 + v1 -2*v2 -11  =  0; value: 0
+ -3*v0 -3*v3  + 3  <  0; value: -9
+ 2*v0 -2*v1 -8  <=  0; value: -2
+ 5*v0 -6*v1 + 6*v3 -14  =  0; value: 0
+ 2*v2 -8  <=  0; value: -2
0: 1 2 3 4 
1: 1 3 4 
2: 1 5 
3: 2 4 
optimal: 8
+  + 8  <=  0; value: 8
- 4*v0 + v1 -2*v2 -11  =  0; value: 0
+ -7/2*v0  + 8  <  0; value: -6
- 1/3*v0 -2*v3 -10/3  <=  0; value: 0
- 29*v0 -12*v2 + 6*v3 -80  =  0; value: 0
+ 5*v0 -23  <=  0; value: -3
0: 1 2 3 4 5 
1: 1 3 4 
2: 1 5 3 4 
3: 2 4 3 5 
0: 4 -> 4
1: 1 -> 0
2: 3 -> 5/2
3: 0 -> -1
+ 2*v0 -2*v1  <=  0; value: -2
+ 2*v1 + 4*v2 + 4*v3 -38  <=  0; value: -4
+ v2 -1  =  0; value: 0
+ 2*v0 -19  <=  0; value: -11
+ 6*v1 + 6*v3 -64  <=  0; value: -4
+ -6*v0 + 6*v3 -6  <=  0; value: 0
0: 3 5 
1: 1 4 
2: 1 2 
3: 1 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+ 2*v1 + 4*v2 + 4*v3 -38  <=  0; value: -4
+ v2 -1  =  0; value: 0
+ 2*v0 -19  <=  0; value: -11
+ 6*v1 + 6*v3 -64  <=  0; value: -4
+ -6*v0 + 6*v3 -6  <=  0; value: 0
0: 3 5 
1: 1 4 
2: 1 2 
3: 1 4 5 
0: 4 -> 4
1: 5 -> 5
2: 1 -> 1
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 0
+ -4*v1 + 6*v2 -38  <  0; value: -20
+ 6*v0 -44  <  0; value: -26
+ 5*v1 -1*v3 -35  <=  0; value: -21
+ -4*v0 + 4*v3 -2  <=  0; value: -10
+ -1*v0 -5*v1 -1  <=  0; value: -19
0: 2 4 5 
1: 1 3 5 
2: 1 
3: 3 4 
optimal: (18 -e*1)
+  + 18  <  0; value: 18
+ 6*v2 -94/3  <=  0; value: -4/3
- 6*v0 -44  <  0; value: -6
+ -1*v3 -130/3  <  0; value: -133/3
+ 4*v3 -94/3  <  0; value: -82/3
- -1*v0 -5*v1 -1  <=  0; value: 0
0: 2 4 5 1 3 
1: 1 3 5 
2: 1 
3: 3 4 
0: 3 -> 19/3
1: 3 -> -22/15
2: 5 -> 5
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -6
+ -5*v1 -5*v2  + 10  <=  0; value: -20
+ -6*v3 -11  <  0; value: -23
+ -6*v2 + 5*v3  + 5  <  0; value: -3
+ -5*v2  + 11  <=  0; value: -4
+ 5*v0 + 5*v2 -5*v3 -5  =  0; value: 0
0: 5 
1: 1 
2: 1 3 4 5 
3: 2 3 5 
optimal: oo
+ 2*v3 -2  <=  0; value: 2
- -5*v1 -5*v2  + 10  <=  0; value: 0
+ -6*v3 -11  <  0; value: -23
+ 6*v0 -1*v3 -1  <  0; value: -3
+ 5*v0 -5*v3  + 6  <=  0; value: -4
- 5*v0 + 5*v2 -5*v3 -5  =  0; value: 0
0: 5 3 4 
1: 1 
2: 1 3 4 5 
3: 2 3 5 4 
0: 0 -> 0
1: 3 -> -1
2: 3 -> 3
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 2
+ -1*v0 -1*v3 -4  <  0; value: -11
+ 5*v2 + 4*v3 -27  <  0; value: -15
+ -4*v0  + 16  =  0; value: 0
+ -6*v0 + 5*v1  <=  0; value: -9
+ 4*v1 -5*v2 + 5*v3 -62  <=  0; value: -35
0: 1 3 4 
1: 4 5 
2: 2 5 
3: 1 2 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 2
+ -1*v0 -1*v3 -4  <  0; value: -11
+ 5*v2 + 4*v3 -27  <  0; value: -15
+ -4*v0  + 16  =  0; value: 0
+ -6*v0 + 5*v1  <=  0; value: -9
+ 4*v1 -5*v2 + 5*v3 -62  <=  0; value: -35
0: 1 3 4 
1: 4 5 
2: 2 5 
3: 1 2 5 
0: 4 -> 4
1: 3 -> 3
2: 0 -> 0
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 2
+ 6*v0 + v1 -3*v3 -50  <  0; value: -30
+ 4*v1 -5*v3 -17  <=  0; value: -9
+ -5*v1 -1*v3  + 5  <=  0; value: -5
+ 3*v1 + v2 -6*v3 -6  =  0; value: 0
+ -2*v0 + 6*v2 -6*v3 -2  <=  0; value: -8
0: 1 5 
1: 1 2 3 4 
2: 4 5 
3: 1 2 3 4 5 
optimal: (3501/244 -e*1)
+  + 3501/244  <  0; value: 3501/244
- 122/21*v0 -997/21  <  0; value: -122/21
+ -6373/488  <  0; value: -6373/488
- 5/3*v2 -11*v3 -5  <=  0; value: 0
- 3*v1 + v2 -6*v3 -6  =  0; value: 0
- -2*v0 + 56/11*v2  + 8/11  <=  0; value: 0
0: 1 5 2 
1: 1 2 3 4 
2: 4 5 3 1 2 
3: 1 2 3 4 5 
0: 3 -> 875/122
1: 2 -> 10349/10248
2: 0 -> 9137/3416
3: 0 -> -505/10248
+ 2*v0 -2*v1  <=  0; value: 6
+ 6*v0 -2*v1 -2*v2 -68  <=  0; value: -44
+ -3*v0 + 5*v3 -7  <  0; value: -2
+ 5*v2 -5*v3 -2  <=  0; value: -17
+ 6*v2 + 5*v3 -68  <=  0; value: -42
+ -5*v1 + 5*v3 -22  <=  0; value: -12
0: 1 2 
1: 1 5 
2: 1 3 4 
3: 2 3 4 5 
optimal: oo
+ -1*v0  + 194/5  <=  0; value: 169/5
- 6*v0 -4*v2 -292/5  <=  0; value: 0
+ 9/2*v0 -82  <  0; value: -119/2
- 5*v2 -5*v3 -2  <=  0; value: 0
+ 33/2*v0 -1153/5  <=  0; value: -1481/10
- -5*v1 + 5*v3 -22  <=  0; value: 0
0: 1 2 4 
1: 1 5 
2: 1 3 4 2 
3: 2 3 4 5 1 
0: 5 -> 5
1: 2 -> -119/10
2: 1 -> -71/10
3: 4 -> -15/2
+ 2*v0 -2*v1  <=  0; value: -6
+ -6*v0 -3*v1 -2*v3 -7  <  0; value: -29
+ 5*v0 + 5*v1 -39  <=  0; value: -14
+  <=  0; value: 0
+ 4*v0 -1*v2 -5  <=  0; value: -3
+ 2*v0 -1*v2  <=  0; value: 0
0: 1 2 4 5 
1: 1 2 
2: 4 5 
3: 1 
optimal: oo
+ 6*v0 + 4/3*v3  + 14/3  <  0; value: 40/3
- -6*v0 -3*v1 -2*v3 -7  <  0; value: -3
+ -5*v0 -10/3*v3 -152/3  <  0; value: -187/3
+  <=  0; value: 0
+ 4*v0 -1*v2 -5  <=  0; value: -3
+ 2*v0 -1*v2  <=  0; value: 0
0: 1 2 4 5 
1: 1 2 
2: 4 5 
3: 1 2 
0: 1 -> 1
1: 4 -> -14/3
2: 2 -> 2
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 0
+ -3*v2 -6  <  0; value: -15
+ 3*v0 -6*v1 + 6*v2 -18  <  0; value: -9
+ 6*v0 -4*v2 -6  =  0; value: 0
+ -2*v1 + 6*v3  =  0; value: 0
+ 5*v2 -19  <  0; value: -4
0: 2 3 
1: 2 4 
2: 1 2 3 5 
3: 4 
optimal: (29/3 -e*1)
+  + 29/3  <  0; value: 29/3
- -9/2*v0 -3/2  <  0; value: -9/2
- 3*v0 + 6*v2 -18*v3 -18  <  0; value: -18
- 6*v0 -4*v2 -6  =  0; value: 0
- -2*v1 + 6*v3  =  0; value: 0
+ -29  <  0; value: -29
0: 2 3 1 5 
1: 2 4 
2: 1 2 3 5 
3: 4 2 
0: 3 -> 2/3
1: 3 -> -1/6
2: 3 -> -1/2
3: 1 -> -1/18
+ 2*v0 -2*v1  <=  0; value: 8
+ -2*v1 -5*v2 + 5*v3  + 3  <=  0; value: -2
+ -2*v0 -6*v1 -2*v2  + 13  <=  0; value: -1
+ 5*v1 -6*v2  + 14  <  0; value: -4
+ -4*v0 -6*v1 + v3  + 12  <  0; value: -2
+ 4*v3 -22  <=  0; value: -14
0: 2 4 
1: 1 2 3 4 
2: 1 2 3 
3: 1 4 5 
optimal: oo
+ 10/3*v0 -1/3*v3 -4  <  0; value: 26/3
+ -11/3*v0 + 43/6*v3 -7/2  <  0; value: -23/6
- -2*v0 -6*v1 -2*v2  + 13  <=  0; value: 0
+ -28/3*v0 + 23/6*v3  + 21  <  0; value: -26/3
- -2*v0 + 2*v2 + v3 -1  <  0; value: -1/2
+ 4*v3 -22  <=  0; value: -14
0: 2 4 1 3 
1: 1 2 3 4 
2: 1 2 3 4 
3: 1 4 5 3 
0: 4 -> 4
1: 0 -> -1/4
2: 3 -> 13/4
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -4
+ 5*v2 -15  =  0; value: 0
+ 4*v0 -3*v3 -7  <  0; value: -1
+ 2*v0 + 2*v1 -26  <  0; value: -10
+ -3*v0 -4*v2 -17  <  0; value: -38
+ 4*v0 + 4*v2 -4*v3 -42  <=  0; value: -26
0: 2 3 4 5 
1: 3 
2: 1 4 5 
3: 2 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -4
+ 5*v2 -15  =  0; value: 0
+ 4*v0 -3*v3 -7  <  0; value: -1
+ 2*v0 + 2*v1 -26  <  0; value: -10
+ -3*v0 -4*v2 -17  <  0; value: -38
+ 4*v0 + 4*v2 -4*v3 -42  <=  0; value: -26
0: 2 3 4 5 
1: 3 
2: 1 4 5 
3: 2 5 
0: 3 -> 3
1: 5 -> 5
2: 3 -> 3
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 4
+ -6*v3  <=  0; value: 0
+ -3*v1 -6*v2  <=  0; value: 0
+ v0 + 4*v1 + v2 -3  <=  0; value: -1
+ -3*v1 + v2  =  0; value: 0
+ -2*v1 + 3*v2 + 5*v3  <=  0; value: 0
0: 3 
1: 2 3 4 5 
2: 2 3 4 5 
3: 1 5 
optimal: 6
+  + 6  <=  0; value: 6
+ -6*v3  <=  0; value: 0
- -3*v1 -6*v2  <=  0; value: 0
- v0 -3  <=  0; value: 0
- 7*v2  =  0; value: 0
+ 5*v3  <=  0; value: 0
0: 3 
1: 2 3 4 5 
2: 2 3 4 5 
3: 1 5 
0: 2 -> 3
1: 0 -> 0
2: 0 -> 0
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 8
+  =  0; value: 0
+ 2*v1 -1*v3  + 2  =  0; value: 0
+ v0 + 2*v2 -6  =  0; value: 0
+ -2*v1  <=  0; value: 0
+ -4*v1 + 6*v3 -14  <  0; value: -2
0: 3 
1: 2 4 5 
2: 3 
3: 2 5 
optimal: oo
+ -4*v2  + 12  <=  0; value: 8
+  =  0; value: 0
- 2*v1 -1*v3  + 2  =  0; value: 0
- v0 + 2*v2 -6  =  0; value: 0
- -1*v3  + 2  <=  0; value: 0
+ -2  <  0; value: -2
0: 3 
1: 2 4 5 
2: 3 
3: 2 5 4 
0: 4 -> 4
1: 0 -> 0
2: 1 -> 1
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 4
+ 5*v0 -69  <=  0; value: -44
+ -3*v0 -5*v3 -8  <=  0; value: -38
+ -5*v0 -2*v2  + 33  =  0; value: 0
+ v0 + 4*v2 -27  <  0; value: -6
+ -4*v0  + 20  =  0; value: 0
0: 1 2 3 4 5 
1: 
2: 3 4 
3: 2 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 4
+ 5*v0 -69  <=  0; value: -44
+ -3*v0 -5*v3 -8  <=  0; value: -38
+ -5*v0 -2*v2  + 33  =  0; value: 0
+ v0 + 4*v2 -27  <  0; value: -6
+ -4*v0  + 20  =  0; value: 0
0: 1 2 3 4 5 
1: 
2: 3 4 
3: 2 
0: 5 -> 5
1: 3 -> 3
2: 4 -> 4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 2
+ 2*v0 -3*v1  =  0; value: 0
+ 4*v0 -6*v3  <=  0; value: 0
+  <=  0; value: 0
+ 4*v1 -21  <=  0; value: -13
+ 5*v1 -1*v2 -5  =  0; value: 0
0: 1 2 
1: 1 4 5 
2: 5 
3: 2 
optimal: 21/4
+  + 21/4  <=  0; value: 21/4
- 2*v0 -3*v1  =  0; value: 0
- 4*v0 -6*v3  <=  0; value: 0
+  <=  0; value: 0
- 4/5*v2 -17  <=  0; value: 0
- -1*v2 + 5*v3 -5  =  0; value: 0
0: 1 2 5 4 
1: 1 4 5 
2: 5 4 
3: 2 5 4 
0: 3 -> 63/8
1: 2 -> 21/4
2: 5 -> 85/4
3: 2 -> 21/4
+ 2*v0 -2*v1  <=  0; value: 0
+ -4*v1 + 4*v3  + 12  =  0; value: 0
+ -1*v2 + 3*v3  + 2  =  0; value: 0
+ 6*v1 -2*v2 -14  =  0; value: 0
+ -6*v1 -6*v3  + 16  <  0; value: -14
+ -2*v1  + 1  <  0; value: -7
0: 
1: 1 3 4 5 
2: 2 3 
3: 1 2 4 
optimal: oo
+ 2*v0 -17/3  <  0; value: 7/3
- -4*v1 + 4*v3  + 12  =  0; value: 0
- -1*v2 + 3*v3  + 2  =  0; value: 0
+  =  0; value: 0
- -4*v2  + 6  <  0; value: -4
+ -14/3  <=  0; value: -14/3
0: 
1: 1 3 4 5 
2: 2 3 4 5 
3: 1 2 4 3 5 
0: 4 -> 4
1: 4 -> 19/6
2: 5 -> 5/2
3: 1 -> 1/6
+ 2*v0 -2*v1  <=  0; value: -4
+ 4*v0 -5*v1 -6  <  0; value: -18
+ 5*v1 + 6*v2 -5*v3 -38  =  0; value: 0
+ -4*v1 + 3*v3 -5  <  0; value: -21
+ v1 + 4*v2 -2*v3 -38  <  0; value: -22
+ -2*v0 -4*v1 -11  <=  0; value: -31
0: 1 5 
1: 1 2 3 4 5 
2: 2 4 
3: 2 3 4 
optimal: oo
+ 2/5*v0  + 12/5  <  0; value: 16/5
- 4*v0 + 6*v2 -5*v3 -44  <  0; value: -5
- 5*v1 + 6*v2 -5*v3 -38  =  0; value: 0
+ -4/5*v0 + 18/5*v2 -133/5  <=  0; value: -87/5
+ -4/5*v0 + 8/5*v2 -108/5  <=  0; value: -92/5
+ -26/5*v0 -31/5  <=  0; value: -83/5
0: 1 5 4 3 
1: 1 2 3 4 5 
2: 2 4 1 3 5 
3: 2 3 4 1 5 
0: 2 -> 2
1: 4 -> 7/5
2: 3 -> 3
3: 0 -> -13/5
+ 2*v0 -2*v1  <=  0; value: 8
+ -4*v2  + 12  <  0; value: -4
+ -5*v0 -2*v3 -11  <=  0; value: -42
+ 2*v0 -1*v1 + v2 -18  <=  0; value: -5
+ 4*v1 -8  <=  0; value: -4
+ 6*v3 -18  =  0; value: 0
0: 2 3 
1: 3 4 
2: 1 3 
3: 2 5 
optimal: (184/5 -e*1)
+  + 184/5  <  0; value: 184/5
- -4*v2  + 12  <  0; value: -2
- -5*v0 -2*v3 -11  <=  0; value: 0
- 2*v0 -1*v1 + v2 -18  <=  0; value: 0
+ -476/5  <  0; value: -476/5
- 6*v3 -18  =  0; value: 0
0: 2 3 4 
1: 3 4 
2: 1 3 4 
3: 2 5 4 
0: 5 -> -17/5
1: 1 -> -213/10
2: 4 -> 7/2
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ -4*v0 + 5*v3 -5  <=  0; value: -1
+ 2*v0 -8  =  0; value: 0
+ 3*v1 -3*v2 -3  <=  0; value: 0
+ -4*v0 -5*v1  + 33  <  0; value: -3
+ -3*v0 -4*v1 + 5*v2  + 6  <  0; value: -7
0: 1 2 4 5 
1: 3 4 5 
2: 3 5 
3: 1 
optimal: (6/5 -e*1)
+  + 6/5  <  0; value: 6/5
+ 5*v3 -21  <=  0; value: -1
- 2*v0 -8  =  0; value: 0
+ -3*v2  + 36/5  <  0; value: -9/5
- -4*v0 -5*v1  + 33  <  0; value: -3/2
+ 5*v2 -98/5  <=  0; value: -23/5
0: 1 2 4 5 3 
1: 3 4 5 
2: 3 5 
3: 1 
0: 4 -> 4
1: 4 -> 37/10
2: 3 -> 3
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 0
+ v0 -5*v1  + 4  =  0; value: 0
+ -2*v1 -2*v3  + 2  =  0; value: 0
+ -4*v0 + 2*v2 -3  <  0; value: -1
+ -4*v0 + 4*v3  <=  0; value: -4
+ -5*v3  <=  0; value: 0
0: 1 3 4 
1: 1 2 
2: 3 
3: 2 4 5 
optimal: 0
+  <=  0; value: 0
- v0 -5*v1  + 4  =  0; value: 0
- -2/5*v0 -2*v3  + 2/5  =  0; value: 0
+ 2*v2 -7  <  0; value: -1
+ -4  <=  0; value: -4
- -5*v3  <=  0; value: 0
0: 1 3 4 2 
1: 1 2 
2: 3 
3: 2 4 5 3 
0: 1 -> 1
1: 1 -> 1
2: 3 -> 3
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -4
+ -4*v1 + v2 + v3  + 3  <=  0; value: -9
+ -4*v0 + 4*v2  <=  0; value: 0
+ v1 + v2 -16  <=  0; value: -10
+ -4*v1 -6*v3  + 11  <  0; value: -17
+ -6*v0 + v1  + 8  =  0; value: 0
0: 2 5 
1: 1 3 4 5 
2: 1 2 3 
3: 1 4 
optimal: (31/81 -e*1)
+  + 31/81  <  0; value: 31/81
- -23*v2 + v3  + 35  <=  0; value: 0
- -4*v0 + 4*v2  <=  0; value: 0
+ -2117/162  <  0; value: -2117/162
- -162/23*v3  + 149/23  <  0; value: -175/46
- -6*v0 + v1  + 8  =  0; value: 0
0: 2 5 4 1 3 
1: 1 3 4 5 
2: 1 2 3 4 
3: 1 4 3 
0: 2 -> 11813/7452
1: 4 -> 1877/1242
2: 2 -> 11813/7452
3: 2 -> 473/324
+ 2*v0 -2*v1  <=  0; value: -2
+ 2*v1 + 6*v2 -6  <=  0; value: -2
+ -5*v0 -2*v2 -5*v3 -3  <  0; value: -28
+ -2*v1 + 4*v2  + 4  =  0; value: 0
+ 4*v0 -9  <=  0; value: -5
+ -5*v0 + 4*v1 + 2*v3 -13  <  0; value: -2
0: 2 4 5 
1: 1 3 5 
2: 1 2 3 
3: 2 5 
optimal: oo
+ 12*v0 + 10*v3  + 2  <  0; value: 54
+ -25*v0 -25*v3 -17  <  0; value: -142
- -5*v0 -2*v2 -5*v3 -3  <  0; value: -2
- -2*v1 + 4*v2  + 4  =  0; value: 0
+ 4*v0 -9  <=  0; value: -5
+ -25*v0 -18*v3 -17  <  0; value: -114
0: 2 4 5 1 
1: 1 3 5 
2: 1 2 3 5 
3: 2 5 1 
0: 1 -> 1
1: 2 -> -24
2: 0 -> -13
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 2
+ 4*v0 -35  <=  0; value: -23
+ -2*v0 + 2*v2 + 6*v3 -47  <=  0; value: -15
+ -2*v0 + 5*v1 -11  <=  0; value: -7
+ 4*v2 + v3 -21  =  0; value: 0
+ -2*v0 + 3*v1 -5*v3 -14  <  0; value: -39
0: 1 2 3 5 
1: 3 5 
2: 2 4 
3: 2 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 2
+ 4*v0 -35  <=  0; value: -23
+ -2*v0 + 2*v2 + 6*v3 -47  <=  0; value: -15
+ -2*v0 + 5*v1 -11  <=  0; value: -7
+ 4*v2 + v3 -21  =  0; value: 0
+ -2*v0 + 3*v1 -5*v3 -14  <  0; value: -39
0: 1 2 3 5 
1: 3 5 
2: 2 4 
3: 2 4 5 
0: 3 -> 3
1: 2 -> 2
2: 4 -> 4
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -2
+ -1*v1  <  0; value: -4
+ v0 + 3*v1 -15  =  0; value: 0
+ 3*v0 -9  <=  0; value: 0
+ -2*v0 -6*v2 + 2*v3  + 14  <=  0; value: -2
+ -3*v1 + 4*v2  <=  0; value: 0
0: 2 3 4 
1: 1 2 5 
2: 4 5 
3: 4 
optimal: -2
+ -2  <=  0; value: -2
+ -4  <  0; value: -4
- v0 + 3*v1 -15  =  0; value: 0
- 3*v0 -9  <=  0; value: 0
+ -6*v2 + 2*v3  + 8  <=  0; value: -2
+ 4*v2 -12  <=  0; value: 0
0: 2 3 4 1 5 
1: 1 2 5 
2: 4 5 
3: 4 
0: 3 -> 3
1: 4 -> 4
2: 3 -> 3
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 6
+ 6*v0 -6*v1 -27  <=  0; value: -9
+ -6*v0 -6*v2  + 18  <  0; value: -24
+ -6*v2 -5*v3  + 19  <=  0; value: -14
+ v1 -1  <=  0; value: 0
+ 6*v1 + 2*v2 -5*v3 -1  <=  0; value: -4
0: 1 2 
1: 1 4 5 
2: 2 3 5 
3: 3 5 
optimal: 9
+  + 9  <=  0; value: 9
- 6*v0 -6*v1 -27  <=  0; value: 0
+ -6*v0 -6*v2  + 18  <  0; value: -24
+ -6*v2 -5*v3  + 19  <=  0; value: -14
+ v0 -11/2  <=  0; value: -3/2
+ 6*v0 + 2*v2 -5*v3 -28  <=  0; value: -13
0: 1 2 4 5 
1: 1 4 5 
2: 2 3 5 
3: 3 5 
0: 4 -> 4
1: 1 -> -1/2
2: 3 -> 3
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -2
+ 3*v1 + 3*v2 -60  <=  0; value: -39
+ 4*v0 + 4*v1 -64  <  0; value: -36
+ -2*v0 + 3*v2 -2*v3 -1  =  0; value: 0
+ v1 -6*v2 -7  <=  0; value: -21
+ -6*v0 + v1 -6  <=  0; value: -20
0: 2 3 5 
1: 1 2 4 5 
2: 1 3 4 
3: 3 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+ 3*v1 + 3*v2 -60  <=  0; value: -39
+ 4*v0 + 4*v1 -64  <  0; value: -36
+ -2*v0 + 3*v2 -2*v3 -1  =  0; value: 0
+ v1 -6*v2 -7  <=  0; value: -21
+ -6*v0 + v1 -6  <=  0; value: -20
0: 2 3 5 
1: 1 2 4 5 
2: 1 3 4 
3: 3 
0: 3 -> 3
1: 4 -> 4
2: 3 -> 3
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 4
+ 5*v0 + 6*v2 -75  <=  0; value: -44
+ -3*v0 -5*v3 -25  <  0; value: -60
+ -2*v3  + 6  <  0; value: -2
+ 3*v1 -5*v2 -4  =  0; value: 0
+ -5*v3  + 20  =  0; value: 0
0: 1 2 
1: 4 
2: 1 4 
3: 2 3 5 
optimal: oo
+ 2*v0 -10/3*v2 -8/3  <=  0; value: 4
+ 5*v0 + 6*v2 -75  <=  0; value: -44
+ -3*v0 -5*v3 -25  <  0; value: -60
+ -2*v3  + 6  <  0; value: -2
- 3*v1 -5*v2 -4  =  0; value: 0
+ -5*v3  + 20  =  0; value: 0
0: 1 2 
1: 4 
2: 1 4 
3: 2 3 5 
0: 5 -> 5
1: 3 -> 3
2: 1 -> 1
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -10
+ 3*v0 + v1 + 2*v3 -8  <=  0; value: -3
+ 4*v0 -5*v2 -3*v3 -12  <=  0; value: -32
+ 4*v1 + 2*v3 -44  <=  0; value: -24
+ v1 -1*v2 -2*v3 -1  <=  0; value: 0
+ 5*v0 + 6*v1 + 6*v3 -33  <=  0; value: -3
0: 1 2 5 
1: 1 3 4 5 
2: 2 4 
3: 1 2 3 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -10
+ 3*v0 + v1 + 2*v3 -8  <=  0; value: -3
+ 4*v0 -5*v2 -3*v3 -12  <=  0; value: -32
+ 4*v1 + 2*v3 -44  <=  0; value: -24
+ v1 -1*v2 -2*v3 -1  <=  0; value: 0
+ 5*v0 + 6*v1 + 6*v3 -33  <=  0; value: -3
0: 1 2 5 
1: 1 3 4 5 
2: 2 4 
3: 1 2 3 4 5 
0: 0 -> 0
1: 5 -> 5
2: 4 -> 4
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 0
+ v0 -5*v3  + 1  <=  0; value: -2
+ -3*v0 -6*v1  + 18  =  0; value: 0
+ 2*v0 -1*v3 -3  =  0; value: 0
+ -3*v1 -5*v3  + 11  =  0; value: 0
+ -5*v0 -4*v3  + 2  <=  0; value: -12
0: 1 2 3 5 
1: 2 4 
2: 
3: 1 3 4 5 
optimal: 0
+  <=  0; value: 0
+ -2  <=  0; value: -2
- -3*v0 -6*v1  + 18  =  0; value: 0
- 2*v0 -1*v3 -3  =  0; value: 0
- -17/4*v3  + 17/4  =  0; value: 0
+ -12  <=  0; value: -12
0: 1 2 3 5 4 
1: 2 4 
2: 
3: 1 3 4 5 
0: 2 -> 2
1: 2 -> 2
2: 2 -> 2
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -8
+ -6*v2  + 18  =  0; value: 0
+ 5*v1 + v3 -56  <=  0; value: -35
+ 3*v3 -3  =  0; value: 0
+ 3*v2 -5*v3 -4  =  0; value: 0
+ 2*v0 + 6*v1 + 4*v2 -56  <=  0; value: -20
0: 5 
1: 2 5 
2: 1 4 5 
3: 2 3 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -8
+ -6*v2  + 18  =  0; value: 0
+ 5*v1 + v3 -56  <=  0; value: -35
+ 3*v3 -3  =  0; value: 0
+ 3*v2 -5*v3 -4  =  0; value: 0
+ 2*v0 + 6*v1 + 4*v2 -56  <=  0; value: -20
0: 5 
1: 2 5 
2: 1 4 5 
3: 2 3 4 
0: 0 -> 0
1: 4 -> 4
2: 3 -> 3
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -2
+ -5*v0 + 4*v2  + 8  =  0; value: 0
+ -5*v0 + 4*v1  <=  0; value: 0
+ -3*v2 + 5*v3  <=  0; value: -4
+ -1*v1 + 4*v2 -6*v3 -2  <=  0; value: -1
+  =  0; value: 0
0: 1 2 
1: 2 4 
2: 1 3 4 
3: 3 4 
optimal: oo
+ v0  + 28/5  <=  0; value: 48/5
- -5*v0 + 4*v2  + 8  =  0; value: 0
+ -3*v0 -56/5  <=  0; value: -116/5
- -3*v2 + 5*v3  <=  0; value: 0
- -1*v1 + 4*v2 -6*v3 -2  <=  0; value: 0
+  =  0; value: 0
0: 1 2 
1: 2 4 
2: 1 3 4 2 
3: 3 4 2 
0: 4 -> 4
1: 5 -> -4/5
2: 3 -> 3
3: 1 -> 9/5
+ 2*v0 -2*v1  <=  0; value: -10
+ 3*v0 -6*v1 + 6*v2 -5  <=  0; value: -29
+ 2*v2 -5  <=  0; value: -3
+ -1*v1 -4*v2 + 6*v3 -1  <=  0; value: -10
+ -5*v0 -4*v3  <=  0; value: 0
+ -4*v1 + 2*v2 + 6*v3  + 9  <  0; value: -9
0: 1 4 
1: 1 3 5 
2: 1 2 3 5 
3: 3 4 5 
optimal: (10 -e*1)
+  + 10  <  0; value: 10
- 21/2*v0 -62/3  <=  0; value: 0
+ -716/63  <=  0; value: -716/63
- -45/8*v0 -9/2*v2 -13/4  <=  0; value: 0
- -5*v0 -4*v3  <=  0; value: 0
- -4*v1 + 2*v2 + 6*v3  + 9  <  0; value: -4
0: 1 4 3 2 
1: 1 3 5 
2: 1 2 3 5 
3: 3 4 5 1 
0: 0 -> 124/63
1: 5 -> -128/63
2: 1 -> -401/126
3: 0 -> -155/63
+ 2*v0 -2*v1  <=  0; value: -2
+ v0 + 6*v2 -80  <  0; value: -49
+ v0 -2*v1  <  0; value: -3
+ 2*v0 -2*v1  + 2  =  0; value: 0
+ 3*v2 -39  <  0; value: -24
+ -3*v0 + 2*v1 + v3 -15  <=  0; value: -9
0: 1 2 3 5 
1: 2 3 5 
2: 1 4 
3: 5 
optimal: -2
+ -2  <=  0; value: -2
+ v0 + 6*v2 -80  <  0; value: -49
+ -1*v0 -2  <  0; value: -3
- 2*v0 -2*v1  + 2  =  0; value: 0
+ 3*v2 -39  <  0; value: -24
+ -1*v0 + v3 -13  <=  0; value: -9
0: 1 2 3 5 
1: 2 3 5 
2: 1 4 
3: 5 
0: 1 -> 1
1: 2 -> 2
2: 5 -> 5
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 0
+ 5*v1 -1*v2 -14  <  0; value: -7
+ -6*v2 -5*v3 -36  <  0; value: -79
+ 2*v0 + 4*v2 + 2*v3 -33  <=  0; value: -7
+ 3*v0 -15  <=  0; value: -9
+ 6*v3 -42  <=  0; value: -12
0: 3 4 
1: 1 
2: 1 2 3 
3: 2 3 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 0
+ 5*v1 -1*v2 -14  <  0; value: -7
+ -6*v2 -5*v3 -36  <  0; value: -79
+ 2*v0 + 4*v2 + 2*v3 -33  <=  0; value: -7
+ 3*v0 -15  <=  0; value: -9
+ 6*v3 -42  <=  0; value: -12
0: 3 4 
1: 1 
2: 1 2 3 
3: 2 3 5 
0: 2 -> 2
1: 2 -> 2
2: 3 -> 3
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 2
+ -6*v1 + v2 + 3*v3 -7  <  0; value: -3
+ -2*v1 -1*v3  + 4  =  0; value: 0
+ -1*v0 + 4*v2 -34  <=  0; value: -20
+ 5*v0 -27  <=  0; value: -17
+  <=  0; value: 0
0: 3 4 
1: 1 2 
2: 1 3 
3: 1 2 
optimal: oo
+ 2*v0 -1/6*v2 -5/6  <  0; value: 5/2
- v2 + 6*v3 -19  <  0; value: -3/2
- -2*v1 -1*v3  + 4  =  0; value: 0
+ -1*v0 + 4*v2 -34  <=  0; value: -20
+ 5*v0 -27  <=  0; value: -17
+  <=  0; value: 0
0: 3 4 
1: 1 2 
2: 1 3 
3: 1 2 
0: 2 -> 2
1: 1 -> 7/8
2: 4 -> 4
3: 2 -> 9/4
+ 2*v0 -2*v1  <=  0; value: 4
+ 3*v1 + 4*v3 -7  <  0; value: -3
+ 6*v2 + 3*v3 -9  =  0; value: 0
+ 6*v0 + 3*v1 + 2*v2 -16  <  0; value: -2
+ 2*v3 -2  <=  0; value: 0
+ 4*v1  <=  0; value: 0
0: 3 
1: 1 3 5 
2: 2 3 
3: 1 2 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 4
+ 3*v1 + 4*v3 -7  <  0; value: -3
+ 6*v2 + 3*v3 -9  =  0; value: 0
+ 6*v0 + 3*v1 + 2*v2 -16  <  0; value: -2
+ 2*v3 -2  <=  0; value: 0
+ 4*v1  <=  0; value: 0
0: 3 
1: 1 3 5 
2: 2 3 
3: 1 2 4 
0: 2 -> 2
1: 0 -> 0
2: 1 -> 1
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -6
+ 5*v0 + 3*v2 -17  =  0; value: 0
+ -5*v1 + 4*v2  + 2  <=  0; value: -2
+ 5*v1 -1*v2 -16  =  0; value: 0
+ 5*v0 -14  <=  0; value: -9
+ -6*v1 + 5*v2 -5*v3  + 29  <=  0; value: 0
0: 1 4 
1: 2 3 5 
2: 1 2 3 5 
3: 5 
optimal: -6/5
+ -6/5  <=  0; value: -6/5
- 5*v0 + 3*v2 -17  =  0; value: 0
+ -11  <=  0; value: -11
- 5*v1 -1*v2 -16  =  0; value: 0
- 5*v0 -14  <=  0; value: 0
+ -5*v3  + 68/5  <=  0; value: -57/5
0: 1 4 2 5 
1: 2 3 5 
2: 1 2 3 5 
3: 5 
0: 1 -> 14/5
1: 4 -> 17/5
2: 4 -> 1
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 2
+ 6*v0 -3*v1 -21  <=  0; value: -3
+ -4*v0 + 6*v2 -6*v3  + 20  =  0; value: 0
+ -5*v0 -6*v2  + 24  <=  0; value: -19
+ 5*v1 -26  <=  0; value: -6
+ -6*v1 + v2  + 2  <  0; value: -19
0: 1 2 3 
1: 1 4 5 
2: 2 3 5 
3: 2 
optimal: (502/77 -e*1)
+  + 502/77  <  0; value: 502/77
- 6*v0 -3*v1 -21  <=  0; value: 0
- -4*v0 + 6*v2 -6*v3  + 20  =  0; value: 0
- -77/12*v2  + 17/3  <=  0; value: 0
+ -1817/77  <  0; value: -1817/77
- -17*v2 + 18*v3 -16  <  0; value: -885/77
0: 1 2 3 5 4 
1: 1 4 5 
2: 2 3 5 4 
3: 2 3 5 4 
0: 5 -> 1447/308
1: 4 -> 369/154
2: 3 -> 68/77
3: 3 -> 167/154
+ 2*v0 -2*v1  <=  0; value: 0
+ -2*v0 -1*v1 + v2  + 4  <=  0; value: 0
+ -5*v0 -4*v1  + 18  =  0; value: 0
+ -6*v1 + 6*v3 -5  <=  0; value: -11
+ -3*v0 -2*v2 + 2*v3  + 8  =  0; value: 0
+ 3*v0 -6*v2 -1  <  0; value: -7
0: 1 2 4 5 
1: 1 2 3 
2: 1 4 5 
3: 3 4 
optimal: 33/14
+  + 33/14  <=  0; value: 33/14
- -2*v0 -1*v1 + v2  + 4  <=  0; value: 0
- 9*v0 -4*v3 -14  =  0; value: 0
- 21*v0 -53  <=  0; value: 0
- -3*v0 -2*v2 + 2*v3  + 8  =  0; value: 0
+ -109/14  <  0; value: -109/14
0: 1 2 4 5 3 
1: 1 2 3 
2: 1 4 5 2 3 
3: 3 4 5 2 
0: 2 -> 53/21
1: 2 -> 113/84
2: 2 -> 67/28
3: 1 -> 61/28
+ 2*v0 -2*v1  <=  0; value: 8
+ v1 -4*v2  + 12  =  0; value: 0
+ -2*v0  + 5  <  0; value: -3
+ -5*v0 -4*v2 + 2*v3 -5  <  0; value: -31
+  <=  0; value: 0
+ v0 + v2 -20  <  0; value: -13
0: 2 3 5 
1: 1 
2: 1 3 5 
3: 3 
optimal: oo
+ 12*v0 -4*v3  + 34  <  0; value: 70
- v1 -4*v2  + 12  =  0; value: 0
+ -2*v0  + 5  <  0; value: -3
- -5*v0 -4*v2 + 2*v3 -5  <  0; value: -4
+  <=  0; value: 0
+ -1/4*v0 + 1/2*v3 -85/4  <  0; value: -83/4
0: 2 3 5 
1: 1 
2: 1 3 5 
3: 3 5 
0: 4 -> 4
1: 0 -> -27
2: 3 -> -15/4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -2
+ -1*v3  + 1  <=  0; value: 0
+ 6*v0 -4*v2 -19  <  0; value: -7
+ -1*v1 + v2 -1  <=  0; value: -3
+ -6*v0 + 3*v1 + 4*v2 -4  <=  0; value: -1
+  <=  0; value: 0
0: 2 4 
1: 3 4 
2: 2 3 4 
3: 1 
optimal: oo
+ -1*v0  + 23/2  <  0; value: 15/2
+ -1*v3  + 1  <=  0; value: 0
- 6*v0 -4*v2 -19  <  0; value: -7/2
- -1*v1 + v2 -1  <=  0; value: 0
+ 9/2*v0 -161/4  <  0; value: -89/4
+  <=  0; value: 0
0: 2 4 
1: 3 4 
2: 2 3 4 
3: 1 
0: 4 -> 4
1: 5 -> 9/8
2: 3 -> 17/8
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -6
+ 5*v2 -2*v3  + 2  =  0; value: 0
+ -5*v0 -4*v1 -6*v3  + 27  =  0; value: 0
+ -6*v0 + 4*v1 -4*v3 -9  <  0; value: -3
+  <=  0; value: 0
+ 4*v0 -10  <=  0; value: -6
0: 2 3 5 
1: 2 3 
2: 1 
3: 1 2 3 
optimal: oo
+ 9/2*v0 + 15/2*v2 -21/2  <=  0; value: -6
- 5*v2 -2*v3  + 2  =  0; value: 0
- -5*v0 -4*v1 -6*v3  + 27  =  0; value: 0
+ -11*v0 -25*v2  + 8  <  0; value: -3
+  <=  0; value: 0
+ 4*v0 -10  <=  0; value: -6
0: 2 3 5 
1: 2 3 
2: 1 3 
3: 1 2 3 
0: 1 -> 1
1: 4 -> 4
2: 0 -> 0
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 2
+ 2*v0 -6*v1 + 2*v2  + 8  =  0; value: 0
+ 5*v1 + 5*v2 -5*v3 -39  <=  0; value: -24
+ -5*v1 -5*v2  + 33  <=  0; value: -2
+ -4*v1 + v2 -4  <=  0; value: -17
+ -2*v0 + 3*v2 + 5*v3 -32  <=  0; value: -13
0: 1 5 
1: 1 2 3 4 
2: 1 2 3 4 5 
3: 2 5 
optimal: oo
+ 3/2*v0 -53/10  <=  0; value: 11/5
- 2*v0 -6*v1 + 2*v2  + 8  =  0; value: 0
+ -5*v3 -6  <=  0; value: -26
- -5/3*v0 -20/3*v2  + 79/3  <=  0; value: 0
+ -5/4*v0 -213/20  <=  0; value: -169/10
+ -11/4*v0 + 5*v3 -403/20  <=  0; value: -139/10
0: 1 5 3 4 2 
1: 1 2 3 4 
2: 1 2 3 4 5 
3: 2 5 
0: 5 -> 5
1: 4 -> 39/10
2: 3 -> 27/10
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -6
+ -6*v0 + 2*v2 -8  <=  0; value: -4
+ 6*v0 -6*v3  + 10  <=  0; value: -8
+ -1*v2 -1  <=  0; value: -3
+ 2*v2 -4*v3  + 8  =  0; value: 0
+ -4*v0  <=  0; value: 0
0: 1 2 5 
1: 
2: 1 3 4 
3: 2 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -6
+ -6*v0 + 2*v2 -8  <=  0; value: -4
+ 6*v0 -6*v3  + 10  <=  0; value: -8
+ -1*v2 -1  <=  0; value: -3
+ 2*v2 -4*v3  + 8  =  0; value: 0
+ -4*v0  <=  0; value: 0
0: 1 2 5 
1: 
2: 1 3 4 
3: 2 4 
0: 0 -> 0
1: 3 -> 3
2: 2 -> 2
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 8
+ 6*v0 + 2*v2 -36  =  0; value: 0
+ v1 -3*v3 -3  <  0; value: -8
+ 6*v0 -37  <=  0; value: -7
+ -4*v0 -6*v3 -27  <=  0; value: -59
+ 6*v0 -6*v1 -44  <=  0; value: -20
0: 1 3 4 5 
1: 2 5 
2: 1 
3: 2 4 
optimal: 44/3
+  + 44/3  <=  0; value: 44/3
+ 6*v0 + 2*v2 -36  =  0; value: 0
+ v0 -3*v3 -31/3  <  0; value: -34/3
+ 6*v0 -37  <=  0; value: -7
+ -4*v0 -6*v3 -27  <=  0; value: -59
- 6*v0 -6*v1 -44  <=  0; value: 0
0: 1 3 4 5 2 
1: 2 5 
2: 1 
3: 2 4 
0: 5 -> 5
1: 1 -> -7/3
2: 3 -> 3
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 6
+  <=  0; value: 0
+ -2*v1  + 4  =  0; value: 0
+ 3*v1 + 3*v2 + 3*v3 -55  <=  0; value: -34
+ -3*v0 + 2*v1 -3*v3 -6  <=  0; value: -20
+ -2*v0 -2*v3  + 9  <  0; value: -3
0: 4 5 
1: 2 3 4 
2: 3 
3: 3 4 5 
optimal: oo
+ 2*v0 -4  <=  0; value: 6
+  <=  0; value: 0
- -2*v1  + 4  =  0; value: 0
+ 3*v2 + 3*v3 -49  <=  0; value: -34
+ -3*v0 -3*v3 -2  <=  0; value: -20
+ -2*v0 -2*v3  + 9  <  0; value: -3
0: 4 5 
1: 2 3 4 
2: 3 
3: 3 4 5 
0: 5 -> 5
1: 2 -> 2
2: 4 -> 4
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 6
+ -2*v2 + 2*v3 -2  <=  0; value: -8
+ v0 + 2*v2 -15  <=  0; value: -1
+ -5*v0 -3*v3  <=  0; value: -26
+ 3*v0 -1*v1 + 3*v2 -35  <=  0; value: -9
+ -4*v2 + 3*v3  + 14  =  0; value: 0
0: 2 3 4 
1: 4 
2: 1 2 4 5 
3: 1 3 5 
optimal: oo
+ 7/2*v0  + 49  <=  0; value: 63
+ -5/6*v0 -9  <=  0; value: -37/3
+ -3/2*v0 -8  <=  0; value: -14
- -5*v0 -3*v3  <=  0; value: 0
- 3*v0 -1*v1 + 3*v2 -35  <=  0; value: 0
- -4*v2 + 3*v3  + 14  =  0; value: 0
0: 2 3 4 1 
1: 4 
2: 1 2 4 5 
3: 1 3 5 2 
0: 4 -> 4
1: 1 -> -55/2
2: 5 -> -3/2
3: 2 -> -20/3
+ 2*v0 -2*v1  <=  0; value: -2
+ -2*v1 + 6*v2 + 6*v3 -70  <=  0; value: -38
+ 4*v1 + v3 -54  <  0; value: -29
+ -4*v0 -4*v3 -1  <=  0; value: -37
+ v1 + 6*v3 -60  <  0; value: -25
+ 6*v1 + 4*v3 -126  <=  0; value: -76
0: 3 
1: 1 2 4 5 
2: 1 
3: 1 2 3 4 5 
optimal: oo
+ 8*v0 -6*v2  + 143/2  <=  0; value: 183/2
- -2*v1 + 6*v2 + 6*v3 -70  <=  0; value: 0
+ -13*v0 + 12*v2 -789/4  <  0; value: -901/4
- -4*v0 -4*v3 -1  <=  0; value: 0
+ -9*v0 + 3*v2 -389/4  <  0; value: -509/4
+ -22*v0 + 18*v2 -683/2  <=  0; value: -787/2
0: 3 2 4 5 
1: 1 2 4 5 
2: 1 2 4 5 
3: 1 2 3 4 5 
0: 4 -> 4
1: 5 -> -167/4
2: 2 -> 2
3: 5 -> -17/4
+ 2*v0 -2*v1  <=  0; value: -4
+ 6*v0 + 6*v2 -6  =  0; value: 0
+ 4*v2 + 5*v3 -23  <=  0; value: -4
+ 4*v2 -6*v3  + 14  =  0; value: 0
+ 2*v1 + 2*v2 + 6*v3 -25  <=  0; value: -1
+  <=  0; value: 0
0: 1 
1: 4 
2: 1 2 3 4 
3: 2 3 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -4
+ 6*v0 + 6*v2 -6  =  0; value: 0
+ 4*v2 + 5*v3 -23  <=  0; value: -4
+ 4*v2 -6*v3  + 14  =  0; value: 0
+ 2*v1 + 2*v2 + 6*v3 -25  <=  0; value: -1
+  <=  0; value: 0
0: 1 
1: 4 
2: 1 2 3 4 
3: 2 3 4 
0: 0 -> 0
1: 2 -> 2
2: 1 -> 1
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ -5*v0 + 6*v3 -61  <=  0; value: -31
+ 3*v1  <=  0; value: 0
+ 4*v1 + 4*v3 -20  =  0; value: 0
+ -6*v0 + 5*v3 -54  <  0; value: -29
+ -5*v0 -5*v1  <=  0; value: 0
0: 1 4 5 
1: 2 3 5 
2: 
3: 1 3 4 
optimal: 124
+  + 124  <=  0; value: 124
- v0 -31  <=  0; value: 0
+ -93  <=  0; value: -93
- 4*v1 + 4*v3 -20  =  0; value: 0
+ -60  <  0; value: -60
- -5*v0 + 5*v3 -25  <=  0; value: 0
0: 1 4 5 2 
1: 2 3 5 
2: 
3: 1 3 4 5 2 
0: 0 -> 31
1: 0 -> -31
2: 2 -> 2
3: 5 -> 36
+ 2*v0 -2*v1  <=  0; value: 10
+ -3*v0 -2*v1 + 4*v3  + 15  =  0; value: 0
+ 6*v0 + 5*v2 -66  <=  0; value: -21
+ 4*v2 -29  <=  0; value: -17
+ 3*v0 -2*v3 -28  <  0; value: -13
+ -1*v3  <=  0; value: 0
0: 1 2 4 
1: 1 
2: 2 3 
3: 1 4 5 
optimal: (95/3 -e*1)
+  + 95/3  <  0; value: 95/3
- -3*v0 -2*v1 + 4*v3  + 15  =  0; value: 0
- 6*v0 + 5*v2 -66  <=  0; value: 0
+ -21  <  0; value: -21
- -5/2*v2  + 5  <  0; value: -5/4
- -1*v3  <=  0; value: 0
0: 1 2 4 
1: 1 
2: 2 3 4 
3: 1 4 5 
0: 5 -> 107/12
1: 0 -> -47/8
2: 3 -> 5/2
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -4
+ -3*v0 -3*v1 + v3  + 1  <=  0; value: -3
+ 6*v0  <=  0; value: 0
+ v0 -1*v1 + 3*v2 -13  <=  0; value: 0
+ -2*v0 + 4*v1 + 6*v2 -38  =  0; value: 0
+ -3*v0 + 4*v1 -10  <=  0; value: -2
0: 1 2 3 4 5 
1: 1 3 4 5 
2: 3 4 
3: 1 
optimal: -4
+ -4  <=  0; value: -4
+ v3 -5  <=  0; value: -3
- 6*v0  <=  0; value: 0
- v0 -1*v1 + 3*v2 -13  <=  0; value: 0
- 2*v0 + 18*v2 -90  =  0; value: 0
+ -2  <=  0; value: -2
0: 1 2 3 4 5 
1: 1 3 4 5 
2: 3 4 1 5 
3: 1 
0: 0 -> 0
1: 2 -> 2
2: 5 -> 5
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -2
+ -2*v0 -6*v3  + 13  <=  0; value: -17
+ v0 + 3*v2 -5*v3 -2  <=  0; value: -7
+ 5*v0 + v1 + 3*v3 -31  =  0; value: 0
+ 4*v3 -24  <=  0; value: -8
+ 5*v3 -56  <  0; value: -36
0: 1 2 3 
1: 3 
2: 2 
3: 1 2 3 4 5 
optimal: oo
+ -36*v2  + 358  <=  0; value: 214
+ 6*v2 -87  <=  0; value: -63
- v0 + 3*v2 -32  <=  0; value: 0
- 5*v0 + v1 + 3*v3 -31  =  0; value: 0
- 4*v3 -24  <=  0; value: 0
+ -26  <  0; value: -26
0: 1 2 3 
1: 3 
2: 2 1 
3: 1 2 3 4 5 
0: 3 -> 20
1: 4 -> -87
2: 4 -> 4
3: 4 -> 6
+ 2*v0 -2*v1  <=  0; value: -10
+ 3*v2 -4*v3 -10  <=  0; value: -23
+ 2*v2 + 2*v3 -26  <=  0; value: -16
+ -3*v0 -2*v1 -7  <  0; value: -17
+ 4*v1 -56  <=  0; value: -36
+ 6*v0  <=  0; value: 0
0: 3 5 
1: 3 4 
2: 1 2 
3: 1 2 
optimal: (7 -e*1)
+  + 7  <  0; value: 7
+ 3*v2 -4*v3 -10  <=  0; value: -23
+ 2*v2 + 2*v3 -26  <=  0; value: -16
- -3*v0 -2*v1 -7  <  0; value: -2
+ -70  <  0; value: -70
- 6*v0  <=  0; value: 0
0: 3 5 4 
1: 3 4 
2: 1 2 
3: 1 2 
0: 0 -> 0
1: 5 -> -5/2
2: 1 -> 1
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 0
+ -6*v2 + 4*v3  + 1  <  0; value: -5
+ 2*v1 + 2*v2 -34  <=  0; value: -18
+ -3*v2 + 4*v3 -3  =  0; value: 0
+ 5*v0 + 5*v1 -141  <=  0; value: -91
+ 6*v0 -2*v3 -25  <=  0; value: -1
0: 4 5 
1: 2 4 
2: 1 2 3 
3: 1 3 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 0
+ -6*v2 + 4*v3  + 1  <  0; value: -5
+ 2*v1 + 2*v2 -34  <=  0; value: -18
+ -3*v2 + 4*v3 -3  =  0; value: 0
+ 5*v0 + 5*v1 -141  <=  0; value: -91
+ 6*v0 -2*v3 -25  <=  0; value: -1
0: 4 5 
1: 2 4 
2: 1 2 3 
3: 1 3 5 
0: 5 -> 5
1: 5 -> 5
2: 3 -> 3
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -4
+ 5*v1 + 5*v2 + 2*v3 -62  <  0; value: -29
+ -4*v1 -1*v2 + 4*v3 -8  <=  0; value: -3
+ 5*v0 + 4*v1 -8  =  0; value: 0
+ 3*v0 -6*v1 -2*v2 -4  <=  0; value: -22
+ -6*v0 -2*v2 -6*v3  + 30  =  0; value: 0
0: 3 4 5 
1: 1 2 3 4 
2: 1 2 4 5 
3: 1 2 5 
optimal: (574/29 -e*1)
+  + 574/29  <  0; value: 574/29
- 58/21*v2 -382/7  <  0; value: -58/21
+ -3203/87  <  0; value: -3203/87
- 5*v0 + 4*v1 -8  =  0; value: 0
- -11/2*v2 -21/2*v3  + 73/2  <=  0; value: 0
- -6*v0 -2*v2 -6*v3  + 30  =  0; value: 0
0: 3 4 5 2 1 
1: 1 2 3 4 
2: 1 2 4 5 
3: 1 2 5 4 
0: 0 -> 3104/609
1: 2 -> -2662/609
2: 3 -> 544/29
3: 4 -> -1289/203
+ 2*v0 -2*v1  <=  0; value: 6
+ 3*v1 -6*v3  + 3  <=  0; value: -18
+ v0 + 2*v1 + 4*v3 -53  <=  0; value: -31
+ -6*v0 -14  <=  0; value: -38
+ -1*v3  + 3  <  0; value: -1
+ -3*v1  + 1  <=  0; value: -2
0: 2 3 
1: 1 2 5 
2: 
3: 1 2 4 
optimal: (80 -e*1)
+  + 80  <  0; value: 80
+ -14  <=  0; value: -14
- v0 + 4*v3 -157/3  <=  0; value: 0
+ -256  <  0; value: -256
- -1*v3  + 3  <  0; value: -1/2
- -3*v1  + 1  <=  0; value: 0
0: 2 3 
1: 1 2 5 
2: 
3: 1 2 4 3 
0: 4 -> 115/3
1: 1 -> 1/3
2: 1 -> 1
3: 4 -> 7/2
+ 2*v0 -2*v1  <=  0; value: -4
+ -4*v0 -1*v3 -3  <=  0; value: -11
+ 3*v0 + 4*v1 + 5*v3 -53  <  0; value: -18
+ v0 -2*v1 + 6*v3 -41  <=  0; value: -22
+ 3*v0 + 2*v1 -1*v3 -8  <=  0; value: -3
+ -3*v1 + 2*v3  <=  0; value: -1
0: 1 2 3 4 
1: 2 3 4 5 
2: 
3: 1 2 3 4 5 
optimal: 218/5
+  + 218/5  <=  0; value: 218/5
- -4*v0 -1*v3 -3  <=  0; value: 0
+ -1127/5  <  0; value: -1127/5
+ -752/5  <=  0; value: -752/5
- 5/3*v0 -9  <=  0; value: 0
- -3*v1 + 2*v3  <=  0; value: 0
0: 1 2 3 4 
1: 2 3 4 5 
2: 
3: 1 2 3 4 5 
0: 1 -> 27/5
1: 3 -> -82/5
2: 5 -> 5
3: 4 -> -123/5
+ 2*v0 -2*v1  <=  0; value: -2
+ 5*v0 + 3*v1 -34  <  0; value: -15
+ v1 + 4*v3 -13  <  0; value: -6
+ -1*v3  + 1  <=  0; value: 0
+ -2*v2  + 1  <  0; value: -9
+ v0 + 2*v1 -23  <=  0; value: -15
0: 1 5 
1: 1 2 5 
2: 4 
3: 2 3 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+ 5*v0 + 3*v1 -34  <  0; value: -15
+ v1 + 4*v3 -13  <  0; value: -6
+ -1*v3  + 1  <=  0; value: 0
+ -2*v2  + 1  <  0; value: -9
+ v0 + 2*v1 -23  <=  0; value: -15
0: 1 5 
1: 1 2 5 
2: 4 
3: 2 3 
0: 2 -> 2
1: 3 -> 3
2: 5 -> 5
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -2
+ 5*v2 -10  <=  0; value: -5
+ -3*v1 -2*v2  + 8  =  0; value: 0
+ -6*v1 -4*v3  + 24  =  0; value: 0
+ -6*v1 + 2*v3 -4  <  0; value: -10
+ -2*v3 -3  <=  0; value: -9
0: 
1: 2 3 4 
2: 1 2 
3: 3 4 5 
optimal: oo
+ 2*v0 -8/3  <=  0; value: -2/3
- 5*v3 -20  <=  0; value: 0
- -3*v1 -2*v2  + 8  =  0; value: 0
- 4*v2 -4*v3  + 8  =  0; value: 0
+ -4  <  0; value: -4
+ -11  <=  0; value: -11
0: 
1: 2 3 4 
2: 1 2 3 4 
3: 3 4 5 1 
0: 1 -> 1
1: 2 -> 4/3
2: 1 -> 2
3: 3 -> 4
+ 2*v0 -2*v1  <=  0; value: 2
+ -5*v2 -4*v3 -34  <  0; value: -71
+ -1*v0 -1*v2  + 7  =  0; value: 0
+ -3*v1  + 2  <  0; value: -1
+ 2*v0 -4*v2  + 16  =  0; value: 0
+ -4*v3  + 8  <=  0; value: -4
0: 2 4 
1: 3 
2: 1 2 4 
3: 1 5 
optimal: (8/3 -e*1)
+  + 8/3  <  0; value: 8/3
+ -4*v3 -59  <  0; value: -71
- -1*v0 -1*v2  + 7  =  0; value: 0
- -3*v1  + 2  <  0; value: -1/2
- -6*v2  + 30  =  0; value: 0
+ -4*v3  + 8  <=  0; value: -4
0: 2 4 
1: 3 
2: 1 2 4 
3: 1 5 
0: 2 -> 2
1: 1 -> 5/6
2: 5 -> 5
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ 3*v0 + 2*v1 + v2 -28  <=  0; value: -8
+ -2*v3  <=  0; value: 0
+ -5*v1 + 4*v2  + 18  <  0; value: -2
+ -4*v0 -1*v1 + 5*v3  + 20  =  0; value: 0
+ 4*v0 -2*v2 -2*v3 -30  <=  0; value: -14
0: 1 4 5 
1: 1 3 4 
2: 1 3 5 
3: 2 4 5 
optimal: (75/7 -e*1)
+  + 75/7  <  0; value: 75/7
+ -255/14  <  0; value: -255/14
- -2*v3  <=  0; value: 0
- 20*v0 + 4*v2 -82  <  0; value: -75/7
- -4*v0 -1*v1 + 5*v3  + 20  =  0; value: 0
- -14/5*v2 -68/5  <=  0; value: 0
0: 1 4 5 3 
1: 1 3 4 
2: 1 3 5 
3: 2 4 5 3 1 
0: 4 -> 127/28
1: 4 -> 13/7
2: 0 -> -34/7
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -6
+ -4*v0 + 2*v1 -11  <=  0; value: -7
+ 6*v0 + 6*v1 -45  <  0; value: -15
+ -1*v0 -6*v2 -3  <  0; value: -16
+ -2*v0 -1*v2 -1*v3  <=  0; value: -4
+ -5*v0 + 2*v1 -2*v2  <=  0; value: -1
0: 1 2 3 4 5 
1: 1 2 5 
2: 3 4 5 
3: 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -6
+ -4*v0 + 2*v1 -11  <=  0; value: -7
+ 6*v0 + 6*v1 -45  <  0; value: -15
+ -1*v0 -6*v2 -3  <  0; value: -16
+ -2*v0 -1*v2 -1*v3  <=  0; value: -4
+ -5*v0 + 2*v1 -2*v2  <=  0; value: -1
0: 1 2 3 4 5 
1: 1 2 5 
2: 3 4 5 
3: 4 
0: 1 -> 1
1: 4 -> 4
2: 2 -> 2
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 2
+ 3*v1 + 2*v2 -14  =  0; value: 0
+ -1*v3  <=  0; value: 0
+ v0 -1*v1 -2  <  0; value: -1
+ -1*v0 -1*v1  + 6  <=  0; value: -3
+ -4*v0 -4*v1  + 3  <  0; value: -33
0: 3 4 5 
1: 1 3 4 5 
2: 1 
3: 2 
optimal: (4 -e*1)
+  + 4  <  0; value: 4
- 3*v1 + 2*v2 -14  =  0; value: 0
+ -1*v3  <=  0; value: 0
- v0 + 2/3*v2 -20/3  <  0; value: -1/2
+ -2*v0  + 8  <=  0; value: -2
+ -8*v0  + 11  <=  0; value: -29
0: 3 4 5 
1: 1 3 4 5 
2: 1 3 4 5 
3: 2 
0: 5 -> 5
1: 4 -> 7/2
2: 1 -> 7/4
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 6
+ v1 -6*v3 -1  =  0; value: 0
+ -6*v0 + 3*v2  + 4  <=  0; value: -20
+ -2*v0 -5*v1 -10  <=  0; value: -23
+ -2*v3  <=  0; value: 0
+  <=  0; value: 0
0: 2 3 
1: 1 3 
2: 2 
3: 1 4 
optimal: oo
+ 2*v0 -2  <=  0; value: 6
- v1 -6*v3 -1  =  0; value: 0
+ -6*v0 + 3*v2  + 4  <=  0; value: -20
+ -2*v0 -15  <=  0; value: -23
- -2*v3  <=  0; value: 0
+  <=  0; value: 0
0: 2 3 
1: 1 3 
2: 2 
3: 1 4 3 
0: 4 -> 4
1: 1 -> 1
2: 0 -> 0
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 8
+ -2*v0  + 7  <=  0; value: -1
+ -1*v2  + 4  <=  0; value: -1
+ 3*v0 -1*v3 -11  <=  0; value: -4
+ -3*v3 -14  <=  0; value: -29
+  <=  0; value: 0
0: 1 3 
1: 
2: 2 
3: 3 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 8
+ -2*v0  + 7  <=  0; value: -1
+ -1*v2  + 4  <=  0; value: -1
+ 3*v0 -1*v3 -11  <=  0; value: -4
+ -3*v3 -14  <=  0; value: -29
+  <=  0; value: 0
0: 1 3 
1: 
2: 2 
3: 3 4 
0: 4 -> 4
1: 0 -> 0
2: 5 -> 5
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 2
+ -6*v2 -2*v3  + 1  <=  0; value: -3
+ -6*v0 -4*v1  + 26  =  0; value: 0
+ -3*v1 -1*v2 -4  <  0; value: -10
+ 6*v0 + 4*v3 -55  <=  0; value: -29
+ -1*v1 + 4*v2  + 2  <=  0; value: 0
0: 2 4 
1: 2 3 5 
2: 1 3 5 
3: 1 4 
optimal: (478/39 -e*1)
+  + 478/39  <  0; value: 478/39
- -6*v2 -2*v3  + 1  <=  0; value: 0
- -6*v0 -4*v1  + 26  =  0; value: 0
- 13/3*v3 -73/6  <  0; value: -7/4
+ -175/13  <=  0; value: -175/13
- 3/2*v0 + 4*v2 -9/2  <=  0; value: 0
0: 2 4 3 5 
1: 2 3 5 
2: 1 3 5 4 
3: 1 4 3 
0: 3 -> 61/13
1: 2 -> -7/13
2: 0 -> -33/52
3: 2 -> 125/52
+ 2*v0 -2*v1  <=  0; value: 4
+ -3*v2  <=  0; value: 0
+ 6*v2  <=  0; value: 0
+ -2*v2 + 3*v3 -22  <=  0; value: -10
+ 2*v1 + 4*v2 -2*v3 -1  <=  0; value: -7
+ 6*v0 + v2 + 6*v3 -106  <  0; value: -64
0: 5 
1: 4 
2: 1 2 3 4 5 
3: 3 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 4
+ -3*v2  <=  0; value: 0
+ 6*v2  <=  0; value: 0
+ -2*v2 + 3*v3 -22  <=  0; value: -10
+ 2*v1 + 4*v2 -2*v3 -1  <=  0; value: -7
+ 6*v0 + v2 + 6*v3 -106  <  0; value: -64
0: 5 
1: 4 
2: 1 2 3 4 5 
3: 3 4 5 
0: 3 -> 3
1: 1 -> 1
2: 0 -> 0
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 2
+ -3*v1 + 6*v3 -27  <  0; value: -9
+ -4*v0 + v2 -1  <=  0; value: 0
+ 3*v0 -3  <=  0; value: 0
+ 3*v2 -37  <=  0; value: -22
+ -2*v0 -4*v1 + 5*v2 -66  <=  0; value: -43
0: 2 3 5 
1: 1 5 
2: 2 4 5 
3: 1 
optimal: oo
+ 3*v0 -5/2*v2  + 33  <  0; value: 47/2
- -3*v1 + 6*v3 -27  <  0; value: -3
+ -4*v0 + v2 -1  <=  0; value: 0
+ 3*v0 -3  <=  0; value: 0
+ 3*v2 -37  <=  0; value: -22
- -2*v0 + 5*v2 -8*v3 -30  <=  0; value: 0
0: 2 3 5 
1: 1 5 
2: 2 4 5 
3: 1 5 
0: 1 -> 1
1: 0 -> -39/4
2: 5 -> 5
3: 3 -> -7/8
+ 2*v0 -2*v1  <=  0; value: 2
+ 6*v2 -14  <=  0; value: -8
+ 2*v0 -3*v3 -5  <=  0; value: -13
+ -6*v0 + v3 -5  <=  0; value: -13
+ -1*v0 -5*v1 + 3*v2 -2  <=  0; value: -6
+ 2*v0 -5*v2 -2*v3  + 9  <=  0; value: 0
0: 2 3 4 5 
1: 4 
2: 1 4 5 
3: 2 3 5 
optimal: oo
+ 24/5*v0  + 26/25  <=  0; value: 266/25
+ -12*v0 -76/5  <=  0; value: -196/5
+ -16*v0 -20  <=  0; value: -52
- -6*v0 + v3 -5  <=  0; value: 0
- -1*v0 -5*v1 + 3*v2 -2  <=  0; value: 0
- 2*v0 -5*v2 -2*v3  + 9  <=  0; value: 0
0: 2 3 4 5 1 
1: 4 
2: 1 4 5 
3: 2 3 5 1 
0: 2 -> 2
1: 1 -> -83/25
2: 1 -> -21/5
3: 4 -> 17
+ 2*v0 -2*v1  <=  0; value: 0
+ 5*v3 -20  =  0; value: 0
+ -5*v0 -4*v1 -3*v3 -10  <  0; value: -40
+ 4*v1 + 2*v2 -25  <=  0; value: -11
+ v1 + 3*v2 + 5*v3 -66  <=  0; value: -35
+ -5*v0 -1*v3  + 14  =  0; value: 0
0: 2 5 
1: 2 3 4 
2: 3 4 
3: 1 2 4 5 
optimal: (20 -e*1)
+  + 20  <  0; value: 20
- 5*v3 -20  =  0; value: 0
- -5*v0 -4*v1 -3*v3 -10  <  0; value: -4
+ 2*v2 -57  <  0; value: -51
+ 3*v2 -54  <  0; value: -45
- -5*v0  + 10  =  0; value: 0
0: 2 5 3 4 
1: 2 3 4 
2: 3 4 
3: 1 2 4 5 3 
0: 2 -> 2
1: 2 -> -7
2: 3 -> 3
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -2
+ -3*v1 -6  <=  0; value: -15
+ -3*v3  + 7  <=  0; value: -5
+ -4*v1 -6*v2 -36  <=  0; value: -78
+ -4*v2 -9  <=  0; value: -29
+ 3*v0 -3*v3  + 6  =  0; value: 0
0: 5 
1: 1 3 
2: 3 4 
3: 2 5 
optimal: oo
+ 2*v3  <=  0; value: 8
- -3*v1 -6  <=  0; value: 0
+ -3*v3  + 7  <=  0; value: -5
+ -6*v2 -28  <=  0; value: -58
+ -4*v2 -9  <=  0; value: -29
- 3*v0 -3*v3  + 6  =  0; value: 0
0: 5 
1: 1 3 
2: 3 4 
3: 2 5 
0: 2 -> 2
1: 3 -> -2
2: 5 -> 5
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -2
+ -2*v0 -3*v3 -15  <=  0; value: -38
+ 6*v3 -47  <  0; value: -17
+ -3*v0 + v2  + 4  <=  0; value: -4
+ -5*v0  + 3  <=  0; value: -17
+ 2*v0 -2*v2 -4*v3  + 4  <=  0; value: -16
0: 1 3 4 5 
1: 
2: 3 5 
3: 1 2 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+ -2*v0 -3*v3 -15  <=  0; value: -38
+ 6*v3 -47  <  0; value: -17
+ -3*v0 + v2  + 4  <=  0; value: -4
+ -5*v0  + 3  <=  0; value: -17
+ 2*v0 -2*v2 -4*v3  + 4  <=  0; value: -16
0: 1 3 4 5 
1: 
2: 3 5 
3: 1 2 5 
0: 4 -> 4
1: 5 -> 5
2: 4 -> 4
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -8
+ 5*v0 + v1 + 6*v2 -23  <=  0; value: -1
+ v2 -3  =  0; value: 0
+ -1*v0 -1*v2 + 2*v3 -5  =  0; value: 0
+ -5*v2 -1*v3  + 19  =  0; value: 0
+ -1*v0 -1*v2  <=  0; value: -3
0: 1 3 5 
1: 1 
2: 1 2 3 4 5 
3: 3 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -8
+ 5*v0 + v1 + 6*v2 -23  <=  0; value: -1
+ v2 -3  =  0; value: 0
+ -1*v0 -1*v2 + 2*v3 -5  =  0; value: 0
+ -5*v2 -1*v3  + 19  =  0; value: 0
+ -1*v0 -1*v2  <=  0; value: -3
0: 1 3 5 
1: 1 
2: 1 2 3 4 5 
3: 3 4 
0: 0 -> 0
1: 4 -> 4
2: 3 -> 3
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -2
+ -3*v1  <=  0; value: -12
+ -6*v0 + 6*v2  + 2  <  0; value: -4
+ -5*v0 -2*v1  + 23  =  0; value: 0
+ -2*v0 + 5*v1 -37  <=  0; value: -23
+ -5*v2 + 6*v3  + 2  <=  0; value: -2
0: 2 3 4 
1: 1 3 4 
2: 2 5 
3: 5 
optimal: 46/5
+  + 46/5  <=  0; value: 46/5
- 15/2*v0 -69/2  <=  0; value: 0
+ 6*v2 -128/5  <  0; value: -68/5
- -5*v0 -2*v1  + 23  =  0; value: 0
+ -231/5  <=  0; value: -231/5
+ -5*v2 + 6*v3  + 2  <=  0; value: -2
0: 2 3 4 1 
1: 1 3 4 
2: 2 5 
3: 5 
0: 3 -> 23/5
1: 4 -> 0
2: 2 -> 2
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -8
+ -6*v1 + 5*v2 -4*v3  + 1  <=  0; value: -25
+ 2*v2 -1*v3 -1  =  0; value: 0
+ -1*v3  + 3  <=  0; value: 0
+ 5*v0 + 3*v3 -17  <=  0; value: -8
+ v0 + 6*v3 -27  <=  0; value: -9
0: 4 5 
1: 1 
2: 1 2 
3: 1 2 3 4 5 
optimal: 139/54
+  + 139/54  <=  0; value: 139/54
- -6*v1 + 5*v2 -4*v3  + 1  <=  0; value: 0
- 2*v2 -1*v3 -1  =  0; value: 0
+ -37/27  <=  0; value: -37/27
- 9/2*v0 -7/2  <=  0; value: 0
- v0 + 12*v2 -33  <=  0; value: 0
0: 4 5 3 
1: 1 
2: 1 2 4 5 3 
3: 1 2 3 4 5 
0: 0 -> 7/9
1: 4 -> -55/108
2: 2 -> 145/54
3: 3 -> 118/27
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v2 -16  =  0; value: 0
+ 6*v2 -64  <  0; value: -40
+ 3*v0 -4*v2  + 3  <=  0; value: -4
+ v1 + 3*v3 -13  <=  0; value: -4
+ -2*v0 -1*v1 -3*v3 -5  <=  0; value: -20
0: 3 5 
1: 4 5 
2: 1 2 3 
3: 4 5 
optimal: oo
+ 6*v0 + 6*v3  + 10  <=  0; value: 40
+ 4*v2 -16  =  0; value: 0
+ 6*v2 -64  <  0; value: -40
+ 3*v0 -4*v2  + 3  <=  0; value: -4
+ -2*v0 -18  <=  0; value: -24
- -2*v0 -1*v1 -3*v3 -5  <=  0; value: 0
0: 3 5 4 
1: 4 5 
2: 1 2 3 
3: 4 5 
0: 3 -> 3
1: 3 -> -17
2: 4 -> 4
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -6
+ 2*v0 -5*v2 -1*v3 -5  <  0; value: -3
+ -1*v1 -5*v3  + 4  =  0; value: 0
+ 2*v1 -21  <  0; value: -13
+ -4*v1 + 5*v3 -12  <=  0; value: -28
+ -5*v0 + 5*v2 -3*v3  + 1  <=  0; value: -4
0: 1 5 
1: 2 3 4 
2: 1 5 
3: 1 2 4 5 
optimal: oo
+ 5*v2  + 233/25  <  0; value: 233/25
- 2*v0 -5*v2 -153/25  <  0; value: -2
- -1*v1 -5*v3  + 4  =  0; value: 0
+ -121/5  <  0; value: -121/5
- 25*v3 -28  <=  0; value: 0
+ -15/2*v2 -883/50  <  0; value: -883/50
0: 1 5 
1: 2 3 4 
2: 1 5 
3: 1 2 4 5 3 
0: 1 -> 103/50
1: 4 -> -8/5
2: 0 -> 0
3: 0 -> 28/25
+ 2*v0 -2*v1  <=  0; value: 0
+ -2*v1 -6  <=  0; value: -16
+ v1 -5*v2 + 6*v3 -5  <  0; value: -19
+ 4*v3 -5  <=  0; value: -1
+ -5*v1 -20  <  0; value: -45
+ 4*v0 + 3*v3 -34  <=  0; value: -11
0: 5 
1: 1 2 4 
2: 2 
3: 2 3 5 
optimal: oo
+ -3/2*v3  + 23  <=  0; value: 43/2
- -2*v1 -6  <=  0; value: 0
+ -5*v2 + 6*v3 -8  <  0; value: -27
+ 4*v3 -5  <=  0; value: -1
+ -5  <  0; value: -5
- 4*v0 + 3*v3 -34  <=  0; value: 0
0: 5 
1: 1 2 4 
2: 2 
3: 2 3 5 
0: 5 -> 31/4
1: 5 -> -3
2: 5 -> 5
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 0
+ -3*v0 + 5*v2 -14  <=  0; value: -8
+ 4*v1 + 4*v2 -46  <  0; value: -22
+ 5*v1 + 2*v2 + 2*v3 -60  <  0; value: -39
+ 4*v2 -20  <=  0; value: -8
+ -3*v2  + 3  <  0; value: -6
0: 1 
1: 2 3 
2: 1 2 3 4 5 
3: 3 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 0
+ -3*v0 + 5*v2 -14  <=  0; value: -8
+ 4*v1 + 4*v2 -46  <  0; value: -22
+ 5*v1 + 2*v2 + 2*v3 -60  <  0; value: -39
+ 4*v2 -20  <=  0; value: -8
+ -3*v2  + 3  <  0; value: -6
0: 1 
1: 2 3 
2: 1 2 3 4 5 
3: 3 
0: 3 -> 3
1: 3 -> 3
2: 3 -> 3
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 2
+ -3*v0 + 2*v1 + 4*v2 -4  <=  0; value: -9
+ 4*v1 -6*v3  + 1  <=  0; value: -3
+ v1 + 2*v2 + 2*v3 -6  =  0; value: 0
+ -3*v1  + 5  <=  0; value: -1
+ -6*v2 + 2*v3 -6  <=  0; value: -2
0: 1 
1: 1 2 3 4 
2: 1 3 5 
3: 2 3 5 
optimal: oo
+ 2*v0 -10/3  <=  0; value: 8/3
+ -3*v0 + 4*v2 -2/3  <=  0; value: -29/3
+ 6*v2 -16/3  <=  0; value: -16/3
- v1 + 2*v2 + 2*v3 -6  =  0; value: 0
- 6*v2 + 6*v3 -13  <=  0; value: 0
+ -8*v2 -5/3  <=  0; value: -5/3
0: 1 
1: 1 2 3 4 
2: 1 3 5 4 2 1 
3: 2 3 5 4 1 
0: 3 -> 3
1: 2 -> 5/3
2: 0 -> 0
3: 2 -> 13/6
+ 2*v0 -2*v1  <=  0; value: -2
+ v1 -6*v2 -1*v3 -8  <  0; value: -5
+ -2*v0 -3*v2  + 4  =  0; value: 0
+ -6*v0 -1*v2 -3*v3  + 12  =  0; value: 0
+ v0 -3*v1  + 5  <  0; value: -2
+ 2*v0 + 5*v1 -19  =  0; value: 0
0: 2 3 4 5 
1: 1 4 5 
2: 1 2 3 
3: 1 3 
optimal: (6/11 -e*1)
+  + 6/11  <  0; value: 6/11
+ -1/9  <=  0; value: -1/9
- -2*v0 -3*v2  + 4  =  0; value: 0
- 8*v2 -3*v3  =  0; value: 0
- -99/80*v3 -2  <  0; value: -1
- 2*v0 + 5*v1 -19  =  0; value: 0
0: 2 3 4 5 1 
1: 1 4 5 
2: 1 2 3 4 
3: 1 3 4 
0: 2 -> 27/11
1: 3 -> 31/11
2: 0 -> -10/33
3: 0 -> -80/99
+ 2*v0 -2*v1  <=  0; value: -2
+ 5*v1 + 3*v2 -9  <  0; value: -1
+  =  0; value: 0
+ -6*v0 + v1 -1  =  0; value: 0
+ -3*v0 -1*v2 -3*v3  + 7  =  0; value: 0
+ -6*v1 -3*v2  + 9  <=  0; value: 0
0: 3 4 
1: 1 3 5 
2: 1 4 5 
3: 4 
optimal: (-1/3 -e*1)
+ -1/3  <  0; value: -1/3
- 1/2*v2 -3/2  <  0; value: -1/2
+  =  0; value: 0
- -6*v0 + v1 -1  =  0; value: 0
- -3*v0 -1*v2 -3*v3  + 7  =  0; value: 0
- 9*v2 + 36*v3 -81  <=  0; value: 0
0: 3 4 5 1 
1: 1 3 5 
2: 1 4 5 
3: 4 5 1 
0: 0 -> -1/12
1: 1 -> 1/2
2: 1 -> 2
3: 2 -> 7/4
+ 2*v0 -2*v1  <=  0; value: -6
+ v0 -6*v1 -4*v3  + 8  <  0; value: -27
+ 2*v0 -4*v1 -4*v3 -17  <=  0; value: -43
+ -3*v1 -2*v2  + 20  =  0; value: 0
+ -1*v0 -6*v2 -4*v3  + 23  <  0; value: -14
+ 4*v0 -5*v1 -4*v3 -21  <  0; value: -49
0: 1 2 4 5 
1: 1 2 3 5 
2: 3 4 
3: 1 2 4 5 
optimal: oo
+ 5/3*v0 + 4/3*v3 -8/3  <  0; value: 3
- v0 + 4*v2 -4*v3 -32  <  0; value: -4
+ 4/3*v0 -4/3*v3 -67/3  <=  0; value: -25
- -3*v1 -2*v2  + 20  =  0; value: 0
+ 1/2*v0 -10*v3 -25  <  0; value: -109/2
+ 19/6*v0 -2/3*v3 -83/3  <=  0; value: -53/2
0: 1 2 4 5 
1: 1 2 3 5 
2: 3 4 2 1 5 
3: 1 2 4 5 
0: 1 -> 1
1: 4 -> 1/6
2: 4 -> 39/4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 2
+ 6*v0 + 2*v2 + v3 -57  <=  0; value: -18
+ -6*v0 -3*v2 -38  <  0; value: -77
+ 4*v1 + v2 -34  <=  0; value: -17
+ 4*v1 -4*v2  + 1  <=  0; value: -7
+  <=  0; value: 0
0: 1 2 
1: 3 4 
2: 1 2 3 4 
3: 1 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 2
+ 6*v0 + 2*v2 + v3 -57  <=  0; value: -18
+ -6*v0 -3*v2 -38  <  0; value: -77
+ 4*v1 + v2 -34  <=  0; value: -17
+ 4*v1 -4*v2  + 1  <=  0; value: -7
+  <=  0; value: 0
0: 1 2 
1: 3 4 
2: 1 2 3 4 
3: 1 
0: 4 -> 4
1: 3 -> 3
2: 5 -> 5
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 0
+ -4*v0  + 8  =  0; value: 0
+ 5*v0 -1*v2 -1*v3 -4  <=  0; value: 0
+ -4*v1 -6*v2 -28  <=  0; value: -66
+ 3*v3 -6  <=  0; value: -3
+ 3*v1 -13  <=  0; value: -7
0: 1 2 
1: 3 5 
2: 2 3 
3: 2 4 
optimal: oo
+ 2*v0 + 3*v2  + 14  <=  0; value: 33
+ -4*v0  + 8  =  0; value: 0
+ 5*v0 -1*v2 -1*v3 -4  <=  0; value: 0
- -4*v1 -6*v2 -28  <=  0; value: 0
+ 3*v3 -6  <=  0; value: -3
+ -9/2*v2 -34  <=  0; value: -113/2
0: 1 2 
1: 3 5 
2: 2 3 5 
3: 2 4 
0: 2 -> 2
1: 2 -> -29/2
2: 5 -> 5
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 6
+ 5*v1 + 4*v2 + 3*v3 -90  <=  0; value: -48
+ 4*v2 -35  <=  0; value: -15
+ 4*v2 -5*v3  <=  0; value: 0
+ 2*v2 -6*v3  <=  0; value: -14
+ 2*v0 + 6*v3 -50  <=  0; value: -16
0: 5 
1: 1 
2: 1 2 3 4 
3: 1 3 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 6
+ 5*v1 + 4*v2 + 3*v3 -90  <=  0; value: -48
+ 4*v2 -35  <=  0; value: -15
+ 4*v2 -5*v3  <=  0; value: 0
+ 2*v2 -6*v3  <=  0; value: -14
+ 2*v0 + 6*v3 -50  <=  0; value: -16
0: 5 
1: 1 
2: 1 2 3 4 
3: 1 3 4 5 
0: 5 -> 5
1: 2 -> 2
2: 5 -> 5
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 6
+ -2*v2 -1  <=  0; value: -3
+ -3*v1 -1*v3  + 2  <  0; value: -8
+ -3*v0 -4*v1  + 23  =  0; value: 0
+ -2*v1 + 2*v3 -9  <=  0; value: -5
+ -1*v3 -2  <=  0; value: -6
0: 3 
1: 2 3 4 
2: 1 
3: 2 4 5 
optimal: (73/4 -e*1)
+  + 73/4  <  0; value: 73/4
+ -2*v2 -1  <=  0; value: -3
- -4*v3  + 31/2  <  0; value: -1/4
- -3*v0 -4*v1  + 23  =  0; value: 0
- 3/2*v0 + 2*v3 -41/2  <=  0; value: 0
+ -47/8  <=  0; value: -47/8
0: 3 2 4 
1: 2 3 4 
2: 1 
3: 2 4 5 
0: 5 -> 101/12
1: 2 -> -9/16
2: 1 -> 1
3: 4 -> 63/16
+ 2*v0 -2*v1  <=  0; value: 0
+ -1*v1  <=  0; value: -1
+ -3*v3  + 6  =  0; value: 0
+ -3*v0 + 2*v2 -6  <=  0; value: -1
+ -5*v0 + 5*v2 + 2*v3 -51  <  0; value: -32
+ -1*v0  + 1  =  0; value: 0
0: 3 4 5 
1: 1 
2: 3 4 
3: 2 4 
optimal: 2
+  + 2  <=  0; value: 2
- -1*v1  <=  0; value: 0
+ -3*v3  + 6  =  0; value: 0
+ 2*v2 -9  <=  0; value: -1
+ 5*v2 + 2*v3 -56  <  0; value: -32
- -1*v0  + 1  =  0; value: 0
0: 3 4 5 
1: 1 
2: 3 4 
3: 2 4 
0: 1 -> 1
1: 1 -> 0
2: 4 -> 4
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 10
+ -4*v0 -2*v1  + 15  <=  0; value: -5
+ -4*v2 -5*v3  + 25  =  0; value: 0
+ 2*v0 -4*v1 + 6*v2 -41  <  0; value: -1
+ -6*v1  <=  0; value: 0
+ -3*v1 + 2*v2 -5*v3 -10  <  0; value: -5
0: 1 3 
1: 1 3 4 5 
2: 2 3 5 
3: 2 5 
optimal: oo
+ 15/2*v3  + 7/2  <  0; value: 11
+ -15*v3  + 8  <  0; value: -7
- -4*v2 -5*v3  + 25  =  0; value: 0
- 2*v0 + 6*v2 -41  <  0; value: -1/2
- -6*v1  <=  0; value: 0
+ -15/2*v3  + 5/2  <  0; value: -5
0: 1 3 
1: 1 3 4 5 
2: 2 3 5 1 
3: 2 5 1 
0: 5 -> 21/4
1: 0 -> 0
2: 5 -> 5
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 4
+ -5*v0  + 15  =  0; value: 0
+ -5*v1 -5*v2 -5  <  0; value: -15
+ -4*v0 -3*v3 -20  <=  0; value: -41
+ 5*v0 -3*v2 -33  <=  0; value: -21
+ 6*v1 + 2*v2 -3*v3  + 1  <=  0; value: 0
0: 1 3 4 
1: 2 5 
2: 2 4 5 
3: 3 5 
optimal: oo
+ 2*v0 + 2*v2  + 2  <  0; value: 10
+ -5*v0  + 15  =  0; value: 0
- -5*v1 -5*v2 -5  <  0; value: -5
+ -4*v0 -3*v3 -20  <=  0; value: -41
+ 5*v0 -3*v2 -33  <=  0; value: -21
+ -4*v2 -3*v3 -5  <  0; value: -18
0: 1 3 4 
1: 2 5 
2: 2 4 5 
3: 3 5 
0: 3 -> 3
1: 1 -> -1
2: 1 -> 1
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 8
+ -3*v0 + 2*v3 -4  <=  0; value: -13
+ -1*v1 -1*v2  + 2  =  0; value: 0
+ -3*v1  + 3  =  0; value: 0
+ 2*v0 -4*v2 -11  <=  0; value: -5
+ -2*v1  + 1  <=  0; value: -1
0: 1 4 
1: 2 3 5 
2: 2 4 
3: 1 
optimal: 13
+  + 13  <=  0; value: 13
+ 2*v3 -53/2  <=  0; value: -41/2
- -1*v1 -1*v2  + 2  =  0; value: 0
- 3*v2 -3  =  0; value: 0
- 2*v0 -15  <=  0; value: 0
+ -1  <=  0; value: -1
0: 1 4 
1: 2 3 5 
2: 2 4 3 5 
3: 1 
0: 5 -> 15/2
1: 1 -> 1
2: 1 -> 1
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -2
+ v1 + 5*v2 -17  <=  0; value: -3
+ -3*v0 + 4*v1 + 4*v3 -7  <=  0; value: 0
+ 4*v0 -6*v1 -1*v3  + 3  <=  0; value: -9
+ 2*v1 -6*v3 -8  =  0; value: 0
+ -1*v0 -5*v3  + 3  =  0; value: 0
0: 2 3 5 
1: 1 2 3 4 
2: 1 
3: 2 3 4 5 
optimal: 22/13
+  + 22/13  <=  0; value: 22/13
+ 5*v2 -178/13  <=  0; value: -48/13
+ -93/13  <=  0; value: -93/13
- 39/5*v0 -162/5  <=  0; value: 0
- 2*v1 -6*v3 -8  =  0; value: 0
- -1*v0 -5*v3  + 3  =  0; value: 0
0: 2 3 5 1 
1: 1 2 3 4 
2: 1 
3: 2 3 4 5 1 
0: 3 -> 54/13
1: 4 -> 43/13
2: 2 -> 2
3: 0 -> -3/13
+ 2*v0 -2*v1  <=  0; value: 0
+ -1*v0 -5*v3  + 30  =  0; value: 0
+ 5*v2 -20  =  0; value: 0
+ -5*v1 + v2  + 21  =  0; value: 0
+ -3*v0 -5*v1 -2*v2  + 48  =  0; value: 0
+ -1*v0 + v1  =  0; value: 0
0: 1 4 5 
1: 3 4 5 
2: 2 3 4 
3: 1 
optimal: 0
+  <=  0; value: 0
- -1*v0 -5*v3  + 30  =  0; value: 0
- 5*v2 -20  =  0; value: 0
- -5*v1 + v2  + 21  =  0; value: 0
- 15*v3 -75  =  0; value: 0
+  =  0; value: 0
0: 1 4 5 
1: 3 4 5 
2: 2 3 4 5 
3: 1 4 5 
0: 5 -> 5
1: 5 -> 5
2: 4 -> 4
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 6
+ 6*v0 + 2*v1 -2*v3 -26  =  0; value: 0
+ -1*v0 + 5*v1 -9  <=  0; value: -4
+  <=  0; value: 0
+ 6*v1 -31  <=  0; value: -19
+ 2*v1 -3*v2  + 5  =  0; value: 0
0: 1 2 
1: 1 2 4 5 
2: 5 
3: 1 
optimal: oo
+ 2*v0 -3*v2  + 5  <=  0; value: 6
- 6*v0 + 2*v1 -2*v3 -26  =  0; value: 0
+ -1*v0 + 15/2*v2 -43/2  <=  0; value: -4
+  <=  0; value: 0
+ 9*v2 -46  <=  0; value: -19
- -6*v0 -3*v2 + 2*v3  + 31  =  0; value: 0
0: 1 2 5 4 
1: 1 2 4 5 
2: 5 2 4 
3: 1 5 2 4 
0: 5 -> 5
1: 2 -> 2
2: 3 -> 3
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -2
+ -5*v0 -3*v3  <=  0; value: 0
+ -5*v1 -4*v3 -1  <  0; value: -6
+ -6*v0 + 6*v1 + v2 -18  <=  0; value: -7
+ 4*v0 -3*v3  <=  0; value: 0
+ 2*v0 -2*v1 -3*v2  + 2  <  0; value: -15
0: 1 3 4 5 
1: 2 3 5 
2: 3 5 
3: 1 2 4 
optimal: oo
+ 3*v2 -2  <  0; value: 13
+ -5/4*v0 -45/8*v2  + 9/2  <=  0; value: -189/8
- -5*v1 -4*v3 -1  <  0; value: -5
+ -8*v2 -12  <  0; value: -52
+ 31/4*v0 -45/8*v2  + 9/2  <=  0; value: -189/8
- 2*v0 -3*v2 + 8/5*v3  + 12/5  <=  0; value: 0
0: 1 3 4 5 
1: 2 3 5 
2: 3 5 1 4 
3: 1 2 4 5 3 
0: 0 -> 0
1: 1 -> -11/2
2: 5 -> 5
3: 0 -> 63/8
+ 2*v0 -2*v1  <=  0; value: -2
+ -6*v0  <=  0; value: 0
+ v2 -2  <=  0; value: -1
+ -6*v1 + 5*v2  <=  0; value: -1
+ 6*v0 -6*v2 + v3  <=  0; value: -2
+ -3*v0 + 4*v1 -11  <=  0; value: -7
0: 1 4 5 
1: 3 5 
2: 2 3 4 
3: 4 
optimal: oo
+ 1/3*v0 -5/18*v3  <=  0; value: -10/9
+ -6*v0  <=  0; value: 0
+ v0 + 1/6*v3 -2  <=  0; value: -4/3
- -6*v1 + 5*v2  <=  0; value: 0
- 6*v0 -6*v2 + v3  <=  0; value: 0
+ 1/3*v0 + 5/9*v3 -11  <=  0; value: -79/9
0: 1 4 5 2 
1: 3 5 
2: 2 3 4 5 
3: 4 2 5 
0: 0 -> 0
1: 1 -> 5/9
2: 1 -> 2/3
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -2
+ -5*v0 + 2*v1 + 5*v3  + 7  <=  0; value: 0
+ -5*v0 + 6*v1 -9  =  0; value: 0
+ -1*v0 + 5*v2 -46  <  0; value: -24
+ -1*v0 + v1 -2  <=  0; value: -1
+ 2*v1 -8  =  0; value: 0
0: 1 2 3 4 
1: 1 2 4 5 
2: 3 
3: 1 
optimal: -2
+ -2  <=  0; value: -2
+ 5*v3  <=  0; value: 0
- -5*v0 + 6*v1 -9  =  0; value: 0
+ 5*v2 -49  <  0; value: -24
+ -1  <=  0; value: -1
- 5/3*v0 -5  =  0; value: 0
0: 1 2 3 4 5 
1: 1 2 4 5 
2: 3 
3: 1 
0: 3 -> 3
1: 4 -> 4
2: 5 -> 5
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 2
+ 2*v2 -6*v3  + 3  <=  0; value: -1
+ -4*v2 -3  <=  0; value: -7
+ v0 -1  <=  0; value: 0
+ 6*v0 -5*v1 -8  <  0; value: -2
+ -1*v2  + 1  <=  0; value: 0
0: 3 4 
1: 4 
2: 1 2 5 
3: 1 
optimal: oo
+ -2/5*v0  + 16/5  <  0; value: 14/5
+ 2*v2 -6*v3  + 3  <=  0; value: -1
+ -4*v2 -3  <=  0; value: -7
+ v0 -1  <=  0; value: 0
- 6*v0 -5*v1 -8  <  0; value: -1
+ -1*v2  + 1  <=  0; value: 0
0: 3 4 
1: 4 
2: 1 2 5 
3: 1 
0: 1 -> 1
1: 0 -> -1/5
2: 1 -> 1
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 4
+ -6*v2  + 3  <=  0; value: -21
+ -5*v0 + 6*v1 + 4*v3 -13  =  0; value: 0
+ 4*v0 -2*v3 -10  =  0; value: 0
+ 2*v0 + 4*v1 -51  <=  0; value: -29
+ -6*v2  + 24  =  0; value: 0
0: 2 3 4 
1: 2 4 
2: 1 5 
3: 2 3 
optimal: oo
+ 3*v0 -11  <=  0; value: 4
+ -6*v2  + 3  <=  0; value: -21
- -5*v0 + 6*v1 + 4*v3 -13  =  0; value: 0
- 4*v0 -2*v3 -10  =  0; value: 0
+ -29  <=  0; value: -29
+ -6*v2  + 24  =  0; value: 0
0: 2 3 4 
1: 2 4 
2: 1 5 
3: 2 3 4 
0: 5 -> 5
1: 3 -> 3
2: 4 -> 4
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -6
+ -5*v0 + 4*v1 + v2 -43  <  0; value: -27
+ v2 + 6*v3 -32  <=  0; value: -21
+ -3*v0 -4*v1  + 19  =  0; value: 0
+ 3*v0 + 4*v1 -38  <  0; value: -19
+ 4*v3 -4  =  0; value: 0
0: 1 3 4 
1: 1 3 4 
2: 1 2 
3: 2 5 
optimal: oo
+ 7/2*v0 -19/2  <=  0; value: -6
+ -8*v0 + v2 -24  <  0; value: -27
+ v2 + 6*v3 -32  <=  0; value: -21
- -3*v0 -4*v1  + 19  =  0; value: 0
+ -19  <  0; value: -19
+ 4*v3 -4  =  0; value: 0
0: 1 3 4 
1: 1 3 4 
2: 1 2 
3: 2 5 
0: 1 -> 1
1: 4 -> 4
2: 5 -> 5
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 0
+ -4*v0 + 2*v2 + 2*v3  + 12  =  0; value: 0
+ -3*v0 -2*v3  + 9  <=  0; value: -5
+ 6*v1 -6*v2 -3*v3 -35  <=  0; value: -20
+ v0 -3*v3 -1  <=  0; value: 0
+ 5*v0 -2*v1 + 3*v3 -31  <  0; value: -16
0: 1 2 4 5 
1: 3 5 
2: 1 3 
3: 1 2 3 4 5 
optimal: (236/11 -e*1)
+  + 236/11  <  0; value: 236/11
- -4*v0 + 2*v2 + 2*v3  + 12  =  0; value: 0
- -11/3*v0  + 29/3  <=  0; value: 0
+ -853/11  <  0; value: -853/11
- -5*v0 + 3*v2  + 17  <=  0; value: 0
- 5*v0 -2*v1 + 3*v3 -31  <  0; value: -2
0: 1 2 4 5 3 
1: 3 5 
2: 1 3 2 4 
3: 1 2 3 4 5 
0: 4 -> 29/11
1: 4 -> -78/11
2: 1 -> -14/11
3: 1 -> 6/11
+ 2*v0 -2*v1  <=  0; value: -8
+ -4*v0 -5*v2 -19  <  0; value: -48
+ -2*v0 -4*v2 -2  <  0; value: -24
+ -6*v0 + 5*v2 -55  <=  0; value: -36
+  =  0; value: 0
+ 2*v0 -1*v1 + v2 -5  <  0; value: -3
0: 1 2 3 5 
1: 5 
2: 1 2 3 5 
3: 
optimal: (302/17 -e*1)
+  + 302/17  <  0; value: 302/17
+ -108/17  <=  0; value: -108/17
- -2*v0 -4*v2 -2  <  0; value: -4
- -17/2*v0 -115/2  <  0; value: -17/2
+  =  0; value: 0
- 2*v0 -1*v1 + v2 -5  <  0; value: -1
0: 1 2 3 5 
1: 5 
2: 1 2 3 5 
3: 
0: 1 -> -98/17
1: 5 -> -413/34
2: 5 -> 115/34
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ 2*v1 + 2*v2 -5*v3 -16  =  0; value: 0
+ -2*v0 + 3*v2  + 1  =  0; value: 0
+ -4*v0 -5*v1 + 4*v3  + 45  =  0; value: 0
+ -3*v1 -1*v3 -9  <=  0; value: -24
+ -6*v0 + 4*v2  + 18  =  0; value: 0
0: 2 3 5 
1: 1 3 4 
2: 1 2 5 
3: 1 3 4 
optimal: 0
+  <=  0; value: 0
- 2*v1 + 2*v2 -5*v3 -16  =  0; value: 0
- -2*v0 + 3*v2  + 1  =  0; value: 0
- -4*v0 + 5*v2 -17/2*v3  + 5  =  0; value: 0
+ -24  <=  0; value: -24
- -10/3*v0  + 50/3  =  0; value: 0
0: 2 3 5 4 
1: 1 3 4 
2: 1 2 5 3 4 
3: 1 3 4 
0: 5 -> 5
1: 5 -> 5
2: 3 -> 3
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 0
+ 3*v0 + v1 + 3*v3 -17  <=  0; value: -11
+ 5*v3 -12  <  0; value: -2
+ -2*v0 + 6*v1 -6*v2  + 16  <  0; value: -14
+ -3*v1 -1*v3  + 2  =  0; value: 0
+ -2*v1 + v3 -5  <=  0; value: -3
0: 1 3 
1: 1 3 4 5 
2: 3 
3: 1 2 4 5 
optimal: (62/9 -e*1)
+  + 62/9  <  0; value: 62/9
- 3*v0 -149/15  <=  0; value: 0
- 5*v3 -12  <  0; value: -1
+ -6*v2  + 386/45  <  0; value: -964/45
- -3*v1 -1*v3  + 2  =  0; value: 0
+ -7/3  <=  0; value: -7/3
0: 1 3 
1: 1 3 4 5 
2: 3 
3: 1 2 4 5 3 
0: 0 -> 149/45
1: 0 -> -1/15
2: 5 -> 5
3: 2 -> 11/5
+ 2*v0 -2*v1  <=  0; value: -2
+ 3*v2  <=  0; value: 0
+ -4*v2 + 5*v3 -6  <=  0; value: -1
+ v0 + 4*v2 -3  <=  0; value: -1
+ 5*v1 -5*v2 -3*v3 -12  =  0; value: 0
+ -3*v3  <=  0; value: -3
0: 3 
1: 4 
2: 1 2 3 4 
3: 2 4 5 
optimal: 81/5
+  + 81/5  <=  0; value: 81/5
+ -9/2  <=  0; value: -9/2
- -4*v2 -6  <=  0; value: 0
- v0 -9  <=  0; value: 0
- 5*v1 -5*v2 -3*v3 -12  =  0; value: 0
- -3*v3  <=  0; value: 0
0: 3 
1: 4 
2: 1 2 3 4 
3: 2 4 5 
0: 2 -> 9
1: 3 -> 9/10
2: 0 -> -3/2
3: 1 -> 0
+ 2*v0 -2*v1  <=  0; value: 6
+ -3*v1 -5*v2  + 10  =  0; value: 0
+ -4*v1  <=  0; value: 0
+ -3*v0 -6*v2 -1*v3  + 26  =  0; value: 0
+ -4*v0 -1*v2 -5*v3  + 39  =  0; value: 0
+ 5*v1 -6*v2 -9  <  0; value: -21
0: 3 4 
1: 1 2 5 
2: 1 3 4 5 
3: 3 4 
optimal: (4182/473 -e*1)
+  + 4182/473  <  0; value: 4182/473
- -3*v1 -5*v2  + 10  =  0; value: 0
+ -420/43  <  0; value: -420/43
- -3*v0 -6*v2 -1*v3  + 26  =  0; value: 0
- -7/2*v0 -29/6*v3  + 104/3  =  0; value: 0
- 473/87*v0 -1082/29  <  0; value: -473/87
0: 3 4 2 5 
1: 1 2 5 
2: 1 3 4 5 2 
3: 3 4 2 5 
0: 3 -> 2773/473
1: 0 -> 6770/3741
2: 2 -> 1140/1247
3: 5 -> 40151/13717
+ 2*v0 -2*v1  <=  0; value: 8
+ -3*v2 -4*v3  + 10  <  0; value: -7
+ -2*v2 -1*v3  + 7  <=  0; value: -1
+ 2*v1 + 5*v3 -29  <  0; value: -19
+ -5*v3  + 3  <=  0; value: -7
+ 2*v1 + 3*v2 -5*v3  + 1  =  0; value: 0
0: 
1: 3 5 
2: 1 2 5 
3: 1 2 3 4 5 
optimal: oo
+ 2*v0  + 38/5  <=  0; value: 78/5
+ -2  <  0; value: -2
- -2*v2 -1*v3  + 7  <=  0; value: 0
+ -168/5  <  0; value: -168/5
- 10*v2 -32  <=  0; value: 0
- 2*v1 + 3*v2 -5*v3  + 1  =  0; value: 0
0: 
1: 3 5 
2: 1 2 5 3 4 
3: 1 2 3 4 5 
0: 4 -> 4
1: 0 -> -19/5
2: 3 -> 16/5
3: 2 -> 3/5
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v1 + v2 -29  <=  0; value: -12
+ -3*v1 + 5*v2 + 4*v3 -80  <=  0; value: -48
+ 4*v0 -3*v3  <=  0; value: 0
+ 6*v1 + 6*v3 -89  <  0; value: -47
+ -4*v2  + 20  =  0; value: 0
0: 3 
1: 1 2 4 
2: 1 2 5 
3: 2 3 4 
optimal: oo
+ -14/9*v0  + 110/3  <=  0; value: 32
+ 64/9*v0 -292/3  <=  0; value: -76
- -3*v1 + 5*v2 + 4*v3 -80  <=  0; value: 0
- 4*v0 -3*v3  <=  0; value: 0
+ 56/3*v0 -199  <  0; value: -143
- -4*v2  + 20  =  0; value: 0
0: 3 4 1 
1: 1 2 4 
2: 1 2 5 4 
3: 2 3 4 1 
0: 3 -> 3
1: 3 -> -13
2: 5 -> 5
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 6
+ 6*v1 -3*v3  + 3  <=  0; value: -12
+ -5*v2  + 1  <  0; value: -4
+ 3*v0 -6*v1 -22  <=  0; value: -13
+ 5*v0 -1*v1 -1*v3 -28  <  0; value: -18
+ 2*v0 + 6*v1 -4*v3 -1  <=  0; value: -15
0: 3 4 5 
1: 1 3 4 5 
2: 2 
3: 1 4 5 
optimal: oo
+ 2/9*v3  + 344/27  <  0; value: 374/27
+ -7/3*v3 -25/9  <=  0; value: -130/9
+ -5*v2  + 1  <  0; value: -4
- 3*v0 -6*v1 -22  <=  0; value: 0
- 9/2*v0 -1*v3 -73/3  <  0; value: -9/2
+ -26/9*v3  + 109/27  <=  0; value: -281/27
0: 3 4 5 1 
1: 1 3 4 5 
2: 2 
3: 1 4 5 
0: 3 -> 149/27
1: 0 -> -49/54
2: 1 -> 1
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -2
+ -4*v0 + 6*v1 -9  <  0; value: -3
+ -2*v2 -2  <=  0; value: -6
+ 6*v0 + 3*v3  <=  0; value: 0
+ -4*v0 + 2*v2 + v3 -9  <  0; value: -5
+ -1*v1 + 6*v3  + 1  <=  0; value: 0
0: 1 3 4 
1: 1 5 
2: 2 4 
3: 3 4 5 
optimal: oo
+ 2*v0 -12*v3 -2  <=  0; value: -2
+ -4*v0 + 36*v3 -3  <  0; value: -3
+ -2*v2 -2  <=  0; value: -6
+ 6*v0 + 3*v3  <=  0; value: 0
+ -4*v0 + 2*v2 + v3 -9  <  0; value: -5
- -1*v1 + 6*v3  + 1  <=  0; value: 0
0: 1 3 4 
1: 1 5 
2: 2 4 
3: 3 4 5 1 
0: 0 -> 0
1: 1 -> 1
2: 2 -> 2
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 6
+ -1*v3  + 1  <=  0; value: -1
+ -6*v0 -1*v2  + 26  =  0; value: 0
+ -4*v0  + 16  <=  0; value: 0
+ 5*v1 + 2*v2 -14  <  0; value: -5
+ 3*v2 -15  <=  0; value: -9
0: 2 3 
1: 4 
2: 2 4 5 
3: 1 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 6
+ -1*v3  + 1  <=  0; value: -1
+ -6*v0 -1*v2  + 26  =  0; value: 0
+ -4*v0  + 16  <=  0; value: 0
+ 5*v1 + 2*v2 -14  <  0; value: -5
+ 3*v2 -15  <=  0; value: -9
0: 2 3 
1: 4 
2: 2 4 5 
3: 1 
0: 4 -> 4
1: 1 -> 1
2: 2 -> 2
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -6
+ 5*v1 -56  <=  0; value: -31
+ 3*v0 -1*v2 -2*v3  + 6  =  0; value: 0
+ v1 + 2*v3 -15  =  0; value: 0
+ 4*v0 -6*v1 -4*v3 -39  <=  0; value: -81
+ 3*v0 -2*v2 -5*v3  + 23  =  0; value: 0
0: 2 4 5 
1: 1 3 4 
2: 2 5 
3: 2 3 4 5 
optimal: 69/2
+  + 69/2  <=  0; value: 69/2
+ -305/2  <=  0; value: -305/2
- 3*v0 -1*v2 -2*v3  + 6  =  0; value: 0
- v1 + 2*v3 -15  =  0; value: 0
- -20*v0 -41  <=  0; value: 0
- -9/2*v0 + 1/2*v2  + 8  =  0; value: 0
0: 2 4 5 1 
1: 1 3 4 
2: 2 5 4 1 
3: 2 3 4 5 1 
0: 2 -> -41/20
1: 5 -> -193/10
2: 2 -> -689/20
3: 5 -> 343/20
+ 2*v0 -2*v1  <=  0; value: 0
+ 6*v0 -3*v2 -1  <  0; value: -4
+ 3*v0 -5*v1  + 1  <=  0; value: -1
+ 6*v1 + 5*v2 -60  <=  0; value: -39
+ -2*v0 + 6*v2 + v3 -17  =  0; value: 0
+ 2*v1 -2*v2 -4*v3  + 8  =  0; value: 0
0: 1 2 4 
1: 2 3 5 
2: 1 3 4 5 
3: 4 5 
optimal: (290/279 -e*1)
+  + 290/279  <  0; value: 290/279
- 279/55*v0 -502/55  <  0; value: -223/110
- -17*v0 + 55*v2 -149  <=  0; value: 0
+ -10043/279  <=  0; value: -10043/279
- -2*v0 + 6*v2 + v3 -17  =  0; value: 0
- 2*v1 -2*v2 -4*v3  + 8  =  0; value: 0
0: 1 2 4 3 
1: 2 3 5 
2: 1 3 4 5 2 
3: 4 5 2 3 
0: 1 -> 781/558
1: 1 -> 967/930
2: 3 -> 96419/30690
3: 1 -> 14563/15345
+ 2*v0 -2*v1  <=  0; value: 0
+ 6*v0 -65  <  0; value: -41
+ -5*v0 + 5*v3  + 18  <=  0; value: -2
+ 6*v1 -4*v2 -20  <  0; value: -4
+ v2 -3*v3 -4  <  0; value: -2
+ -6*v0  + 6  <  0; value: -18
0: 1 2 5 
1: 3 
2: 3 4 
3: 2 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 0
+ 6*v0 -65  <  0; value: -41
+ -5*v0 + 5*v3  + 18  <=  0; value: -2
+ 6*v1 -4*v2 -20  <  0; value: -4
+ v2 -3*v3 -4  <  0; value: -2
+ -6*v0  + 6  <  0; value: -18
0: 1 2 5 
1: 3 
2: 3 4 
3: 2 4 
0: 4 -> 4
1: 4 -> 4
2: 2 -> 2
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 4
+ 6*v1 -2*v3 -8  =  0; value: 0
+ 5*v1 -2*v2 -23  <=  0; value: -12
+ 2*v0 -4*v2 -2  <=  0; value: 0
+ -1*v2 -6*v3  + 22  <=  0; value: -10
+ 2*v0 -2*v1 + 6*v2 -16  =  0; value: 0
0: 3 5 
1: 1 2 5 
2: 2 3 4 5 
3: 1 4 
optimal: 424/91
+  + 424/91  <=  0; value: 424/91
- 6*v1 -2*v3 -8  =  0; value: 0
+ -1322/91  <=  0; value: -1322/91
- 2*v0 -4*v2 -2  <=  0; value: 0
- -91/2*v0  + 435/2  <=  0; value: 0
- 2*v0 + 6*v2 -2/3*v3 -56/3  =  0; value: 0
0: 3 5 4 2 
1: 1 2 5 
2: 2 3 4 5 
3: 1 4 5 2 
0: 5 -> 435/91
1: 3 -> 223/91
2: 2 -> 172/91
3: 5 -> 305/91
+ 2*v0 -2*v1  <=  0; value: -6
+  =  0; value: 0
+ 2*v0 -1*v2 + 5*v3  + 1  <=  0; value: 0
+ -6*v1 + 3*v3  + 12  <=  0; value: -12
+ -1*v0 + 2*v2 + 3*v3 -5  =  0; value: 0
+ 3*v0 -2*v3 -7  <=  0; value: -4
0: 2 4 5 
1: 3 
2: 2 4 
3: 2 3 4 5 
optimal: 26/45
+  + 26/45  <=  0; value: 26/45
+  =  0; value: 0
- 45/4*v0 -97/4  <=  0; value: 0
- -6*v1 + 3*v3  + 12  <=  0; value: 0
- -1*v0 + 2*v2 + 3*v3 -5  =  0; value: 0
- 7/3*v0 + 4/3*v2 -31/3  <=  0; value: 0
0: 2 4 5 
1: 3 
2: 2 4 5 
3: 2 3 4 5 
0: 1 -> 97/45
1: 4 -> 28/15
2: 3 -> 179/45
3: 0 -> -4/15
+ 2*v0 -2*v1  <=  0; value: 6
+ -1*v2 + 3*v3 -19  <=  0; value: -10
+ v0 -4*v2 + 6*v3 -17  =  0; value: 0
+ -5*v0 -2*v1 + 3*v2  + 7  <=  0; value: -13
+ -3*v3 -3  <=  0; value: -15
+ -1*v3  + 4  <=  0; value: 0
0: 2 3 
1: 3 
2: 1 2 3 
3: 1 2 4 5 
optimal: oo
+ 25/4*v0 -49/4  <=  0; value: 19
+ -1/4*v0 -35/4  <=  0; value: -10
- v0 -4*v2 + 6*v3 -17  =  0; value: 0
- -5*v0 -2*v1 + 3*v2  + 7  <=  0; value: 0
+ -15  <=  0; value: -15
- -1*v3  + 4  <=  0; value: 0
0: 2 3 1 
1: 3 
2: 1 2 3 
3: 1 2 4 5 
0: 5 -> 5
1: 2 -> -9/2
2: 3 -> 3
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -2
+ -4*v1 -6*v2  + 27  <=  0; value: -3
+ v0 + 2*v1 -5*v2  + 7  <=  0; value: 0
+ -2*v2 -1  <=  0; value: -7
+ -3*v0 + 4*v2 -6  =  0; value: 0
+ 3*v1 + 3*v3 -25  <=  0; value: -10
0: 2 4 
1: 1 2 5 
2: 1 2 3 4 
3: 5 
optimal: oo
+ 17/4*v0 -9  <=  0; value: -1/2
- -4*v1 -6*v2  + 27  <=  0; value: 0
+ -5*v0  + 17/2  <=  0; value: -3/2
+ -3/2*v0 -4  <=  0; value: -7
- -3*v0 + 4*v2 -6  =  0; value: 0
+ -27/8*v0 + 3*v3 -23/2  <=  0; value: -49/4
0: 2 4 3 5 
1: 1 2 5 
2: 1 2 3 4 5 
3: 5 
0: 2 -> 2
1: 3 -> 9/4
2: 3 -> 3
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -4
+ -1*v2  + 5  =  0; value: 0
+ -2*v1 -4*v3  + 12  =  0; value: 0
+ 6*v0 -15  <  0; value: -3
+ -6*v1 -6*v2  + 48  <  0; value: -6
+ v1 + 2*v2 + 6*v3 -29  <=  0; value: -9
0: 3 
1: 2 4 5 
2: 1 4 5 
3: 2 5 
optimal: (-1 -e*1)
+ -1  <  0; value: -1
- -1*v2  + 5  =  0; value: 0
- -2*v1 -4*v3  + 12  =  0; value: 0
- 6*v0 -15  <  0; value: -3/2
- -6*v2 + 12*v3  + 12  <  0; value: -3
+ -7  <=  0; value: -7
0: 3 
1: 2 4 5 
2: 1 4 5 
3: 2 5 4 
0: 2 -> 9/4
1: 4 -> 7/2
2: 5 -> 5
3: 1 -> 5/4
+ 2*v0 -2*v1  <=  0; value: 6
+ 6*v0 -51  <  0; value: -27
+ 6*v0 + 2*v3 -66  <=  0; value: -36
+ -1*v1 -1*v2 + 3*v3 -3  <=  0; value: 0
+ 5*v0 -20  =  0; value: 0
+ -3*v2 -1*v3  + 17  <=  0; value: -1
0: 1 2 4 
1: 3 
2: 3 5 
3: 2 3 5 
optimal: oo
+ 2*v0 + 20*v2 -96  <=  0; value: 12
+ 6*v0 -51  <  0; value: -27
+ 6*v0 -6*v2 -32  <=  0; value: -38
- -1*v1 -1*v2 + 3*v3 -3  <=  0; value: 0
+ 5*v0 -20  =  0; value: 0
- -3*v2 -1*v3  + 17  <=  0; value: 0
0: 1 2 4 
1: 3 
2: 3 5 2 
3: 2 3 5 
0: 4 -> 4
1: 1 -> -2
2: 5 -> 5
3: 3 -> 2
+ 2*v0 -2*v1  <=  0; value: 8
+ -4*v3  =  0; value: 0
+ -3*v1 -1  <=  0; value: -4
+ 6*v0 -6*v2 -5*v3 -17  <  0; value: -11
+ -1*v2  + 3  <=  0; value: -1
+ 6*v1 -6*v2  + 5  <=  0; value: -13
0: 3 
1: 2 5 
2: 3 4 5 
3: 1 3 
optimal: oo
+ 2*v2  + 19/3  <  0; value: 43/3
- -4*v3  =  0; value: 0
- -3*v1 -1  <=  0; value: 0
- 6*v0 -6*v2 -5*v3 -17  <  0; value: -11/2
+ -1*v2  + 3  <=  0; value: -1
+ -6*v2  + 3  <=  0; value: -21
0: 3 
1: 2 5 
2: 3 4 5 
3: 1 3 
0: 5 -> 71/12
1: 1 -> -1/3
2: 4 -> 4
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -6
+ -5*v0 + 5*v2  <=  0; value: -10
+ -1*v0 -1*v1  + 7  =  0; value: 0
+ 2*v1 + 2*v2 -14  <=  0; value: -4
+ 2*v0 + v2 -2*v3 -4  <=  0; value: -10
+ 5*v1 + 6*v2 -6*v3  + 4  <=  0; value: -1
0: 1 2 4 
1: 2 3 5 
2: 1 3 4 5 
3: 4 5 
optimal: oo
+ -2*v2 + 4*v3 -6  <=  0; value: 14
+ 15/2*v2 -5*v3 -10  <=  0; value: -35
- -1*v0 -1*v1  + 7  =  0; value: 0
+ 3*v2 -2*v3 -4  <=  0; value: -14
- 2*v0 + v2 -2*v3 -4  <=  0; value: 0
+ 17/2*v2 -11*v3  + 29  <=  0; value: -26
0: 1 2 4 3 5 
1: 2 3 5 
2: 1 3 4 5 
3: 4 5 1 3 
0: 2 -> 7
1: 5 -> 0
2: 0 -> 0
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 0
+ 5*v0 + 5*v2 -4*v3  <=  0; value: 0
+ -2*v3  + 10  =  0; value: 0
+ 3*v0 + 3*v1 + v2 -21  <  0; value: -7
+ 6*v2 -12  =  0; value: 0
+ 5*v0 -5*v1 -4*v2  + 8  =  0; value: 0
0: 1 3 5 
1: 3 5 
2: 1 3 4 5 
3: 1 2 
optimal: 0
+  <=  0; value: 0
- 5*v0 + 5*v2 -4*v3  <=  0; value: 0
- -2*v3  + 10  =  0; value: 0
+ -7  <  0; value: -7
- -6*v0  + 12  =  0; value: 0
- 5*v0 -5*v1 -4*v2  + 8  =  0; value: 0
0: 1 3 5 4 
1: 3 5 
2: 1 3 4 5 
3: 1 2 4 3 
0: 2 -> 2
1: 2 -> 2
2: 2 -> 2
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -8
+ 4*v1 + 5*v3 -38  <=  0; value: -18
+ -4*v1 + 4*v2 -5*v3  + 3  <=  0; value: -9
+ 3*v0 + 6*v1 -3*v2 -74  <  0; value: -47
+ 2*v0 -4*v1 -11  <=  0; value: -29
+  <=  0; value: 0
0: 3 4 
1: 1 2 3 4 
2: 2 3 
3: 1 2 
optimal: (599/24 -e*1)
+  + 599/24  <  0; value: 599/24
- 4*v2 -35  <=  0; value: 0
- -4*v1 + 4*v2 -5*v3  + 3  <=  0; value: 0
- 6*v0 -3*v2 -181/2  <  0; value: -6
- 2*v0 -4*v2 + 5*v3 -14  <=  0; value: 0
+  <=  0; value: 0
0: 3 4 
1: 1 2 3 4 
2: 2 3 4 1 
3: 1 2 4 3 
0: 1 -> 443/24
1: 5 -> 311/48
2: 2 -> 35/4
3: 0 -> 29/12
+ 2*v0 -2*v1  <=  0; value: -2
+ 6*v3 -66  <  0; value: -36
+ -4*v1 + 2*v3 -5  <=  0; value: -15
+ -2*v1 + 4*v3 -10  =  0; value: 0
+ -4*v1 -7  <=  0; value: -27
+ 3*v0 + 4*v3 -92  <  0; value: -60
0: 5 
1: 2 3 4 
2: 
3: 1 2 3 5 
optimal: (164/3 -e*1)
+  + 164/3  <  0; value: 164/3
+ -51  <  0; value: -51
- -6*v3  + 15  <=  0; value: 0
- -2*v1 + 4*v3 -10  =  0; value: 0
+ -7  <=  0; value: -7
- 3*v0 -82  <  0; value: -3
0: 5 
1: 2 3 4 
2: 
3: 1 2 3 5 4 
0: 4 -> 79/3
1: 5 -> 0
2: 4 -> 4
3: 5 -> 5/2
+ 2*v0 -2*v1  <=  0; value: 2
+ -2*v0 + 2*v1  + 2  =  0; value: 0
+ -5*v1 + 4*v2 + v3 -10  =  0; value: 0
+ 5*v2 + 2*v3 -85  <=  0; value: -50
+ v0 + 2*v2 -36  <  0; value: -22
+ -2*v1  + 4  <=  0; value: -2
0: 1 4 
1: 1 2 5 
2: 2 3 4 
3: 2 3 
optimal: 2
+  + 2  <=  0; value: 2
- -2*v0 + 2*v1  + 2  =  0; value: 0
+ -5*v0 + 4*v2 + v3 -5  =  0; value: 0
+ 5*v2 + 2*v3 -85  <=  0; value: -50
+ v0 + 2*v2 -36  <  0; value: -22
+ -2*v0  + 6  <=  0; value: -2
0: 1 4 2 5 
1: 1 2 5 
2: 2 3 4 
3: 2 3 
0: 4 -> 4
1: 3 -> 3
2: 5 -> 5
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 0
+ -2*v0 -1  <  0; value: -5
+ 5*v1 + 3*v3 -32  <=  0; value: -16
+ -2*v0 + 5*v2 -24  <  0; value: -3
+ 4*v0 -6*v1  + 3  <  0; value: -1
+ 6*v1 -3*v3 -16  <  0; value: -10
0: 1 3 4 
1: 2 4 5 
2: 3 
3: 2 5 
optimal: (63/22 -e*1)
+  + 63/22  <  0; value: 63/22
+ -277/22  <  0; value: -277/22
- 11/2*v3 -56/3  <=  0; value: 0
+ 5*v2 -783/22  <  0; value: -233/22
- 4*v0 -6*v1  + 3  <  0; value: -56/11
- 4*v0 -3*v3 -13  <  0; value: -4
0: 1 3 4 2 5 
1: 2 4 5 
2: 3 
3: 2 5 1 3 
0: 2 -> 211/44
1: 2 -> 50/11
2: 5 -> 5
3: 2 -> 112/33
+ 2*v0 -2*v1  <=  0; value: 0
+ -5*v0 + 6*v3  + 3  <  0; value: -10
+ v1 -4*v2 -4  <=  0; value: -11
+ 6*v1 -78  <=  0; value: -48
+ v1 + 4*v3 -13  =  0; value: 0
+ 3*v1 + 5*v2 -30  =  0; value: 0
0: 1 
1: 2 3 4 5 
2: 2 5 
3: 1 4 
optimal: oo
+ 26/3*v0 -30  <  0; value: 40/3
- -5*v0 + 5/2*v2  + 15/2  <  0; value: -5/2
+ -34/3*v0  + 23  <  0; value: -101/3
+ -20*v0  + 12  <  0; value: -88
- v1 + 4*v3 -13  =  0; value: 0
- 5*v2 -12*v3  + 9  =  0; value: 0
0: 1 2 3 
1: 2 3 4 5 
2: 2 5 1 3 
3: 1 4 5 2 3 
0: 5 -> 5
1: 5 -> 0
2: 3 -> 6
3: 2 -> 13/4
+ 2*v0 -2*v1  <=  0; value: -10
+ -1*v1 -1*v2 -3*v3 -1  <=  0; value: -9
+ -1*v1 + 5*v2  + 2  <=  0; value: -3
+ v1 -3*v2 -5  =  0; value: 0
+ -2*v1 + 2*v3 -5  <  0; value: -13
+ 5*v0 -4*v2  <=  0; value: 0
0: 5 
1: 1 2 3 4 
2: 1 2 3 5 
3: 1 4 
optimal: (-23/65 -e*1)
+ -23/65  <  0; value: -23/65
- -13/3*v3  + 4  <=  0; value: 0
+ -96/13  <  0; value: -96/13
- v1 -3*v2 -5  =  0; value: 0
- -15/2*v0 + 2*v3 -15  <  0; value: -171/26
- 5*v0 -4*v2  <=  0; value: 0
0: 5 1 4 2 
1: 1 2 3 4 
2: 1 2 3 5 4 
3: 1 4 2 
0: 0 -> -57/65
1: 5 -> 89/52
2: 0 -> -57/52
3: 1 -> 12/13
+ 2*v0 -2*v1  <=  0; value: 4
+ v0 -4  =  0; value: 0
+ 5*v0 -4*v1 -3*v2 -3  =  0; value: 0
+ 3*v1 + 6*v2 + v3 -40  <  0; value: -13
+ -1*v3 -2  <=  0; value: -5
+ 6*v0 + v3 -27  <=  0; value: 0
0: 1 2 5 
1: 2 3 
2: 2 3 
3: 3 4 5 
optimal: (56/5 -e*1)
+  + 56/5  <  0; value: 56/5
- v0 -4  =  0; value: 0
- 5*v0 -4*v1 -3*v2 -3  =  0; value: 0
- 15/4*v0 + 15/4*v2 + v3 -169/4  <  0; value: -15/4
- -1*v3 -2  <=  0; value: 0
+ -5  <=  0; value: -5
0: 1 2 5 3 
1: 2 3 
2: 2 3 
3: 3 4 5 
0: 4 -> 4
1: 2 -> -17/20
2: 3 -> 34/5
3: 3 -> -2
+ 2*v0 -2*v1  <=  0; value: -4
+ -5*v2 -1*v3  + 7  <=  0; value: -13
+ 3*v0 + 4*v1 -3*v3 -8  =  0; value: 0
+ -1*v1 -1*v2 -3  <=  0; value: -9
+ v0 + 3*v2 -21  <  0; value: -9
+ 2*v0 + 6*v2 -5*v3 -38  <=  0; value: -14
0: 2 4 5 
1: 2 3 
2: 1 3 4 5 
3: 1 2 5 
optimal: 1636/71
+  + 1636/71  <=  0; value: 1636/71
- -2/5*v0 -31/5*v2  + 73/5  <=  0; value: 0
- 3*v0 + 4*v1 -3*v3 -8  =  0; value: 0
- 71/124*v0 -117/31  <=  0; value: 0
+ -612/71  <  0; value: -612/71
- 2*v0 + 6*v2 -5*v3 -38  <=  0; value: 0
0: 2 4 5 3 1 
1: 2 3 
2: 1 3 4 5 
3: 1 2 5 3 
0: 0 -> 468/71
1: 2 -> -350/71
2: 4 -> 137/71
3: 0 -> -188/71
+ 2*v0 -2*v1  <=  0; value: -10
+ 4*v0 -5*v2 + 6*v3 -1  <=  0; value: -16
+ -6*v0 + v3  <=  0; value: 0
+ -4*v2 + 3*v3  + 2  <=  0; value: -10
+ 5*v1 -2*v3 -31  <  0; value: -6
+ 3*v0 + 4*v1 + 4*v3 -20  =  0; value: 0
0: 1 2 5 
1: 4 5 
2: 1 3 
3: 1 2 3 4 5 
optimal: oo
+ 31/16*v2 -769/80  <=  0; value: -19/5
- 40*v0 -5*v2 -1  <=  0; value: 0
- -6*v0 + v3  <=  0; value: 0
+ -7/4*v2  + 49/20  <=  0; value: -14/5
+ -183/32*v2 -1143/160  <  0; value: -243/10
- 3*v0 + 4*v1 + 4*v3 -20  =  0; value: 0
0: 1 2 5 4 3 
1: 4 5 
2: 1 3 4 
3: 1 2 3 4 5 
0: 0 -> 2/5
1: 5 -> 23/10
2: 3 -> 3
3: 0 -> 12/5
+ 2*v0 -2*v1  <=  0; value: -6
+ -2*v1 + 2*v2 -1  <=  0; value: -3
+ 3*v1 -3*v3  <=  0; value: 0
+ 4*v1 -1*v3 -15  <  0; value: -6
+ 6*v1 -18  <=  0; value: 0
+ -5*v0 + 2*v3 -7  <  0; value: -1
0: 5 
1: 1 2 3 4 
2: 1 
3: 2 3 5 
optimal: oo
+ 2*v0 -2*v2  + 1  <=  0; value: -3
- -2*v1 + 2*v2 -1  <=  0; value: 0
+ 3*v2 -3*v3 -3/2  <=  0; value: -9/2
+ 4*v2 -1*v3 -17  <  0; value: -12
+ 6*v2 -21  <=  0; value: -9
+ -5*v0 + 2*v3 -7  <  0; value: -1
0: 5 
1: 1 2 3 4 
2: 1 2 3 4 
3: 2 3 5 
0: 0 -> 0
1: 3 -> 3/2
2: 2 -> 2
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -2
+ -4*v1 + 4*v3 -5  <=  0; value: -1
+ -3*v0 -5*v1 + v3  + 2  <=  0; value: -1
+ 4*v0 -3*v3  + 5  <  0; value: -1
+ v1 + 2*v3 -11  <  0; value: -6
+ -2*v2  <=  0; value: 0
0: 2 3 
1: 1 2 4 
2: 5 
3: 1 2 3 4 
optimal: (-24/25 -e*1)
+ -24/25  <  0; value: -24/25
- 20/3*v0 -19/15  <  0; value: -19/30
- -3*v0 -5*v1 + v3  + 2  <=  0; value: 0
- 4*v0 -3*v3  + 5  <  0; value: -31/100
+ -649/100  <=  0; value: -649/100
+ -2*v2  <=  0; value: 0
0: 2 3 1 4 
1: 1 2 4 
2: 5 
3: 1 2 3 4 
0: 0 -> 19/200
1: 1 -> 2167/3000
2: 0 -> 0
3: 2 -> 569/300
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v0 + 3*v3 -45  <=  0; value: -25
+ -5*v0 -4*v1 -1*v3 -37  <  0; value: -82
+ v0 -3*v2 + 2*v3  + 1  <  0; value: -6
+ -1*v0 + 2*v2 + 2*v3 -5  <=  0; value: -2
+ -2*v2 + 2*v3 -6  <=  0; value: -14
0: 1 2 3 4 
1: 2 
2: 3 4 5 
3: 1 2 3 4 5 
optimal: (5387/86 -e*1)
+  + 5387/86  <  0; value: 5387/86
- 43/10*v0 -411/10  <=  0; value: 0
- -5*v0 -4*v1 -1*v3 -37  <  0; value: -4
- 2*v0 -5*v2  + 6  <  0; value: -110/43
- -1*v0 + 2*v2 + 2*v3 -5  <=  0; value: 0
+ -496/43  <=  0; value: -496/43
0: 1 2 3 4 5 
1: 2 
2: 3 4 5 1 
3: 1 2 3 4 5 
0: 5 -> 411/43
1: 5 -> -3549/172
2: 4 -> 238/43
3: 0 -> 75/43
+ 2*v0 -2*v1  <=  0; value: 8
+ -6*v1 -3*v3 -1  <=  0; value: -19
+ 5*v1 + 4*v3 -49  <  0; value: -28
+ -3*v0 -1*v2  + 10  <=  0; value: -7
+ 6*v3 -24  =  0; value: 0
+ -2*v1 -3*v2 + 6*v3 -30  <  0; value: -14
0: 3 
1: 1 2 5 
2: 3 5 
3: 1 2 4 5 
optimal: oo
+ 2*v0  + 13/3  <=  0; value: 43/3
- -6*v1 -3*v3 -1  <=  0; value: 0
+ -263/6  <  0; value: -263/6
+ -3*v0 -1*v2  + 10  <=  0; value: -7
- 6*v3 -24  =  0; value: 0
+ -3*v2 -5/3  <  0; value: -23/3
0: 3 
1: 1 2 5 
2: 3 5 
3: 1 2 4 5 
0: 5 -> 5
1: 1 -> -13/6
2: 2 -> 2
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -4
+ -5*v1 -5*v2  + 3  <=  0; value: -22
+ -1*v0  <=  0; value: 0
+ v0 -6*v3  + 12  <=  0; value: 0
+ v1 -4*v3 -4  <  0; value: -10
+ -4*v0 + 4*v2 -27  <=  0; value: -15
0: 2 3 5 
1: 1 4 
2: 1 5 
3: 3 4 
optimal: oo
+ 24*v3 -357/10  <=  0; value: 123/10
- -5*v1 -5*v2  + 3  <=  0; value: 0
+ -6*v3  + 12  <=  0; value: 0
- v0 -6*v3  + 12  <=  0; value: 0
+ -10*v3  + 37/20  <  0; value: -363/20
- -4*v0 + 4*v2 -27  <=  0; value: 0
0: 2 3 5 4 
1: 1 4 
2: 1 5 4 
3: 3 4 2 
0: 0 -> 0
1: 2 -> -123/20
2: 3 -> 27/4
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v2 -4*v3  + 4  <=  0; value: 0
+ -3*v0 + 2*v1  + 3  <=  0; value: -1
+ 2*v0 -6*v1  + 7  <=  0; value: -9
+ -1*v1 -3  <  0; value: -7
+ -4*v2  + 4  =  0; value: 0
0: 2 3 
1: 2 3 4 
2: 1 5 
3: 1 
optimal: oo
+ 4/3*v0 -7/3  <=  0; value: 3
+ 4*v2 -4*v3  + 4  <=  0; value: 0
+ -7/3*v0  + 16/3  <=  0; value: -4
- 2*v0 -6*v1  + 7  <=  0; value: 0
+ -1/3*v0 -25/6  <  0; value: -11/2
+ -4*v2  + 4  =  0; value: 0
0: 2 3 4 
1: 2 3 4 
2: 1 5 
3: 1 
0: 4 -> 4
1: 4 -> 5/2
2: 1 -> 1
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -2
+ 5*v1 + 5*v2 -73  <=  0; value: -48
+ 3*v1 -29  <  0; value: -17
+ 3*v2 -4*v3 -8  <=  0; value: -5
+ 2*v3  <=  0; value: 0
+ -1*v0 + 5*v1 + 3*v2 -33  <  0; value: -13
0: 5 
1: 1 2 5 
2: 1 3 5 
3: 3 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+ 5*v1 + 5*v2 -73  <=  0; value: -48
+ 3*v1 -29  <  0; value: -17
+ 3*v2 -4*v3 -8  <=  0; value: -5
+ 2*v3  <=  0; value: 0
+ -1*v0 + 5*v1 + 3*v2 -33  <  0; value: -13
0: 5 
1: 1 2 5 
2: 1 3 5 
3: 3 4 
0: 3 -> 3
1: 4 -> 4
2: 1 -> 1
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 6
+ -3*v0 + 4*v1 + v2  + 1  <=  0; value: -3
+ 3*v0 -5*v2 -2*v3  + 2  <  0; value: -6
+ -4*v1 + v2 -1  <=  0; value: -6
+ 3*v0 + 4*v2 -53  <=  0; value: -26
+ 2*v1 -11  <=  0; value: -7
0: 1 2 4 
1: 1 3 5 
2: 1 2 3 4 
3: 2 
optimal: oo
+ 17/10*v0 + 1/5*v3  + 3/10  <  0; value: 48/5
+ -9/5*v0 -4/5*v3  + 4/5  <  0; value: -57/5
- 3*v0 -5*v2 -2*v3  + 2  <  0; value: -3
- -4*v1 + v2 -1  <=  0; value: 0
+ 27/5*v0 -8/5*v3 -257/5  <  0; value: -154/5
+ 3/10*v0 -1/5*v3 -113/10  <  0; value: -53/5
0: 1 2 4 5 
1: 1 3 5 
2: 1 2 3 4 5 
3: 2 1 4 5 
0: 5 -> 5
1: 2 -> 7/20
2: 3 -> 12/5
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 8
+ 3*v0 -3*v3 -3  <=  0; value: 0
+ -2*v0 -1*v3 -6  <  0; value: -17
+ -6*v1 + 3*v2 -9  <=  0; value: 0
+ -3*v2 -4*v3  + 21  =  0; value: 0
+ -2*v3  + 6  <=  0; value: 0
0: 1 2 
1: 3 
2: 3 4 
3: 1 2 4 5 
optimal: oo
+ 2*v0 + 4/3*v3 -4  <=  0; value: 8
+ 3*v0 -3*v3 -3  <=  0; value: 0
+ -2*v0 -1*v3 -6  <  0; value: -17
- -6*v1 + 3*v2 -9  <=  0; value: 0
- -3*v2 -4*v3  + 21  =  0; value: 0
+ -2*v3  + 6  <=  0; value: 0
0: 1 2 
1: 3 
2: 3 4 
3: 1 2 4 5 
0: 4 -> 4
1: 0 -> 0
2: 3 -> 3
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -4
+ -2*v0 -6*v3  + 30  =  0; value: 0
+ 5*v1 + v2 -37  <  0; value: -24
+ 6*v0 + 2*v2 -6  =  0; value: 0
+ -4*v1 -6*v2  + 21  <=  0; value: -5
+ 2*v1 -3*v2  + 5  <=  0; value: 0
0: 1 3 
1: 2 4 5 
2: 2 3 4 5 
3: 1 
optimal: oo
+ 21*v3 -213/2  <=  0; value: -3/2
- -2*v0 -6*v3  + 30  =  0; value: 0
+ -117/2*v3  + 1049/4  <  0; value: -121/4
- 6*v0 + 2*v2 -6  =  0; value: 0
- -4*v1 -6*v2  + 21  <=  0; value: 0
+ -54*v3  + 535/2  <=  0; value: -5/2
0: 1 3 2 5 
1: 2 4 5 
2: 2 3 4 5 
3: 1 2 5 
0: 0 -> 0
1: 2 -> 3/4
2: 3 -> 3
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 2
+ 4*v0 -6*v1 + 3*v3 -3  =  0; value: 0
+ -3*v1 -3  <  0; value: -9
+  <=  0; value: 0
+ 6*v1 + v3 -13  =  0; value: 0
+ -1*v1 -3*v2  <=  0; value: -2
0: 1 
1: 1 2 4 5 
2: 5 
3: 1 4 
optimal: oo
+ 5/3*v0 -3  <=  0; value: 2
- 4*v0 -6*v1 + 3*v3 -3  =  0; value: 0
+ -1/2*v0 -15/2  <  0; value: -9
+  <=  0; value: 0
- 4*v0 + 4*v3 -16  =  0; value: 0
+ -1/6*v0 -3*v2 -3/2  <=  0; value: -2
0: 1 2 4 5 
1: 1 2 4 5 
2: 5 
3: 1 4 2 5 
0: 3 -> 3
1: 2 -> 2
2: 0 -> 0
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v0 -2*v1 + v2 -23  <=  0; value: -13
+ 5*v1 + 6*v3 -88  <=  0; value: -51
+ 3*v1 -20  <=  0; value: -5
+ -4*v0 -6*v1 + 3*v2  + 41  <=  0; value: -9
+ -6*v0 -5*v2  + 7  <=  0; value: -23
0: 1 4 5 
1: 1 2 3 4 
2: 1 4 5 
3: 2 
optimal: 161/10
+  + 161/10  <=  0; value: 161/10
- 16/3*v0 -110/3  <=  0; value: 0
+ 6*v3 -751/8  <=  0; value: -655/8
+ -941/40  <=  0; value: -941/40
- -4*v0 -6*v1 + 3*v2  + 41  <=  0; value: 0
- -6*v0 -5*v2  + 7  <=  0; value: 0
0: 1 4 5 2 3 
1: 1 2 3 4 
2: 1 4 5 2 3 
3: 2 
0: 5 -> 55/8
1: 5 -> -47/40
2: 0 -> -137/20
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 2
+ -5*v0 + 6*v2 -15  <  0; value: -8
+ 5*v1 -4*v3  + 4  =  0; value: 0
+ -3*v2  + 6  <=  0; value: 0
+ 3*v1 -1*v3  + 1  <=  0; value: 0
+ -3*v2 + 5*v3  + 1  <=  0; value: 0
0: 1 
1: 2 4 
2: 1 3 5 
3: 2 4 5 
optimal: oo
+ 2*v0 -8/5*v3  + 8/5  <=  0; value: 2
+ -5*v0 + 6*v2 -15  <  0; value: -8
- 5*v1 -4*v3  + 4  =  0; value: 0
+ -3*v2  + 6  <=  0; value: 0
+ 7/5*v3 -7/5  <=  0; value: 0
+ -3*v2 + 5*v3  + 1  <=  0; value: 0
0: 1 
1: 2 4 
2: 1 3 5 
3: 2 4 5 
0: 1 -> 1
1: 0 -> 0
2: 2 -> 2
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 6
+ -1*v0 -4*v1 -3*v3  + 7  <=  0; value: -1
+ -2*v1 -2*v3  <  0; value: -2
+ 4*v0 -3*v1 -13  =  0; value: 0
+ 5*v1 + 5*v3 -8  <  0; value: -3
+ -4*v0 -2*v3  + 5  <=  0; value: -11
0: 1 3 5 
1: 1 2 3 4 
2: 
3: 1 2 4 5 
optimal: (34/5 -e*1)
+  + 34/5  <  0; value: 34/5
- -19/3*v0 -3*v3  + 73/3  <=  0; value: 0
+ -16/5  <  0; value: -16/5
- 4*v0 -3*v1 -13  =  0; value: 0
- 35/19*v3 -77/19  <  0; value: -35/19
+ -53/5  <  0; value: -53/5
0: 1 3 5 2 4 
1: 1 2 3 4 
2: 
3: 1 2 4 5 
0: 4 -> 311/95
1: 1 -> 3/95
2: 3 -> 3
3: 0 -> 6/5
+ 2*v0 -2*v1  <=  0; value: 0
+ 6*v0 + 2*v3 -16  <  0; value: -10
+ 4*v1  <=  0; value: 0
+ -2*v0 + 2*v1 + 6*v3 -50  <=  0; value: -32
+ -3*v1 -3*v3  + 9  <=  0; value: 0
+ v0 + 6*v1  <=  0; value: 0
0: 1 3 5 
1: 2 3 4 5 
2: 
3: 1 3 4 
optimal: (94/7 -e*1)
+  + 94/7  <  0; value: 94/7
- 6*v0 + 2*v3 -16  <  0; value: -2
+ -212/7  <  0; value: -212/7
- -14*v0 -12  <=  0; value: 0
- -3*v1 -3*v3  + 9  <=  0; value: 0
+ -324/7  <  0; value: -324/7
0: 1 3 5 2 
1: 2 3 4 5 
2: 
3: 1 3 4 2 5 
0: 0 -> -6/7
1: 0 -> -46/7
2: 0 -> 0
3: 3 -> 67/7
+ 2*v0 -2*v1  <=  0; value: -6
+  =  0; value: 0
+ 2*v0 + 3*v3 -32  <  0; value: -16
+ -4*v1 + 3*v2  + 5  =  0; value: 0
+ 3*v1 + 5*v3 -85  <=  0; value: -50
+ -5*v0 -1*v1 -4*v2  + 20  <  0; value: -15
0: 2 5 
1: 3 4 5 
2: 3 5 
3: 2 4 
optimal: oo
+ -102/19*v3  + 928/19  <  0; value: 520/19
+  =  0; value: 0
- 2*v0 + 3*v3 -32  <  0; value: -2
- -4*v1 + 3*v2  + 5  =  0; value: 0
+ 325/38*v3 -2095/19  <  0; value: -1445/19
- -5*v0 -19/4*v2  + 75/4  <  0; value: -19/4
0: 2 5 4 
1: 3 4 5 
2: 3 5 4 
3: 2 4 
0: 2 -> 9
1: 5 -> -163/76
2: 5 -> -86/19
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 0
+ 2*v0 -3*v3  + 4  <  0; value: -3
+ 6*v2 -3*v3 -19  <=  0; value: -10
+ 2*v2 + 5*v3 -45  <=  0; value: -24
+ 4*v0 -4*v1 + 3*v3 -14  <=  0; value: -5
+ 2*v0 + 5*v1 -12  <=  0; value: -5
0: 1 4 5 
1: 4 5 
2: 2 3 
3: 1 2 3 4 
optimal: oo
+ -3*v2  + 33/2  <  0; value: 15/2
- 2*v0 -3*v3  + 4  <  0; value: -3
- -2*v0 + 6*v2 -23  <=  0; value: 0
+ 12*v2 -230/3  <  0; value: -122/3
- 4*v0 -4*v1 + 3*v3 -14  <=  0; value: 0
+ 57/2*v2 -535/4  <  0; value: -193/4
0: 1 4 5 2 3 
1: 4 5 
2: 2 3 5 
3: 1 2 3 4 5 
0: 1 -> -5/2
1: 1 -> -11/2
2: 3 -> 3
3: 3 -> 2/3
+ 2*v0 -2*v1  <=  0; value: 0
+ -6*v3  + 24  =  0; value: 0
+ -3*v3  + 2  <=  0; value: -10
+ -4*v0 -5*v1 -3*v3 -37  <=  0; value: -94
+ 2*v2 -4  <=  0; value: -2
+ -3*v1 -1*v3  + 19  =  0; value: 0
0: 3 
1: 3 5 
2: 4 
3: 1 2 3 5 
optimal: oo
+ 2*v0 -10  <=  0; value: 0
- -6*v3  + 24  =  0; value: 0
+ -10  <=  0; value: -10
+ -4*v0 -74  <=  0; value: -94
+ 2*v2 -4  <=  0; value: -2
- -3*v1 -1*v3  + 19  =  0; value: 0
0: 3 
1: 3 5 
2: 4 
3: 1 2 3 5 
0: 5 -> 5
1: 5 -> 5
2: 1 -> 1
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 0
+ 5*v2 + 2*v3 -40  <=  0; value: -23
+ v0 -3  <=  0; value: 0
+ 3*v2 -14  <=  0; value: -5
+ v2 + 4*v3 -10  <=  0; value: -3
+ v0 + 2*v3 -7  <=  0; value: -2
0: 2 5 
1: 
2: 1 3 4 
3: 1 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 0
+ 5*v2 + 2*v3 -40  <=  0; value: -23
+ v0 -3  <=  0; value: 0
+ 3*v2 -14  <=  0; value: -5
+ v2 + 4*v3 -10  <=  0; value: -3
+ v0 + 2*v3 -7  <=  0; value: -2
0: 2 5 
1: 
2: 1 3 4 
3: 1 4 5 
0: 3 -> 3
1: 3 -> 3
2: 3 -> 3
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -2
+ -5*v2 + 3*v3  + 3  <=  0; value: -2
+ -2*v2 -1  <=  0; value: -3
+ -4*v0 -5*v2  + 7  <  0; value: -6
+ 2*v0 -3*v3 -4  <=  0; value: 0
+ 6*v0 -3*v1 -3  =  0; value: 0
0: 3 4 5 
1: 5 
2: 1 2 3 
3: 1 4 
optimal: oo
+ 5/2*v2 -3/2  <  0; value: 1
+ -5*v2 + 3*v3  + 3  <=  0; value: -2
+ -2*v2 -1  <=  0; value: -3
- -4*v0 -5*v2  + 7  <  0; value: -3
+ -5/2*v2 -3*v3 -1/2  <  0; value: -3
- 6*v0 -3*v1 -3  =  0; value: 0
0: 3 4 5 
1: 5 
2: 1 2 3 4 
3: 1 4 
0: 2 -> 5/4
1: 3 -> 3/2
2: 1 -> 1
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -6
+ 4*v0 + 2*v3 -2  <=  0; value: 0
+ -6*v1 + 5*v3 -9  <=  0; value: -22
+  <=  0; value: 0
+ 2*v0 -6*v2 -17  <=  0; value: -41
+ v1 + 3*v2 -5*v3 -12  <  0; value: -2
0: 1 4 
1: 2 5 
2: 4 5 
3: 1 2 5 
optimal: (114/7 -e*1)
+  + 114/7  <  0; value: 114/7
- 112/25*v0 -314/25  <  0; value: -112/25
- -6*v1 + 5*v3 -9  <=  0; value: 0
+  <=  0; value: 0
- 2*v0 -6*v2 -17  <=  0; value: 0
- 3*v2 -25/6*v3 -27/2  <  0; value: -25/6
0: 1 4 
1: 2 5 
2: 4 5 1 
3: 1 2 5 
0: 0 -> 101/56
1: 3 -> -3953/840
2: 4 -> -125/56
3: 1 -> -2693/700
+ 2*v0 -2*v1  <=  0; value: -10
+ -3*v0 -6*v2 -1  <=  0; value: -31
+ 5*v0 + 2*v1 + 6*v2 -86  <=  0; value: -46
+ -4*v0 -4*v1  + 20  =  0; value: 0
+ -5*v1 + 5*v2 -1*v3  + 4  =  0; value: 0
+ 4*v1 -28  <=  0; value: -8
0: 1 2 3 
1: 2 3 4 5 
2: 1 2 4 
3: 4 
optimal: oo
+ -8*v2  + 274/3  <=  0; value: 154/3
+ -77  <=  0; value: -77
- 3*v2 + 3/5*v3 -317/5  <=  0; value: 0
- -4*v0 -4*v1  + 20  =  0; value: 0
- 5*v0 + 5*v2 -1*v3 -21  =  0; value: 0
+ 8*v2 -328/3  <=  0; value: -208/3
0: 1 2 3 4 5 
1: 2 3 4 5 
2: 1 2 4 5 
3: 4 2 1 5 
0: 0 -> 46/3
1: 5 -> -31/3
2: 5 -> 5
3: 4 -> 242/3
+ 2*v0 -2*v1  <=  0; value: 2
+ 4*v0 -2*v1 + v2 -20  <  0; value: -10
+ -6*v0 + v1 + 2*v2  + 11  <=  0; value: -10
+ -4*v1 + 2*v3 -10  <=  0; value: -22
+ 6*v1 + v2 + 6*v3 -33  <  0; value: -15
+ -5*v1  + 15  =  0; value: 0
0: 1 2 
1: 1 2 3 4 5 
2: 1 2 4 
3: 3 4 
optimal: oo
+ -1/2*v2  + 7  <  0; value: 7
- 4*v0 + v2 -26  <  0; value: -4
+ 7/2*v2 -25  <  0; value: -25
+ 2*v3 -22  <=  0; value: -22
+ v2 + 6*v3 -15  <  0; value: -15
- -5*v1  + 15  =  0; value: 0
0: 1 2 
1: 1 2 3 4 5 
2: 1 2 4 
3: 3 4 
0: 4 -> 11/2
1: 3 -> 3
2: 0 -> 0
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 6
+ -2*v2 -2  <=  0; value: -10
+ -1*v1 + 2*v2 + 5*v3 -22  =  0; value: 0
+ 5*v0 -1*v1 -3*v3 -10  =  0; value: 0
+ -4*v0 -2*v2  + 21  <=  0; value: -3
+ 3*v1 + 4*v2 -49  <=  0; value: -30
0: 3 4 
1: 2 3 5 
2: 1 2 4 5 
3: 2 3 
optimal: 24
+  + 24  <=  0; value: 24
+ -287/5  <=  0; value: -287/5
- -1*v1 + 2*v2 + 5*v3 -22  =  0; value: 0
- 5*v0 -2*v2 -8*v3  + 12  =  0; value: 0
- -4*v0 -2*v2  + 21  <=  0; value: 0
- -25/8*v0 -215/8  <=  0; value: 0
0: 3 4 5 1 
1: 2 3 5 
2: 1 2 4 5 3 
3: 2 3 5 
0: 4 -> -43/5
1: 1 -> -103/5
2: 4 -> 277/10
3: 3 -> -54/5
+ 2*v0 -2*v1  <=  0; value: 2
+ -6*v3  + 12  =  0; value: 0
+ -3*v0  + 6  =  0; value: 0
+ 6*v0 -12  =  0; value: 0
+ v0 + 4*v2 -14  <=  0; value: -4
+ -6*v0 -5*v2  + 10  <=  0; value: -12
0: 2 3 4 5 
1: 
2: 4 5 
3: 1 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 2
+ -6*v3  + 12  =  0; value: 0
+ -3*v0  + 6  =  0; value: 0
+ 6*v0 -12  =  0; value: 0
+ v0 + 4*v2 -14  <=  0; value: -4
+ -6*v0 -5*v2  + 10  <=  0; value: -12
0: 2 3 4 5 
1: 
2: 4 5 
3: 1 
0: 2 -> 2
1: 1 -> 1
2: 2 -> 2
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -2
+ -1*v0 + 5*v1 -9  =  0; value: 0
+ -5*v3  + 10  =  0; value: 0
+ v1 -3*v3  + 4  <=  0; value: 0
+ 6*v1 -2*v3 -21  <=  0; value: -13
+ v1 + 5*v2 -7  =  0; value: 0
0: 1 
1: 1 3 4 5 
2: 5 
3: 2 3 4 
optimal: -2
+ -2  <=  0; value: -2
- -1*v0 + 5*v1 -9  =  0; value: 0
- -5*v3  + 10  =  0; value: 0
- -5*v2 -3*v3  + 11  <=  0; value: 0
+ -13  <=  0; value: -13
- 1/5*v0 + 5*v2 -26/5  =  0; value: 0
0: 1 5 3 4 
1: 1 3 4 5 
2: 5 3 4 
3: 2 3 4 
0: 1 -> 1
1: 2 -> 2
2: 1 -> 1
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 0
+ 6*v1 -35  <=  0; value: -23
+ -3*v0 + 4*v1 + 2*v3 -5  <  0; value: -3
+ 4*v0 + 6*v2 -35  <  0; value: -21
+ -3*v0 + 6*v1 -6  =  0; value: 0
+  <=  0; value: 0
0: 2 3 4 
1: 1 2 4 
2: 3 
3: 2 
optimal: (23/3 -e*1)
+  + 23/3  <  0; value: 23/3
- -9/2*v2 -11/4  <=  0; value: 0
+ 2*v3 -32/3  <  0; value: -32/3
- 4*v0 + 6*v2 -35  <  0; value: -4
- -3*v0 + 6*v1 -6  =  0; value: 0
+  <=  0; value: 0
0: 2 3 4 1 
1: 1 2 4 
2: 3 1 2 
3: 2 
0: 2 -> 26/3
1: 2 -> 16/3
2: 1 -> -11/18
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 4
+ v1 + 6*v2 -20  =  0; value: 0
+ -5*v0 + 5*v2  + 1  <=  0; value: -4
+ -4*v1 + 5*v3 -48  <=  0; value: -31
+ 3*v0 + 2*v1 -27  <=  0; value: -11
+ 4*v1 -2*v2 -4  <=  0; value: -2
0: 2 4 
1: 1 3 4 5 
2: 1 2 5 
3: 3 
optimal: oo
+ -35/12*v3  + 526/15  <=  0; value: 1229/60
- v1 + 6*v2 -20  =  0; value: 0
- -5*v0 + 5*v2  + 1  <=  0; value: 0
- 24*v0 + 5*v3 -664/5  <=  0; value: 0
+ 15/8*v3 -172/5  <=  0; value: -1001/40
+ 65/12*v3 -188/3  <=  0; value: -427/12
0: 2 4 3 5 
1: 1 3 4 5 
2: 1 2 5 3 4 
3: 3 4 5 
0: 4 -> 539/120
1: 2 -> -23/4
2: 3 -> 103/24
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 8
+ 2*v1 + 4*v3 -50  <=  0; value: -30
+ 2*v0 + 5*v3 -33  =  0; value: 0
+ -1*v0 -6*v2 + 4*v3 -7  <  0; value: -15
+ -6*v0 + 6*v3 -6  <=  0; value: 0
+ -1*v1 + 4*v3 -39  <=  0; value: -19
0: 2 3 4 
1: 1 5 
2: 3 
3: 1 2 3 4 5 
optimal: oo
+ 26/5*v0  + 126/5  <=  0; value: 46
+ -24/5*v0 -244/5  <=  0; value: -68
- 2*v0 + 5*v3 -33  =  0; value: 0
+ -13/5*v0 -6*v2  + 97/5  <  0; value: -15
+ -42/5*v0  + 168/5  <=  0; value: 0
- -1*v1 + 4*v3 -39  <=  0; value: 0
0: 2 3 4 1 
1: 1 5 
2: 3 
3: 1 2 3 4 5 
0: 4 -> 4
1: 0 -> -19
2: 4 -> 4
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 6
+ -4*v0  + 9  <  0; value: -11
+  <=  0; value: 0
+ -4*v0 + 5*v1  + 4  <  0; value: -6
+ 3*v1 + 4*v2 -16  <  0; value: -10
+ 4*v0 -5*v1 -2*v3  <=  0; value: 0
0: 1 3 5 
1: 3 4 5 
2: 4 
3: 5 
optimal: oo
+ 2/5*v0 + 4/5*v3  <=  0; value: 6
+ -4*v0  + 9  <  0; value: -11
+  <=  0; value: 0
+ -2*v3  + 4  <  0; value: -6
+ 12/5*v0 + 4*v2 -6/5*v3 -16  <  0; value: -10
- 4*v0 -5*v1 -2*v3  <=  0; value: 0
0: 1 3 5 4 
1: 3 4 5 
2: 4 
3: 5 3 4 
0: 5 -> 5
1: 2 -> 2
2: 0 -> 0
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 6
+ -1*v1  =  0; value: 0
+ 2*v0 -4*v1 -7  <  0; value: -1
+ -3*v0 -5*v3 -13  <  0; value: -32
+ 3*v1 + 4*v2 -4  =  0; value: 0
+ -5*v0  + 5  <  0; value: -10
0: 2 3 5 
1: 1 2 4 
2: 4 
3: 3 
optimal: (7 -e*1)
+  + 7  <  0; value: 7
- -1*v1  =  0; value: 0
- 2*v0 -7  <  0; value: -1/2
+ -5*v3 -47/2  <  0; value: -67/2
+ 4*v2 -4  =  0; value: 0
+ -25/2  <  0; value: -25/2
0: 2 3 5 
1: 1 2 4 
2: 4 
3: 3 
0: 3 -> 13/4
1: 0 -> 0
2: 1 -> 1
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 4
+ -6*v1  + 3  <=  0; value: -3
+ 6*v0 -6*v3 -32  <=  0; value: -14
+ -1*v0 -3*v3  + 2  <  0; value: -1
+ -1*v2 + 5*v3 -2  <=  0; value: -5
+ -3*v2 -6*v3  + 9  =  0; value: 0
0: 2 3 
1: 1 
2: 4 5 
3: 2 3 4 5 
optimal: 233/21
+  + 233/21  <=  0; value: 233/21
- -6*v1  + 3  <=  0; value: 0
- 6*v0 -6*v3 -32  <=  0; value: 0
+ -130/21  <  0; value: -130/21
- -7/2*v2  + 11/2  <=  0; value: 0
- -3*v2 -6*v3  + 9  =  0; value: 0
0: 2 3 
1: 1 
2: 4 5 3 
3: 2 3 4 5 
0: 3 -> 127/21
1: 1 -> 1/2
2: 3 -> 11/7
3: 0 -> 5/7
+ 2*v0 -2*v1  <=  0; value: 2
+ -5*v0 -1*v1 + 3*v2  + 10  <  0; value: -7
+ 6*v2 + 3*v3 -27  <=  0; value: 0
+ 2*v3 -19  <=  0; value: -9
+ -3*v2 + 5*v3 -41  <=  0; value: -22
+ -1*v1 + 2*v2 -3*v3  + 6  <=  0; value: -8
0: 1 
1: 1 5 
2: 1 2 4 5 
3: 2 3 4 5 
optimal: (3176/65 -e*1)
+  + 3176/65  <  0; value: 3176/65
- -5*v0 -1*v1 + 3*v2  + 10  <  0; value: -1
- 195/14*v0 -1149/14  <=  0; value: 0
+ -29/13  <=  0; value: -29/13
- -15*v0 + 14*v3 -29  <=  0; value: 0
- 5*v0 -1*v2 -3*v3 -4  <=  0; value: 0
0: 1 5 4 2 3 
1: 1 5 
2: 1 2 4 5 
3: 2 3 4 5 
0: 4 -> 383/65
1: 3 -> -228/13
2: 2 -> 4/13
3: 5 -> 109/13
+ 2*v0 -2*v1  <=  0; value: -4
+ -4*v0 + 4*v3  + 12  =  0; value: 0
+ v0 -5*v1  + 22  =  0; value: 0
+ -4*v0 -4*v3  + 9  <=  0; value: -3
+ 5*v1 -3*v3 -49  <=  0; value: -24
+ 6*v0 + 6*v1 -5*v2 -105  <  0; value: -62
0: 1 2 3 5 
1: 2 4 5 
2: 5 
3: 1 3 4 
optimal: oo
+ 10/9*v2  + 26/3  <  0; value: 88/9
- -4*v0 + 4*v3  + 12  =  0; value: 0
- v0 -5*v1  + 22  =  0; value: 0
+ -50/9*v2 -199/3  <  0; value: -647/9
+ -25/18*v2 -239/6  <  0; value: -371/9
- -5*v2 + 36/5*v3 -57  <  0; value: -36/5
0: 1 2 3 5 4 
1: 2 4 5 
2: 5 3 4 
3: 1 3 4 5 
0: 3 -> 191/18
1: 5 -> 587/90
2: 1 -> 1
3: 0 -> 137/18
+ 2*v0 -2*v1  <=  0; value: 4
+ v1 + 4*v3 -32  <  0; value: -19
+ -1*v1 -6*v3 -7  <=  0; value: -26
+ -5*v1 -5*v2 + 5*v3 -23  <=  0; value: -13
+ 2*v1 -1*v3  <=  0; value: -1
+ 3*v3 -11  <=  0; value: -2
0: 
1: 1 2 3 4 
2: 3 
3: 1 2 3 4 5 
optimal: oo
+ 2*v0  + 58  <=  0; value: 64
+ -139/3  <  0; value: -139/3
- v2 -7*v3 -12/5  <=  0; value: 0
- -5*v1 -5*v2 + 5*v3 -23  <=  0; value: 0
+ -185/3  <=  0; value: -185/3
- 3/7*v2 -421/35  <=  0; value: 0
0: 
1: 1 2 3 4 
2: 3 2 1 4 5 
3: 1 2 3 4 5 
0: 3 -> 3
1: 1 -> -29
2: 0 -> 421/15
3: 3 -> 11/3
+ 2*v0 -2*v1  <=  0; value: -4
+ 4*v1 + 2*v2 -37  <=  0; value: -17
+ -2*v0 + 3*v3 -35  <=  0; value: -22
+ 2*v2 -4*v3  + 8  <=  0; value: -4
+ 5*v0 + 5*v1 -41  <=  0; value: -21
+ 5*v0 -6*v1  + 13  <=  0; value: 0
0: 2 4 5 
1: 1 4 5 
2: 1 3 
3: 2 3 
optimal: -178/55
+ -178/55  <=  0; value: -178/55
+ 2*v2 -191/11  <=  0; value: -103/11
+ 3*v3 -2287/55  <=  0; value: -1462/55
+ 2*v2 -4*v3  + 8  <=  0; value: -4
- 55/6*v0 -181/6  <=  0; value: 0
- 5*v0 -6*v1  + 13  <=  0; value: 0
0: 2 4 5 1 
1: 1 4 5 
2: 1 3 
3: 2 3 
0: 1 -> 181/55
1: 3 -> 54/11
2: 4 -> 4
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -6
+ 6*v1 + 5*v2 + 2*v3 -62  <=  0; value: -37
+ -2*v1  + 5  <=  0; value: -1
+ -5*v1 + 3*v2  + 12  =  0; value: 0
+ 3*v3 -3  <=  0; value: 0
+ 4*v3 -5  <  0; value: -1
0: 
1: 1 2 3 
2: 1 3 
3: 1 4 5 
optimal: oo
+ 2*v0 -5  <=  0; value: -5
+ 2*v3 -277/6  <=  0; value: -265/6
- -6/5*v2  + 1/5  <=  0; value: 0
- -5*v1 + 3*v2  + 12  =  0; value: 0
+ 3*v3 -3  <=  0; value: 0
+ 4*v3 -5  <  0; value: -1
0: 
1: 1 2 3 
2: 1 3 2 
3: 1 4 5 
0: 0 -> 0
1: 3 -> 5/2
2: 1 -> 1/6
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -6
+ -3*v0 + 5*v1 + 5*v3 -42  =  0; value: 0
+ -3*v0 + 4*v2 -3*v3 -5  <=  0; value: -11
+ -4*v0 + 3*v3 -11  =  0; value: 0
+ 6*v1 -5*v2 -17  <=  0; value: -8
+ 4*v0 + 5*v1 -31  <=  0; value: -7
0: 1 2 3 5 
1: 1 4 5 
2: 2 4 
3: 1 2 3 
optimal: 334/5
+  + 334/5  <=  0; value: 334/5
- -3*v0 + 5*v1 + 5*v3 -42  =  0; value: 0
+ 4*v2 -170  <=  0; value: -158
- -4*v0 + 3*v3 -11  =  0; value: 0
+ -5*v2 -427/5  <=  0; value: -502/5
- 1/3*v0 -22/3  <=  0; value: 0
0: 1 2 3 5 4 
1: 1 4 5 
2: 2 4 
3: 1 2 3 4 5 
0: 1 -> 22
1: 4 -> -57/5
2: 3 -> 3
3: 5 -> 33
+ 2*v0 -2*v1  <=  0; value: -2
+ 5*v2 + 6*v3 -10  =  0; value: 0
+ 4*v0 -2*v2 -9  <=  0; value: -5
+ -6*v0 -4  <  0; value: -16
+ -2*v2 -3*v3 -2  <=  0; value: -6
+ -5*v0 + 2*v2  + 6  =  0; value: 0
0: 2 3 5 
1: 
2: 1 2 4 5 
3: 1 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+ 5*v2 + 6*v3 -10  =  0; value: 0
+ 4*v0 -2*v2 -9  <=  0; value: -5
+ -6*v0 -4  <  0; value: -16
+ -2*v2 -3*v3 -2  <=  0; value: -6
+ -5*v0 + 2*v2  + 6  =  0; value: 0
0: 2 3 5 
1: 
2: 1 2 4 5 
3: 1 4 
0: 2 -> 2
1: 3 -> 3
2: 2 -> 2
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -10
+ -5*v0 + 3*v2 + v3 -18  <=  0; value: -4
+ -6*v1 + 2*v3  + 13  <=  0; value: -13
+ 3*v2 -2*v3 -18  <=  0; value: -10
+ 5*v0 + 3*v1 -15  =  0; value: 0
+ -6*v0 + v3 -4  <=  0; value: -2
0: 1 4 5 
1: 2 4 
2: 1 3 
3: 1 2 3 5 
optimal: oo
+ -8/5*v2  + 26/3  <=  0; value: 34/15
+ 6*v2 -89/2  <=  0; value: -41/2
- 10*v0 + 2*v3 -17  <=  0; value: 0
- 3*v2 -2*v3 -18  <=  0; value: 0
- 5*v0 + 3*v1 -15  =  0; value: 0
+ 33/10*v2 -34  <=  0; value: -104/5
0: 1 4 5 2 
1: 2 4 
2: 1 3 5 
3: 1 2 3 5 
0: 0 -> 23/10
1: 5 -> 7/6
2: 4 -> 4
3: 2 -> -3
+ 2*v0 -2*v1  <=  0; value: 0
+ 5*v0 -3*v1 -2  =  0; value: 0
+ v0 -5*v1 -3  <=  0; value: -7
+ -6*v0 -5*v2 -2*v3 -15  <  0; value: -46
+ -2*v2 -5  <  0; value: -11
+ -6*v2 -3*v3  + 33  =  0; value: 0
0: 1 2 3 
1: 1 2 
2: 3 4 5 
3: 3 5 
optimal: 14/11
+  + 14/11  <=  0; value: 14/11
- 5*v0 -3*v1 -2  =  0; value: 0
- -22/3*v0  + 1/3  <=  0; value: 0
+ -5*v2 -2*v3 -168/11  <  0; value: -443/11
+ -2*v2 -5  <  0; value: -11
+ -6*v2 -3*v3  + 33  =  0; value: 0
0: 1 2 3 
1: 1 2 
2: 3 4 5 
3: 3 5 
0: 1 -> 1/22
1: 1 -> -13/22
2: 3 -> 3
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -6
+ -5*v0  <=  0; value: 0
+ 2*v3 -17  <=  0; value: -7
+ 6*v0 -3*v1  + 8  <  0; value: -1
+ -3*v1 + 2*v2  + 5  =  0; value: 0
+ -6*v0 -1*v1 -5*v3  + 28  =  0; value: 0
0: 1 3 5 
1: 3 4 5 
2: 4 
3: 2 5 
optimal: (-16/3 -e*1)
+ -16/3  <  0; value: -16/3
- -5*v0  <=  0; value: 0
+ -103/15  <=  0; value: -103/15
- 24*v0 + 15*v3 -76  <  0; value: -1/2
- -3*v1 + 2*v2  + 5  =  0; value: 0
- -6*v0 -2/3*v2 -5*v3  + 79/3  =  0; value: 0
0: 1 3 5 2 
1: 3 4 5 
2: 4 3 5 
3: 2 5 3 
0: 0 -> 0
1: 3 -> 17/6
2: 2 -> 7/4
3: 5 -> 151/30
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v0 + 4*v2 -2*v3 -47  <=  0; value: -15
+ -1*v1  + 4  <=  0; value: 0
+ 6*v0 + v1 -5*v3 -32  <  0; value: -14
+ -4*v1 + 4*v3  + 3  <=  0; value: -5
+ -5*v2  + 24  <=  0; value: -1
0: 1 3 
1: 2 3 4 
2: 1 5 
3: 1 3 4 
optimal: (27/4 -e*1)
+  + 27/4  <  0; value: 27/4
+ 4*v2 -24  <=  0; value: -4
- -1*v1  + 4  <=  0; value: 0
- 6*v0 -5*v3 -28  <  0; value: -6
- 4*v3 -13  <=  0; value: 0
+ -5*v2  + 24  <=  0; value: -1
0: 1 3 
1: 2 3 4 
2: 1 5 
3: 1 3 4 
0: 4 -> 51/8
1: 4 -> 4
2: 5 -> 5
3: 2 -> 13/4
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v1 -2*v3 -10  =  0; value: 0
+ 4*v1 -20  =  0; value: 0
+ -5*v0 -4*v3  + 10  <  0; value: -35
+ -1*v0 + 5*v3 -36  <=  0; value: -16
+ -4*v1 + 4*v2 + 6*v3 -26  <=  0; value: -8
0: 3 4 
1: 1 2 5 
2: 5 
3: 1 3 4 5 
optimal: oo
+ 2*v0 -10  <=  0; value: 0
- 4*v1 -2*v3 -10  =  0; value: 0
- 2*v3 -10  =  0; value: 0
+ -5*v0 -10  <  0; value: -35
+ -1*v0 -11  <=  0; value: -16
+ 4*v2 -16  <=  0; value: -8
0: 3 4 
1: 1 2 5 
2: 5 
3: 1 3 4 5 2 
0: 5 -> 5
1: 5 -> 5
2: 2 -> 2
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: 0
+ -4*v2 -6  <=  0; value: -18
+ -1*v0 + v2 -2  <=  0; value: 0
+ 3*v0 + 2*v1 -5*v2  + 10  =  0; value: 0
+ 4*v0 + 2*v1 + 5*v2 -53  <  0; value: -32
+ 2*v0 -4*v2 -2*v3  + 10  =  0; value: 0
0: 2 3 4 5 
1: 3 4 
2: 1 2 3 4 5 
3: 5 
optimal: (815/2 -e*1)
+  + 815/2  <  0; value: 815/2
- -2*v0 + 2*v3 -16  <=  0; value: 0
+ -163/2  <  0; value: -163/2
- 3*v0 + 2*v1 -5*v2  + 10  =  0; value: 0
- v0 -78  <  0; value: -1
- 2*v0 -4*v2 -2*v3  + 10  =  0; value: 0
0: 2 3 4 5 1 
1: 3 4 
2: 1 2 3 4 5 
3: 5 1 2 4 
0: 1 -> 77
1: 1 -> -497/4
2: 3 -> -3/2
3: 0 -> 85
+ 2*v0 -2*v1  <=  0; value: 4
+ -4*v0 -1*v2 + 3*v3 -10  <=  0; value: -22
+ 5*v2 + 3*v3 -38  <=  0; value: -24
+ 4*v3 -12  <=  0; value: 0
+ -6*v1 -1*v2 + 6*v3  <=  0; value: -1
+ 4*v1 -2*v3 -6  <=  0; value: 0
0: 1 
1: 4 5 
2: 1 2 4 
3: 1 2 3 4 5 
optimal: oo
+ 2*v0 + 1/3*v2 -2*v3  <=  0; value: 13/3
+ -4*v0 -1*v2 + 3*v3 -10  <=  0; value: -22
+ 5*v2 + 3*v3 -38  <=  0; value: -24
+ 4*v3 -12  <=  0; value: 0
- -6*v1 -1*v2 + 6*v3  <=  0; value: 0
+ -2/3*v2 + 2*v3 -6  <=  0; value: -2/3
0: 1 
1: 4 5 
2: 1 2 4 5 
3: 1 2 3 4 5 
0: 5 -> 5
1: 3 -> 17/6
2: 1 -> 1
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 2
+ -3*v0 -5*v1  + 19  =  0; value: 0
+ -4*v0 -2*v3  + 18  =  0; value: 0
+ 3*v2 -6*v3  + 2  <=  0; value: -4
+ -4*v1 + 2*v3  <  0; value: -2
+ -3*v1 -4*v2 -3*v3 -24  <=  0; value: -55
0: 1 2 
1: 1 4 5 
2: 3 5 
3: 2 3 4 5 
optimal: 3610/357
+  + 3610/357  <=  0; value: 3610/357
- -3*v0 -5*v1  + 19  =  0; value: 0
- -4*v0 -2*v3  + 18  =  0; value: 0
- 3*v2 -6*v3  + 2  <=  0; value: 0
+ -2162/357  <  0; value: -2162/357
- -119/20*v2 -143/5  <=  0; value: 0
0: 1 2 4 5 
1: 1 4 5 
2: 3 5 4 
3: 2 3 4 5 
0: 3 -> 1976/357
1: 2 -> 57/119
2: 4 -> -572/119
3: 3 -> -739/357
+ 2*v0 -2*v1  <=  0; value: 2
+ -1*v1 -5*v3 -17  <=  0; value: -40
+ 2*v1 -4*v2 -1  <=  0; value: -3
+ v2 -4*v3  + 14  =  0; value: 0
+ v0 + 2*v1 -25  <=  0; value: -15
+ -2*v1 -1*v2 -3*v3  + 20  =  0; value: 0
0: 4 
1: 1 2 4 5 
2: 2 3 5 
3: 1 3 5 
optimal: oo
+ 2*v0 + 7/4*v2 -19/2  <=  0; value: 2
+ -3/8*v2 -157/4  <=  0; value: -40
+ -23/4*v2  + 17/2  <=  0; value: -3
- v2 -4*v3  + 14  =  0; value: 0
+ v0 -7/4*v2 -31/2  <=  0; value: -15
- -2*v1 -1*v2 -3*v3  + 20  =  0; value: 0
0: 4 
1: 1 2 4 5 
2: 2 3 5 1 4 
3: 1 3 5 2 4 
0: 4 -> 4
1: 3 -> 3
2: 2 -> 2
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 4
+ -2*v1  + 3  <=  0; value: -3
+ -1*v1 -3*v2 + v3  + 4  =  0; value: 0
+ v1 -1*v3 -1  <=  0; value: -3
+ 5*v0 -26  <=  0; value: -1
+ v0 + 5*v2 -2*v3 -8  <  0; value: -3
0: 4 5 
1: 1 2 3 
2: 2 5 
3: 2 3 5 
optimal: (37/5 -e*1)
+  + 37/5  <  0; value: 37/5
- -1*v0 + v2  + 3  <=  0; value: 0
- -1*v1 -3*v2 + v3  + 4  =  0; value: 0
+ -18/5  <=  0; value: -18/5
- 5*v0 -26  <=  0; value: 0
- v0 + 5*v2 -2*v3 -8  <  0; value: -9/10
0: 4 5 1 3 
1: 1 2 3 
2: 2 5 1 3 
3: 2 3 5 1 
0: 5 -> 26/5
1: 3 -> 39/20
2: 2 -> 11/5
3: 5 -> 91/20
+ 2*v0 -2*v1  <=  0; value: -2
+ 3*v0 -5*v3  + 1  <  0; value: -1
+ -4*v1 + 3*v3 -3  <=  0; value: -8
+ -1*v1  + 1  <=  0; value: -1
+ -1*v0 -4*v1 -5*v3  + 7  <=  0; value: -7
+ -3*v0 -3*v3 -1  <=  0; value: -7
0: 1 4 5 
1: 2 3 4 
2: 
3: 1 2 4 5 
optimal: (46/9 -e*1)
+  + 46/9  <  0; value: 46/9
- 3*v0 -5*v3  + 1  <  0; value: -3
- 3*v3 -7  <=  0; value: 0
- -1*v1  + 1  <=  0; value: 0
+ -110/9  <  0; value: -110/9
+ -56/3  <  0; value: -56/3
0: 1 4 5 
1: 2 3 4 
2: 
3: 1 2 4 5 
0: 1 -> 23/9
1: 2 -> 1
2: 0 -> 0
3: 1 -> 7/3
+ 2*v0 -2*v1  <=  0; value: -2
+ v0 + 5*v1 -1*v2 -19  <=  0; value: -11
+ -3*v1 + 3*v2 + 2*v3 -5  =  0; value: 0
+ -1*v2 + 6*v3 -8  <=  0; value: -5
+ 3*v0 + 3*v1 -3*v2  =  0; value: 0
+ -1*v0 + 2*v1 + 2*v3 -14  <=  0; value: -9
0: 1 4 5 
1: 1 2 4 5 
2: 1 2 3 4 
3: 2 3 5 
optimal: oo
+ 22*v0 -14  <=  0; value: 8
+ -40*v0  + 9  <=  0; value: -31
- -3*v1 + 3*v2 + 2*v3 -5  =  0; value: 0
- -9*v0 -1*v2  + 7  <=  0; value: 0
- 3*v0 + 2*v3 -5  =  0; value: 0
+ -24*v0  + 5  <=  0; value: -19
0: 1 4 5 3 
1: 1 2 4 5 
2: 1 2 3 4 5 
3: 2 3 5 4 1 
0: 1 -> 1
1: 2 -> -3
2: 3 -> -2
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -4
+ -2*v1  + 6  =  0; value: 0
+ 3*v0 + 6*v2 -21  =  0; value: 0
+ 4*v2 + 5*v3 -29  <=  0; value: -17
+ -4*v1 -1*v3  + 12  =  0; value: 0
+ -3*v0 -2*v1 + 5*v3  + 3  <  0; value: -6
0: 2 5 
1: 1 4 5 
2: 2 3 
3: 3 4 5 
optimal: oo
+ -4*v2  + 8  <=  0; value: -4
- -2*v1  + 6  =  0; value: 0
- 3*v0 + 6*v2 -21  =  0; value: 0
+ 4*v2 + 5*v3 -29  <=  0; value: -17
+ -1*v3  =  0; value: 0
+ 6*v2 + 5*v3 -24  <  0; value: -6
0: 2 5 
1: 1 4 5 
2: 2 3 5 
3: 3 4 5 
0: 1 -> 1
1: 3 -> 3
2: 3 -> 3
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -2
+  =  0; value: 0
+ 5*v0 + 4*v2 -12  <=  0; value: -4
+ -1*v1  <=  0; value: -1
+ -6*v1 + 2*v2  <  0; value: -2
+ -6*v0 + 2*v1 + 6*v3 -5  <  0; value: -3
0: 2 5 
1: 3 4 5 
2: 2 4 
3: 5 
optimal: (24/5 -e*1)
+  + 24/5  <  0; value: 24/5
+  =  0; value: 0
- 5*v0 -12  <=  0; value: 0
- -1/3*v2  <=  0; value: 0
- -6*v1 + 2*v2  <  0; value: -3
+ 6*v3 -97/5  <  0; value: -97/5
0: 2 5 
1: 3 4 5 
2: 2 4 3 5 
3: 5 
0: 0 -> 12/5
1: 1 -> 1/2
2: 2 -> 0
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 6
+ -2*v0 + 2*v3 -3  <  0; value: -9
+ -5*v0 + v1 + 4*v3  + 1  <  0; value: -14
+ 6*v1 + 4*v2 -30  <  0; value: -12
+ 4*v0 + 4*v3 -20  =  0; value: 0
+ -2*v1 + v3  <=  0; value: -1
0: 1 2 4 
1: 2 3 5 
2: 3 
3: 1 2 4 5 
optimal: oo
+ 3*v0 -5  <=  0; value: 7
+ -4*v0  + 7  <  0; value: -9
+ -19/2*v0  + 47/2  <  0; value: -29/2
+ -3*v0 + 4*v2 -15  <  0; value: -15
- 4*v0 + 4*v3 -20  =  0; value: 0
- -2*v1 + v3  <=  0; value: 0
0: 1 2 4 3 
1: 2 3 5 
2: 3 
3: 1 2 4 5 3 
0: 4 -> 4
1: 1 -> 1/2
2: 3 -> 3
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 2
+ -3*v1 -4*v3 -11  <  0; value: -28
+ 4*v2 -13  <  0; value: -1
+ -6*v1 -4*v3 -20  <=  0; value: -46
+ -1*v0 -1*v1 + 6*v2 -13  <=  0; value: -2
+ -1*v3  <  0; value: -2
0: 4 
1: 1 3 4 
2: 2 4 
3: 1 3 5 
optimal: oo
+ 2*v0 + 4/3*v3  + 20/3  <=  0; value: 52/3
+ -2*v3 -1  <  0; value: -5
+ 2/3*v0 -4/9*v3 -59/9  <  0; value: -43/9
- 6*v0 -36*v2 -4*v3  + 58  <=  0; value: 0
- -1*v0 -1*v1 + 6*v2 -13  <=  0; value: 0
+ -1*v3  <  0; value: -2
0: 4 1 3 2 
1: 1 3 4 
2: 2 4 1 3 
3: 1 3 5 2 
0: 4 -> 4
1: 3 -> -14/3
2: 3 -> 37/18
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -8
+ -6*v0 -1*v1  + 3  <=  0; value: -1
+ 6*v1 -2*v2 + 2*v3 -31  <  0; value: -1
+ 3*v0 + 6*v3 -76  <=  0; value: -46
+ 3*v1 -5*v2 -2  =  0; value: 0
+ -6*v3 -13  <  0; value: -43
0: 1 3 
1: 1 2 4 
2: 2 4 
3: 2 3 5 
optimal: (1228/3 -e*1)
+  + 1228/3  <  0; value: 1228/3
- -6*v0 -5/3*v2  + 7/3  <=  0; value: 0
+ -13118/15  <  0; value: -13118/15
- 3*v0 + 6*v3 -76  <=  0; value: 0
- 3*v1 -5*v2 -2  =  0; value: 0
- -6*v3 -13  <  0; value: -6
0: 1 3 2 
1: 1 2 4 
2: 2 4 1 
3: 2 3 5 
0: 0 -> 83/3
1: 4 -> -163
2: 2 -> -491/5
3: 5 -> -7/6
+ 2*v0 -2*v1  <=  0; value: -2
+ 3*v0 + 3*v2 + 5*v3 -47  <=  0; value: -27
+ -1*v1 + 2*v2 -9  =  0; value: 0
+ 3*v1 -2*v2 -1*v3  + 2  <  0; value: -6
+ v1 + 4*v2 + 6*v3 -58  <=  0; value: -31
+ 2*v0 -3*v1 + 5*v2 -48  <=  0; value: -26
0: 1 5 
1: 2 3 4 5 
2: 1 2 3 4 5 
3: 1 3 4 
optimal: oo
+ -6*v0  + 102  <=  0; value: 102
+ 9*v0 + 5*v3 -110  <=  0; value: -105
- -1*v1 + 2*v2 -9  =  0; value: 0
+ 8*v0 -1*v3 -109  <  0; value: -110
+ 12*v0 + 6*v3 -193  <=  0; value: -187
- 2*v0 -1*v2 -21  <=  0; value: 0
0: 1 5 3 4 
1: 2 3 4 5 
2: 1 2 3 4 5 
3: 1 3 4 
0: 0 -> 0
1: 1 -> -51
2: 5 -> -21
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v3 -12  <=  0; value: 0
+ -3*v2 -2*v3  + 4  <  0; value: -14
+ v0 -2  <=  0; value: -1
+ -2*v0 + 5*v2 -35  <=  0; value: -17
+ 5*v0 + 4*v3 -17  =  0; value: 0
0: 3 4 5 
1: 
2: 2 4 
3: 1 2 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v3 -12  <=  0; value: 0
+ -3*v2 -2*v3  + 4  <  0; value: -14
+ v0 -2  <=  0; value: -1
+ -2*v0 + 5*v2 -35  <=  0; value: -17
+ 5*v0 + 4*v3 -17  =  0; value: 0
0: 3 4 5 
1: 
2: 2 4 
3: 1 2 5 
0: 1 -> 1
1: 1 -> 1
2: 4 -> 4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ v1 + 3*v3 -7  <=  0; value: -4
+ -3*v1 -6*v2  + 2  <=  0; value: -7
+ 6*v1 + 3*v2 -18  =  0; value: 0
+ 6*v0 -6*v2 + 4*v3 -31  <  0; value: -13
+ -1*v0 -2*v1 -1*v3 -3  <=  0; value: -12
0: 4 5 
1: 1 2 3 5 
2: 2 3 4 
3: 1 4 5 
optimal: oo
+ 16/5*v0  + 32/5  <=  0; value: 16
- -1/2*v0 + 5/2*v3 -17/2  <=  0; value: 0
+ -27/5*v0 -314/5  <=  0; value: -79
- 6*v1 + 3*v2 -18  =  0; value: 0
+ -2/5*v0 -459/5  <  0; value: -93
- -1*v0 + v2 -1*v3 -9  <=  0; value: 0
0: 4 5 2 1 4 
1: 1 2 3 5 
2: 2 3 4 5 1 
3: 1 4 5 2 
0: 3 -> 3
1: 3 -> -5
2: 0 -> 16
3: 0 -> 4
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v1 -34  <=  0; value: -18
+ -1*v0 + v1 + 2*v3  <=  0; value: 0
+ -1*v2 + v3  =  0; value: 0
+ 4*v0 -16  =  0; value: 0
+ 5*v2  =  0; value: 0
0: 2 4 
1: 1 2 
2: 3 5 
3: 2 3 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v1 -34  <=  0; value: -18
+ -1*v0 + v1 + 2*v3  <=  0; value: 0
+ -1*v2 + v3  =  0; value: 0
+ 4*v0 -16  =  0; value: 0
+ 5*v2  =  0; value: 0
0: 2 4 
1: 1 2 
2: 3 5 
3: 2 3 
0: 4 -> 4
1: 4 -> 4
2: 0 -> 0
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 6
+ -4*v0 + 4*v1 -3  <  0; value: -15
+ -6*v0 -1*v2 -2*v3  + 31  <=  0; value: -4
+ 6*v0 + 2*v1 -26  =  0; value: 0
+ -6*v0 -4*v2  + 20  <=  0; value: -16
+ 6*v3 -24  =  0; value: 0
0: 1 2 3 4 
1: 1 3 
2: 2 4 
3: 2 5 
optimal: oo
+ 8*v0 -26  <=  0; value: 6
+ -16*v0  + 49  <  0; value: -15
+ -6*v0 -1*v2 -2*v3  + 31  <=  0; value: -4
- 6*v0 + 2*v1 -26  =  0; value: 0
+ -6*v0 -4*v2  + 20  <=  0; value: -16
+ 6*v3 -24  =  0; value: 0
0: 1 2 3 4 
1: 1 3 
2: 2 4 
3: 2 5 
0: 4 -> 4
1: 1 -> 1
2: 3 -> 3
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 2
+ 4*v2 + 2*v3 -25  <=  0; value: -13
+ 5*v0 -6*v3  + 9  =  0; value: 0
+ -2*v0 + v1 -5*v3 -13  <  0; value: -37
+ 5*v2 -5  =  0; value: 0
+ 6*v0 + 6*v3 -75  <  0; value: -33
0: 2 3 5 
1: 3 
2: 1 4 
3: 1 2 3 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 2
+ 4*v2 + 2*v3 -25  <=  0; value: -13
+ 5*v0 -6*v3  + 9  =  0; value: 0
+ -2*v0 + v1 -5*v3 -13  <  0; value: -37
+ 5*v2 -5  =  0; value: 0
+ 6*v0 + 6*v3 -75  <  0; value: -33
0: 2 3 5 
1: 3 
2: 1 4 
3: 1 2 3 5 
0: 3 -> 3
1: 2 -> 2
2: 1 -> 1
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 4
+ 5*v0 -37  <=  0; value: -22
+  =  0; value: 0
+ -1*v0 -5*v2 + 2*v3 -7  <=  0; value: -20
+ -4*v3 -14  <  0; value: -34
+ 3*v0 + 5*v1 -34  <  0; value: -20
0: 1 3 5 
1: 5 
2: 3 
3: 3 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 4
+ 5*v0 -37  <=  0; value: -22
+  =  0; value: 0
+ -1*v0 -5*v2 + 2*v3 -7  <=  0; value: -20
+ -4*v3 -14  <  0; value: -34
+ 3*v0 + 5*v1 -34  <  0; value: -20
0: 1 3 5 
1: 5 
2: 3 
3: 3 4 
0: 3 -> 3
1: 1 -> 1
2: 4 -> 4
3: 5 -> 5
+ 2*v0 -2*v1  <=  0; value: -2
+ v1 -4*v2  + 7  =  0; value: 0
+  <=  0; value: 0
+ 2*v2 -1*v3 -1  =  0; value: 0
+ 2*v0 -1*v1 -3*v3  + 8  <=  0; value: -2
+ 5*v3 -17  <  0; value: -2
0: 4 
1: 1 4 
2: 1 3 
3: 3 4 5 
optimal: (2/5 -e*1)
+  + 2/5  <  0; value: 2/5
- v1 -4*v2  + 7  =  0; value: 0
+  <=  0; value: 0
- 2*v2 -1*v3 -1  =  0; value: 0
- 2*v0 -5*v3  + 13  <=  0; value: 0
- 2*v0 -4  <  0; value: -2
0: 4 5 
1: 1 4 
2: 1 3 4 
3: 3 4 5 
0: 0 -> 1
1: 1 -> 1
2: 2 -> 2
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -2
+ 4*v0 -20  <  0; value: -12
+ -3*v2 -4*v3  + 2  <=  0; value: -19
+ -2*v0 + v1  + 1  <=  0; value: 0
+ -3*v0 -5*v1 + 4*v3 -6  <=  0; value: -15
+ -3*v0 + 3*v1 + v2 -6  =  0; value: 0
0: 1 3 4 5 
1: 3 4 5 
2: 2 5 
3: 2 4 
optimal: oo
+ 16/5*v0 -8/5*v3  + 12/5  <=  0; value: 4
+ 4*v0 -20  <  0; value: -12
+ -72/5*v0 + 16/5*v3 -134/5  <=  0; value: -46
+ -13/5*v0 + 4/5*v3 -1/5  <=  0; value: -3
- -8*v0 + 5/3*v2 + 4*v3 -16  <=  0; value: 0
- -3*v0 + 3*v1 + v2 -6  =  0; value: 0
0: 1 3 4 5 2 
1: 3 4 5 
2: 2 5 4 3 
3: 2 4 3 
0: 2 -> 2
1: 3 -> 0
2: 3 -> 12
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -4
+ -3*v0 + 6*v1 + 2*v3 -37  <  0; value: -13
+ 2*v0 + 3*v1 + 2*v3 -50  <=  0; value: -28
+ -5*v0 -2  <=  0; value: -12
+  =  0; value: 0
+ -2*v1 + 3*v2 -4  =  0; value: 0
0: 1 2 3 
1: 1 2 5 
2: 5 
3: 1 2 
optimal: oo
+ 2*v0 -3*v2  + 4  <=  0; value: -4
+ -3*v0 + 9*v2 + 2*v3 -49  <  0; value: -13
+ 2*v0 + 9/2*v2 + 2*v3 -56  <=  0; value: -28
+ -5*v0 -2  <=  0; value: -12
+  =  0; value: 0
- -2*v1 + 3*v2 -4  =  0; value: 0
0: 1 2 3 
1: 1 2 5 
2: 5 1 2 
3: 1 2 
0: 2 -> 2
1: 4 -> 4
2: 4 -> 4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 6
+ -3*v0 -7  <=  0; value: -16
+ -3*v0 + 4*v1 + v3  + 8  =  0; value: 0
+ -1*v0 -4*v1 + 5*v2 -17  <=  0; value: -5
+ -5*v2 + 6*v3 -7  <=  0; value: -16
+ 5*v0 -1*v2 -28  <=  0; value: -16
0: 1 2 3 5 
1: 2 3 
2: 3 4 5 
3: 2 4 
optimal: 3167/302
+  + 3167/302  <=  0; value: 3167/302
+ -4138/151  <=  0; value: -4138/151
- -3*v0 + 4*v1 + v3  + 8  =  0; value: 0
- -4*v0 + 35/6*v2 -47/6  <=  0; value: 0
- -5*v2 + 6*v3 -7  <=  0; value: 0
- 151/35*v0 -1027/35  <=  0; value: 0
0: 1 2 3 5 
1: 2 3 
2: 3 4 5 
3: 2 4 3 
0: 3 -> 1027/151
1: 0 -> 941/604
2: 3 -> 907/151
3: 1 -> 932/151
+ 2*v0 -2*v1  <=  0; value: 10
+ -5*v0 + 2*v1 -4*v3  + 41  =  0; value: 0
+ -5*v2 + 6*v3  + 1  <=  0; value: 0
+ -5*v2 -5*v3  + 45  =  0; value: 0
+ 4*v0 -31  <=  0; value: -11
+ -5*v0 + 4*v2  + 5  =  0; value: 0
0: 1 4 5 
1: 1 
2: 2 3 5 
3: 1 2 3 
optimal: 31/2
+  + 31/2  <=  0; value: 31/2
- -5*v0 + 2*v1 -4*v3  + 41  =  0; value: 0
+ -605/16  <=  0; value: -605/16
- -5*v2 -5*v3  + 45  =  0; value: 0
- 4*v0 -31  <=  0; value: 0
- -5*v0 + 4*v2  + 5  =  0; value: 0
0: 1 4 5 2 
1: 1 
2: 2 3 5 
3: 1 2 3 
0: 5 -> 31/4
1: 0 -> 0
2: 5 -> 135/16
3: 4 -> 9/16
+ 2*v0 -2*v1  <=  0; value: 8
+ -2*v1  <=  0; value: 0
+ -5*v0 + 2*v3 -1  <=  0; value: -13
+ 2*v0 -22  <=  0; value: -14
+ 3*v0 -12  <=  0; value: 0
+ 3*v0 -3*v3  <=  0; value: 0
0: 2 3 4 5 
1: 1 
2: 
3: 2 5 
optimal: 8
+  + 8  <=  0; value: 8
- -2*v1  <=  0; value: 0
+ 2*v3 -21  <=  0; value: -13
+ -14  <=  0; value: -14
- 3*v0 -12  <=  0; value: 0
+ -3*v3  + 12  <=  0; value: 0
0: 2 3 4 5 
1: 1 
2: 
3: 2 5 
0: 4 -> 4
1: 0 -> 0
2: 0 -> 0
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -2
+ -5*v0 + 4*v2  <=  0; value: 0
+ 4*v2 -20  =  0; value: 0
+ -3*v1 + v2  + 10  =  0; value: 0
+ -3*v1 -4*v3  + 13  <=  0; value: -2
+ v1 -12  <=  0; value: -7
0: 1 
1: 3 4 5 
2: 1 2 3 
3: 4 
optimal: oo
+ 2*v0 -10  <=  0; value: -2
+ -5*v0  + 20  <=  0; value: 0
- 4*v2 -20  =  0; value: 0
- -3*v1 + v2  + 10  =  0; value: 0
+ -4*v3 -2  <=  0; value: -2
+ -7  <=  0; value: -7
0: 1 
1: 3 4 5 
2: 1 2 3 4 5 
3: 4 
0: 4 -> 4
1: 5 -> 5
2: 5 -> 5
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -10
+ 2*v0 -2*v2 -3  <  0; value: -7
+ 4*v2 -4*v3 -8  <  0; value: -4
+ -4*v1 -5*v2  + 30  =  0; value: 0
+  <=  0; value: 0
+ 5*v2 + 3*v3 -27  <=  0; value: -14
0: 1 
1: 3 
2: 1 2 3 5 
3: 2 5 
optimal: (105/16 -e*1)
+  + 105/16  <  0; value: 105/16
- 2*v0 -45/4  <  0; value: -2
- 4*v2 -4*v3 -8  <  0; value: -4
- -4*v1 -5*v2  + 30  =  0; value: 0
+  <=  0; value: 0
- 8*v3 -17  <=  0; value: 0
0: 1 
1: 3 
2: 1 2 3 5 
3: 2 5 1 
0: 0 -> 37/8
1: 5 -> 115/32
2: 2 -> 25/8
3: 1 -> 17/8
+ 2*v0 -2*v1  <=  0; value: 4
+ 6*v0 + 6*v2 -37  <  0; value: -1
+ -2*v0 -4*v1 -4*v2  + 1  <=  0; value: -21
+ v0 + 5*v1 + v3 -18  <=  0; value: -9
+ -4*v2 + 6*v3  + 6  =  0; value: 0
+ 4*v3 -6  <  0; value: -2
0: 1 2 3 
1: 2 3 
2: 1 2 4 
3: 3 4 5 
optimal: (468/17 -e*1)
+  + 468/17  <  0; value: 468/17
- 6*v0 + 9*v3 -28  <  0; value: -9
- -2*v0 -4*v1 -4*v2  + 1  <=  0; value: 0
- 17/6*v0 -1601/36  <  0; value: -17/6
- -4*v2 + 6*v3  + 6  =  0; value: 0
+ -602/17  <  0; value: -602/17
0: 1 2 3 5 
1: 2 3 
2: 1 2 4 3 
3: 3 4 5 1 
0: 3 -> 1499/102
1: 1 -> 299/102
2: 3 -> -341/34
3: 1 -> -392/51
+ 2*v0 -2*v1  <=  0; value: -4
+ v3  =  0; value: 0
+ -6*v0 -6*v2  + 15  <=  0; value: -3
+ v2 + 5*v3 -2  =  0; value: 0
+ 3*v0 + v3 -7  <=  0; value: -4
+ 5*v1 -22  <  0; value: -7
0: 2 4 
1: 5 
2: 2 3 
3: 1 3 4 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -4
+ v3  =  0; value: 0
+ -6*v0 -6*v2  + 15  <=  0; value: -3
+ v2 + 5*v3 -2  =  0; value: 0
+ 3*v0 + v3 -7  <=  0; value: -4
+ 5*v1 -22  <  0; value: -7
0: 2 4 
1: 5 
2: 2 3 
3: 1 3 4 
0: 1 -> 1
1: 3 -> 3
2: 2 -> 2
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 0
+ 4*v2 -2*v3 -7  <=  0; value: -3
+  <=  0; value: 0
+ 6*v1 -2*v2 -3*v3 -59  <=  0; value: -37
+ -5*v0 -2*v1 + 6*v2  + 18  <  0; value: -4
+ 4*v0 + 6*v2 -23  <  0; value: -1
0: 4 5 
1: 3 4 
2: 1 3 4 5 
3: 1 3 
optimal: oo
+ 7*v0 -6*v2 -18  <  0; value: 4
+ 4*v2 -2*v3 -7  <=  0; value: -3
+  <=  0; value: 0
+ -15*v0 + 16*v2 -3*v3 -5  <  0; value: -49
- -5*v0 -2*v1 + 6*v2  + 18  <  0; value: -2
+ 4*v0 + 6*v2 -23  <  0; value: -1
0: 4 5 3 
1: 3 4 
2: 1 3 4 5 
3: 1 3 
0: 4 -> 4
1: 4 -> 3
2: 1 -> 1
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 2
+ -6*v0  + 30  =  0; value: 0
+ 5*v0 -6*v1 -5*v3  + 13  <=  0; value: -1
+ -3*v0 + 4*v1 + 4*v2 -47  <=  0; value: -30
+ 4*v0 -20  =  0; value: 0
+ -1*v2 + v3  + 1  =  0; value: 0
0: 1 2 3 4 
1: 2 3 
2: 3 5 
3: 2 5 
optimal: 79
+  + 79  <=  0; value: 79
- -6*v0  + 30  =  0; value: 0
- 5*v0 -6*v1 -5*v3  + 13  <=  0; value: 0
- 1/3*v0 + 2/3*v2 -35  <=  0; value: 0
+  =  0; value: 0
- -1*v2 + v3  + 1  =  0; value: 0
0: 1 2 3 4 
1: 2 3 
2: 3 5 
3: 2 5 3 
0: 5 -> 5
1: 4 -> -69/2
2: 4 -> 50
3: 3 -> 49
+ 2*v0 -2*v1  <=  0; value: -4
+ -3*v0  <=  0; value: 0
+ 2*v3 -11  <  0; value: -5
+ 3*v0 -2*v3 -1  <  0; value: -7
+ v0 -3*v2 -4  <=  0; value: -10
+ 6*v0 + 4*v1 -5*v3  + 1  <=  0; value: -6
0: 1 3 4 5 
1: 5 
2: 4 
3: 2 3 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -4
+ -3*v0  <=  0; value: 0
+ 2*v3 -11  <  0; value: -5
+ 3*v0 -2*v3 -1  <  0; value: -7
+ v0 -3*v2 -4  <=  0; value: -10
+ 6*v0 + 4*v1 -5*v3  + 1  <=  0; value: -6
0: 1 3 4 5 
1: 5 
2: 4 
3: 2 3 5 
0: 0 -> 0
1: 2 -> 2
2: 2 -> 2
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 4
+ 4*v1 + 5*v3 -67  <=  0; value: -40
+ v1 -3*v3  + 1  <=  0; value: -5
+ 6*v0 + 2*v2 + 2*v3 -71  <=  0; value: -31
+ -4*v0 -6*v3  + 6  <=  0; value: -32
+ -6*v1 + 5*v3  + 2  <=  0; value: -1
0: 3 4 
1: 1 2 5 
2: 3 
3: 1 2 3 4 5 
optimal: oo
+ -2/3*v2  + 841/39  <=  0; value: 263/13
+ -787/13  <=  0; value: -787/13
- -13/6*v3  + 4/3  <=  0; value: 0
- 6*v0 + 2*v2 -907/13  <=  0; value: 0
+ 4/3*v2 -1724/39  <=  0; value: -540/13
- -6*v1 + 5*v3  + 2  <=  0; value: 0
0: 3 4 
1: 1 2 5 
2: 3 4 
3: 1 2 3 4 5 
0: 5 -> 285/26
1: 3 -> 11/13
2: 2 -> 2
3: 3 -> 8/13
+ 2*v0 -2*v1  <=  0; value: 2
+ 3*v3 -18  <=  0; value: -9
+ 4*v1 -5*v2  + 5  =  0; value: 0
+ 4*v0 + 2*v1 -8  <=  0; value: -4
+ -6*v3  + 18  =  0; value: 0
+ -3*v1 + 3*v2 + v3 -16  <=  0; value: -10
0: 3 
1: 2 3 5 
2: 2 5 
3: 1 4 5 
optimal: 54
+  + 54  <=  0; value: 54
+ -9  <=  0; value: -9
- 4*v1 -5*v2  + 5  =  0; value: 0
- 4*v0 -124/3  <=  0; value: 0
- -6*v3  + 18  =  0; value: 0
- -3/4*v2 + v3 -49/4  <=  0; value: 0
0: 3 
1: 2 3 5 
2: 2 5 3 
3: 1 4 5 3 
0: 1 -> 31/3
1: 0 -> -50/3
2: 1 -> -37/3
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 2
+ 4*v1 -2*v2 -17  <  0; value: -5
+ -2*v0  + 8  =  0; value: 0
+ -2*v1 + 4*v2 + v3  <  0; value: -4
+ 4*v0 + 6*v1 -63  <=  0; value: -29
+ -5*v0 -1*v1  + 19  <  0; value: -4
0: 2 4 5 
1: 1 3 4 5 
2: 1 3 
3: 3 
optimal: (10 -e*1)
+  + 10  <  0; value: 10
+ -2*v2 -21  <  0; value: -21
- -2*v0  + 8  =  0; value: 0
- -2*v1 + 4*v2 + v3  <  0; value: -2
+ -53  <  0; value: -53
- -5*v0 -2*v2 -1/2*v3  + 19  <=  0; value: 0
0: 2 4 5 1 
1: 1 3 4 5 
2: 1 3 5 4 
3: 3 5 1 4 
0: 4 -> 4
1: 3 -> 0
2: 0 -> 0
3: 2 -> -2
+ 2*v0 -2*v1  <=  0; value: -4
+ 6*v2 + 3*v3 -16  <  0; value: -7
+ -3*v0 -6*v1  + 11  <=  0; value: -1
+ -4*v1 -4*v2 -1*v3  + 11  =  0; value: 0
+ -5*v1  + 10  =  0; value: 0
+ 5*v1 + 3*v3 -27  <  0; value: -8
0: 2 
1: 2 3 4 5 
2: 1 3 
3: 1 3 5 
optimal: oo
+ 2*v0 -4  <=  0; value: -4
+ -6*v2 -7  <  0; value: -7
+ -3*v0 -1  <=  0; value: -1
- -4*v1 -4*v2 -1*v3  + 11  =  0; value: 0
- 5*v2 + 5/4*v3 -15/4  =  0; value: 0
+ -12*v2 -8  <  0; value: -8
0: 2 
1: 2 3 4 5 
2: 1 3 2 4 5 
3: 1 3 5 2 4 
0: 0 -> 0
1: 2 -> 2
2: 0 -> 0
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -6
+ -1*v1 + 4*v3 -5  =  0; value: 0
+ 6*v0 + v1 -3*v2  <=  0; value: -9
+ v0 -6*v1 + 3*v2  + 5  <  0; value: -1
+ 4*v0 -1*v1 -2*v3 -3  <  0; value: -10
+ -5*v0 -1*v1 + 4*v3 -5  =  0; value: 0
0: 2 3 4 5 
1: 1 2 3 4 5 
2: 2 3 
3: 1 4 5 
optimal: (-2 -e*1)
+ -2  <  0; value: -2
- -1*v1 + 4*v3 -5  =  0; value: 0
- 37/6*v0 -5/2*v2  + 5/6  <  0; value: -5/2
- v0 + 3*v2 -24*v3  + 35  <  0; value: -9/2
+ -7  <=  0; value: -7
- -5*v0  =  0; value: 0
0: 2 3 4 5 
1: 1 2 3 4 5 
2: 2 3 4 
3: 1 4 5 3 2 
0: 0 -> 0
1: 3 -> 9/4
2: 4 -> 4/3
3: 2 -> 29/16
+ 2*v0 -2*v1  <=  0; value: -6
+ -3*v0 -4*v2  + 2  <  0; value: -13
+ v3  <=  0; value: 0
+ -4*v0  + 4  =  0; value: 0
+ -6*v0 + v1 -6*v2 -2  <=  0; value: -22
+ 6*v0 -2*v2 + 4*v3  =  0; value: 0
0: 1 3 4 5 
1: 4 
2: 1 4 5 
3: 2 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -6
+ -3*v0 -4*v2  + 2  <  0; value: -13
+ v3  <=  0; value: 0
+ -4*v0  + 4  =  0; value: 0
+ -6*v0 + v1 -6*v2 -2  <=  0; value: -22
+ 6*v0 -2*v2 + 4*v3  =  0; value: 0
0: 1 3 4 5 
1: 4 
2: 1 4 5 
3: 2 5 
0: 1 -> 1
1: 4 -> 4
2: 3 -> 3
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -2
+ -6*v3  <=  0; value: -30
+ 6*v0 -5*v1  + 1  <=  0; value: -1
+ -5*v0 -6*v2  + 33  =  0; value: 0
+ -6*v1 -3*v2 -5*v3  + 58  =  0; value: 0
+ 6*v0 + 5*v2 -66  <  0; value: -33
0: 2 3 5 
1: 2 4 
2: 3 4 5 
3: 1 4 
optimal: oo
+ 12/25*v2 -76/25  <=  0; value: -8/5
+ -846/125*v2 -1392/125  <=  0; value: -786/25
- 6*v0 + 5/2*v2 + 25/6*v3 -142/3  <=  0; value: 0
- -5*v0 -6*v2  + 33  =  0; value: 0
- -6*v1 -3*v2 -5*v3  + 58  =  0; value: 0
+ -11/5*v2 -132/5  <  0; value: -33
0: 2 3 5 1 
1: 2 4 
2: 3 4 5 2 1 
3: 1 4 2 
0: 3 -> 3
1: 4 -> 19/5
2: 3 -> 3
3: 5 -> 131/25
+ 2*v0 -2*v1  <=  0; value: 0
+ -2*v1 -1*v2  + 13  =  0; value: 0
+ -2*v0 -6*v1 -1*v3  + 4  <  0; value: -31
+ -6*v0 + 5*v1 -2*v2  + 14  =  0; value: 0
+ -5*v0 -5*v1  + 30  <=  0; value: -10
+ 5*v0 -6*v3 -5  <  0; value: -3
0: 2 3 4 5 
1: 1 2 3 4 
2: 1 3 
3: 2 5 
optimal: oo
+ 4/5*v3 -2  <  0; value: 2/5
- -2*v1 -1*v2  + 13  =  0; value: 0
+ -41/5*v3 -10  <  0; value: -173/5
- -6*v0 -9/2*v2  + 93/2  =  0; value: 0
+ -10*v3  + 15  <  0; value: -15
- 5*v0 -6*v3 -5  <  0; value: -3/2
0: 2 3 4 5 
1: 1 2 3 4 
2: 1 3 2 4 
3: 2 5 4 
0: 4 -> 43/10
1: 4 -> 21/5
2: 5 -> 23/5
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 2
+ 6*v0 -3*v3 -12  <  0; value: -6
+ -1*v0 -4*v3 -1  <=  0; value: -20
+ -6*v0 -3  <=  0; value: -21
+ -2*v0 -1*v3 -4  <=  0; value: -14
+ 5*v0 -1*v1 -32  <  0; value: -19
0: 1 2 3 4 5 
1: 5 
2: 
3: 1 2 4 
optimal: (68 -e*1)
+  + 68  <  0; value: 68
+ -3*v3 -15  <  0; value: -27
+ -4*v3 -1/2  <=  0; value: -33/2
- -6*v0 -3  <=  0; value: 0
+ -1*v3 -3  <=  0; value: -7
- 5*v0 -1*v1 -32  <  0; value: -1
0: 1 2 3 4 5 
1: 5 
2: 
3: 1 2 4 
0: 3 -> -1/2
1: 2 -> -67/2
2: 1 -> 1
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -2
+ 4*v0 -20  <  0; value: -12
+ 5*v1 -15  =  0; value: 0
+ 3*v3 -4  <  0; value: -1
+ 6*v2 -6  =  0; value: 0
+ 5*v2 + 4*v3 -22  <=  0; value: -13
0: 1 
1: 2 
2: 4 5 
3: 3 5 
optimal: (4 -e*1)
+  + 4  <  0; value: 4
- 4*v0 -20  <  0; value: -4
- 5*v1 -15  =  0; value: 0
+ 3*v3 -4  <  0; value: -1
+ 6*v2 -6  =  0; value: 0
+ 5*v2 + 4*v3 -22  <=  0; value: -13
0: 1 
1: 2 
2: 4 5 
3: 3 5 
0: 2 -> 4
1: 3 -> 3
2: 1 -> 1
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -6
+ v2 -5  =  0; value: 0
+ 4*v0 -4*v2  + 12  =  0; value: 0
+ -5*v1 -6*v3  + 8  <  0; value: -23
+ -4*v1 + 3*v3  + 14  <  0; value: -3
+ -2*v0 + 4*v2 -36  <=  0; value: -20
0: 2 5 
1: 3 4 
2: 1 2 5 
3: 3 4 
optimal: (-20/13 -e*1)
+ -20/13  <  0; value: -20/13
- v2 -5  =  0; value: 0
- 4*v0 -4*v2  + 12  =  0; value: 0
- -39/4*v3 -19/2  <=  0; value: 0
- -4*v1 + 3*v3  + 14  <  0; value: -4
+ -20  <=  0; value: -20
0: 2 5 
1: 3 4 
2: 1 2 5 
3: 3 4 
0: 2 -> 2
1: 5 -> 49/13
2: 5 -> 5
3: 1 -> -38/39
+ 2*v0 -2*v1  <=  0; value: -8
+ -5*v0 -5*v1  + 20  =  0; value: 0
+ -5*v1 + 6*v2 -6  <=  0; value: -14
+ 3*v0 + 2*v1 -8  =  0; value: 0
+ -1*v1 -5*v2  + 3  <=  0; value: -11
+ 6*v1 -29  <=  0; value: -5
0: 1 3 
1: 1 2 3 4 5 
2: 2 4 
3: 
optimal: -8
+ -8  <=  0; value: -8
- -5*v0 -5*v1  + 20  =  0; value: 0
+ 6*v2 -26  <=  0; value: -14
- v0  =  0; value: 0
+ -5*v2 -1  <=  0; value: -11
+ -5  <=  0; value: -5
0: 1 3 2 4 5 
1: 1 2 3 4 5 
2: 2 4 
3: 
0: 0 -> 0
1: 4 -> 4
2: 2 -> 2
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ -2*v1 -1*v3 -1  <  0; value: -12
+ 5*v0 + v2 -32  <  0; value: -10
+ -2*v0 -2*v1 -1  <  0; value: -17
+ -6*v2 + 6*v3 -13  <=  0; value: -7
+ -5*v2  <=  0; value: -10
0: 2 3 
1: 1 3 
2: 2 4 5 
3: 1 4 
optimal: (431/21 -e*1)
+  + 431/21  <  0; value: 431/21
- -2*v1 -1*v3 -1  <  0; value: -2
- 7*v0 -205/6  <  0; value: -37/12
- -2*v0 + v2  + 13/6  <=  0; value: 0
- -6*v2 + 6*v3 -13  <=  0; value: 0
+ -1595/42  <  0; value: -1595/42
0: 2 3 5 
1: 1 3 
2: 2 4 5 3 
3: 1 4 3 
0: 4 -> 373/84
1: 4 -> -331/84
2: 2 -> 47/7
3: 3 -> 373/42
+ 2*v0 -2*v1  <=  0; value: 8
+ 6*v1 + v2 -1*v3 -2  <  0; value: -1
+ -5*v2 -10  <=  0; value: -30
+ 3*v0 + 5*v2 -63  <  0; value: -31
+ -6*v0 -2*v2 -31  <  0; value: -63
+ -5*v2 -11  <=  0; value: -31
0: 3 4 
1: 1 
2: 1 2 3 4 5 
3: 1 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 8
+ 6*v1 + v2 -1*v3 -2  <  0; value: -1
+ -5*v2 -10  <=  0; value: -30
+ 3*v0 + 5*v2 -63  <  0; value: -31
+ -6*v0 -2*v2 -31  <  0; value: -63
+ -5*v2 -11  <=  0; value: -31
0: 3 4 
1: 1 
2: 1 2 3 4 5 
3: 1 
0: 4 -> 4
1: 0 -> 0
2: 4 -> 4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ v2 -10  <=  0; value: -6
+ -3*v1 + 5*v2 + 2*v3 -27  =  0; value: 0
+ 4*v0 -7  <=  0; value: -3
+ -3*v1 + 4*v2 -16  <=  0; value: -3
+ -1*v0 + 5*v1 -1*v3  <  0; value: -1
0: 3 5 
1: 2 4 5 
2: 1 2 4 
3: 2 5 
optimal: oo
+ 2*v0 -8/3*v2  + 32/3  <=  0; value: 2
+ v2 -10  <=  0; value: -6
- -3*v1 + 5*v2 + 2*v3 -27  =  0; value: 0
+ 4*v0 -7  <=  0; value: -3
- -1*v2 -2*v3  + 11  <=  0; value: 0
+ -1*v0 + 43/6*v2 -193/6  <  0; value: -9/2
0: 3 5 
1: 2 4 5 
2: 1 2 4 5 
3: 2 5 4 
0: 1 -> 1
1: 1 -> 0
2: 4 -> 4
3: 5 -> 7/2
+ 2*v0 -2*v1  <=  0; value: -2
+ 2*v2 + 6*v3 -32  =  0; value: 0
+ -1*v0  <=  0; value: 0
+ -2*v0 + 6*v1 + 5*v2 -29  <  0; value: -18
+ -5*v0 -6*v1 -5*v2  + 11  =  0; value: 0
+ v0 -5*v3 -12  <=  0; value: -37
0: 2 3 4 5 
1: 3 4 
2: 1 3 4 
3: 1 5 
optimal: oo
+ 8/3*v0  + 35  <=  0; value: 35
- 2*v2 + 6*v3 -32  =  0; value: 0
+ -1*v0  <=  0; value: 0
+ -7*v0 -18  <  0; value: -18
- -5*v0 -6*v1 -5*v2  + 11  =  0; value: 0
- v0 -5*v3 -12  <=  0; value: 0
0: 2 3 4 5 
1: 3 4 
2: 1 3 4 
3: 1 5 
0: 0 -> 0
1: 1 -> -35/2
2: 1 -> 116/5
3: 5 -> -12/5
+ 2*v0 -2*v1  <=  0; value: 2
+ v0 -5*v1 + v3 -5  <=  0; value: 0
+ 2*v1 + 4*v2 -16  =  0; value: 0
+ v0 -2*v1 + 2*v3 -26  <=  0; value: -17
+ 6*v1 + 3*v3 -35  <  0; value: -23
+ -5*v0 -2*v1 + 4*v2 -28  <=  0; value: -17
0: 1 3 5 
1: 1 2 3 4 5 
2: 2 5 
3: 1 3 4 
optimal: oo
+ 9/2*v0  + 6  <=  0; value: 21/2
- v0 -5*v1 + v3 -5  <=  0; value: 0
- 2/5*v0 + 4*v2 + 2/5*v3 -18  =  0; value: 0
+ -11*v0 -40  <=  0; value: -51
+ -117/4*v0 -83  <  0; value: -449/4
- -5*v0 + 8*v2 -44  <=  0; value: 0
0: 1 3 5 2 4 
1: 1 2 3 4 5 
2: 2 5 3 4 
3: 1 3 4 2 5 
0: 1 -> 1
1: 0 -> -17/4
2: 4 -> 49/8
3: 4 -> -69/4
+ 2*v0 -2*v1  <=  0; value: 4
+ -4*v1  + 10  <=  0; value: -2
+ -1*v0 -2*v1 -3*v3  + 18  <=  0; value: -5
+ -5*v2  <=  0; value: 0
+ 4*v0 -4*v3 -9  <=  0; value: -5
+ 2*v0 -27  <=  0; value: -17
0: 2 4 5 
1: 1 2 
2: 3 
3: 2 4 
optimal: 22
+  + 22  <=  0; value: 22
- -4*v1  + 10  <=  0; value: 0
+ -137/4  <=  0; value: -137/4
+ -5*v2  <=  0; value: 0
- 4*v0 -4*v3 -9  <=  0; value: 0
- 2*v3 -45/2  <=  0; value: 0
0: 2 4 5 
1: 1 2 
2: 3 
3: 2 4 5 
0: 5 -> 27/2
1: 3 -> 5/2
2: 0 -> 0
3: 4 -> 45/4
+ 2*v0 -2*v1  <=  0; value: -4
+ -6*v1 -4*v2 + 6*v3  + 20  =  0; value: 0
+ -6*v0 -4*v1 + 4*v3  + 17  <=  0; value: -1
+ -1*v0 -2*v2 -3*v3 -2  <=  0; value: -30
+ 5*v0 -25  <  0; value: -10
+ v0 + 3*v3 -27  <=  0; value: -9
0: 2 3 4 5 
1: 1 2 
2: 1 3 
3: 1 2 3 5 
optimal: (103/3 -e*1)
+  + 103/3  <  0; value: 103/3
- -6*v1 -4*v2 + 6*v3  + 20  =  0; value: 0
- -6*v0 + 8/3*v2  + 11/3  <=  0; value: 0
- -1*v0 -2*v2 -3*v3 -2  <=  0; value: 0
- 5*v0 -25  <  0; value: -5
+ -195/4  <  0; value: -195/4
0: 2 3 4 5 5 
1: 1 2 
2: 1 3 2 5 
3: 1 2 3 5 
0: 3 -> 4
1: 5 -> -53/6
2: 5 -> 61/8
3: 5 -> -85/12
+ 2*v0 -2*v1  <=  0; value: 0
+ -1*v0 + 6*v1 -14  <  0; value: -9
+ -6*v2 -5*v3 -1  <=  0; value: -25
+ -2*v0 + 4*v1 -2*v2 -4  <  0; value: -10
+ 2*v0 + 5*v1 -3*v2  <=  0; value: -5
+ -1*v0 + 4*v3  + 1  <=  0; value: 0
0: 1 3 4 5 
1: 1 3 4 
2: 2 3 4 
3: 2 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 0
+ -1*v0 + 6*v1 -14  <  0; value: -9
+ -6*v2 -5*v3 -1  <=  0; value: -25
+ -2*v0 + 4*v1 -2*v2 -4  <  0; value: -10
+ 2*v0 + 5*v1 -3*v2  <=  0; value: -5
+ -1*v0 + 4*v3  + 1  <=  0; value: 0
0: 1 3 4 5 
1: 1 3 4 
2: 2 3 4 
3: 2 5 
0: 1 -> 1
1: 1 -> 1
2: 4 -> 4
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: -2
+ -2*v0 + 3*v1 -12  <=  0; value: -5
+ 5*v0 + 4*v3 -39  <  0; value: -7
+ 6*v0 -2*v2 -25  <  0; value: -11
+ 6*v0 + 4*v2 -44  =  0; value: 0
+ 6*v1 + 3*v2 -78  <=  0; value: -33
0: 1 2 3 4 
1: 1 5 
2: 3 4 5 
3: 2 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: -2
+ -2*v0 + 3*v1 -12  <=  0; value: -5
+ 5*v0 + 4*v3 -39  <  0; value: -7
+ 6*v0 -2*v2 -25  <  0; value: -11
+ 6*v0 + 4*v2 -44  =  0; value: 0
+ 6*v1 + 3*v2 -78  <=  0; value: -33
0: 1 2 3 4 
1: 1 5 
2: 3 4 5 
3: 2 
0: 4 -> 4
1: 5 -> 5
2: 5 -> 5
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 2
+ 4*v1 + 3*v3 -44  <  0; value: -27
+ 5*v2  <=  0; value: 0
+ -6*v1 + 5*v2 -9  <  0; value: -21
+ -6*v0 -3  <=  0; value: -21
+ -4*v1  + 8  =  0; value: 0
0: 4 
1: 1 3 5 
2: 2 3 
3: 1 
optimal: oo
+ 2*v0 -4  <=  0; value: 2
+ 3*v3 -36  <  0; value: -27
+ 5*v2  <=  0; value: 0
+ 5*v2 -21  <  0; value: -21
+ -6*v0 -3  <=  0; value: -21
- -4*v1  + 8  =  0; value: 0
0: 4 
1: 1 3 5 
2: 2 3 
3: 1 
0: 3 -> 3
1: 2 -> 2
2: 0 -> 0
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -6
+ -5*v0 + 6*v3 -25  <=  0; value: -6
+ 5*v0 -3*v1  <=  0; value: -7
+ 3*v0 -2*v1  + 5  <=  0; value: 0
+ -3*v1  + 2  <  0; value: -10
+ -5*v1 -15  <  0; value: -35
0: 1 2 3 
1: 2 3 4 5 
2: 
3: 1 
optimal: (-34/9 -e*1)
+ -34/9  <  0; value: -34/9
- -5*v0 + 6*v3 -25  <=  0; value: 0
+ -73/9  <  0; value: -73/9
- 3*v0 -2*v1  + 5  <=  0; value: 0
- -27/5*v3  + 17  <  0; value: -23/10
+ -55/3  <=  0; value: -55/3
0: 1 2 3 4 5 
1: 2 3 4 5 
2: 
3: 1 4 5 2 
0: 1 -> -32/45
1: 4 -> 43/30
2: 0 -> 0
3: 4 -> 193/54
+ 2*v0 -2*v1  <=  0; value: -6
+ -2*v1 + 5*v2 + 5*v3 -10  =  0; value: 0
+ -6*v3  =  0; value: 0
+ -1*v1 + 6*v2 -48  <=  0; value: -29
+ 2*v0 -4*v2  + 6  <  0; value: -6
+ -5*v0 -2*v3 -4  <=  0; value: -14
0: 4 5 
1: 1 3 
2: 1 3 4 
3: 1 2 5 
optimal: (29/10 -e*1)
+  + 29/10  <  0; value: 29/10
- -2*v1 + 5*v2 + 5*v3 -10  =  0; value: 0
- -6*v3  =  0; value: 0
+ -783/20  <  0; value: -783/20
- 2*v0 -4*v2  + 6  <  0; value: -4
- -5*v0 -4  <=  0; value: 0
0: 4 5 3 
1: 1 3 
2: 1 3 4 
3: 1 2 5 3 
0: 2 -> -4/5
1: 5 -> 1/4
2: 4 -> 21/10
3: 0 -> 0
+ 2*v0 -2*v1  <=  0; value: 0
+ 6*v2 + 4*v3 -69  <=  0; value: -43
+ -5*v0 -2  <=  0; value: -7
+ -3*v0 -4*v1  <  0; value: -7
+ 4*v0 + v1 + 2*v2 -16  <  0; value: -5
+ 2*v0 -4*v1  + 2  =  0; value: 0
0: 2 3 4 5 
1: 3 4 5 
2: 1 4 
3: 1 
optimal: oo
+ -4/9*v2  + 22/9  <  0; value: 10/9
+ 6*v2 + 4*v3 -69  <=  0; value: -43
+ 20/9*v2 -173/9  <  0; value: -113/9
+ 20/9*v2 -173/9  <  0; value: -113/9
- 9/2*v0 + 2*v2 -31/2  <  0; value: -5/2
- 2*v0 -4*v1  + 2  =  0; value: 0
0: 2 3 4 5 
1: 3 4 5 
2: 1 4 2 3 
3: 1 
0: 1 -> 14/9
1: 1 -> 23/18
2: 3 -> 3
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -6
+ -1*v1 + 5*v2 -31  <=  0; value: -15
+ -4*v2 -1*v3  + 16  <=  0; value: -3
+ v0 + 3*v2 -13  <=  0; value: 0
+ -5*v0 -6*v1 -1*v2  + 33  =  0; value: 0
+ 6*v1 + 4*v2 -2*v3 -66  <  0; value: -32
0: 3 4 
1: 1 4 5 
2: 1 2 3 4 5 
3: 2 5 
optimal: oo
+ 8/3*v3 -6  <=  0; value: 2
+ -2/3*v3 -15  <=  0; value: -17
- 4/3*v0 -1*v3 -4/3  <=  0; value: 0
- v0 + 3*v2 -13  <=  0; value: 0
- -5*v0 -6*v1 -1*v2  + 33  =  0; value: 0
+ -13/2*v3 -26  <  0; value: -91/2
0: 3 4 1 5 2 
1: 1 4 5 
2: 1 2 3 4 5 
3: 2 5 1 
0: 1 -> 13/4
1: 4 -> 9/4
2: 4 -> 13/4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -4
+ 6*v2 + 4*v3 -25  <  0; value: -11
+ -2*v3 -3  <=  0; value: -7
+ 4*v0 + v2 + 4*v3 -35  <=  0; value: -18
+ 2*v1 -1*v3 -6  =  0; value: 0
+ v1 -2*v2 -2*v3 -1  <=  0; value: -3
0: 3 
1: 4 5 
2: 1 3 5 
3: 1 2 3 4 5 
optimal: 239/16
+  + 239/16  <=  0; value: 239/16
+ -73/4  <  0; value: -73/4
- 8/3*v2 -17/3  <=  0; value: 0
- 4*v0 -311/8  <=  0; value: 0
- 2*v1 -1*v3 -6  =  0; value: 0
- -2*v2 -3/2*v3  + 2  <=  0; value: 0
0: 3 
1: 4 5 
2: 1 3 5 2 
3: 1 2 3 4 5 
0: 2 -> 311/32
1: 4 -> 9/4
2: 1 -> 17/8
3: 2 -> -3/2
+ 2*v0 -2*v1  <=  0; value: -4
+ -4*v0 -6*v2 -4*v3  + 48  =  0; value: 0
+ -1*v1 -2  <=  0; value: -6
+  <=  0; value: 0
+ 5*v3 -20  =  0; value: 0
+ -3*v0 -2*v1  + 12  <=  0; value: -2
0: 1 5 
1: 2 5 
2: 1 
3: 1 4 
optimal: 44/3
+  + 44/3  <=  0; value: 44/3
- -4*v0 -6*v2 -4*v3  + 48  =  0; value: 0
- -9/4*v2  + 4  <=  0; value: 0
+  <=  0; value: 0
- 5*v3 -20  =  0; value: 0
- -3*v0 -2*v1  + 12  <=  0; value: 0
0: 1 5 2 
1: 2 5 
2: 1 2 
3: 1 4 2 
0: 2 -> 16/3
1: 4 -> -2
2: 4 -> 16/9
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 4
+ 3*v0 -1*v1 + 4*v3 -26  =  0; value: 0
+ -2*v0 + v2  =  0; value: 0
+ 2*v0 -6*v1 -5  <  0; value: -1
+ 3*v0 -6*v3 -20  <=  0; value: -44
+ -2*v1 + 4*v3 -34  <=  0; value: -14
0: 1 2 3 4 
1: 1 3 5 
2: 2 
3: 1 4 5 
optimal: (38/3 -e*1)
+  + 38/3  <  0; value: 38/3
- 3*v0 -1*v1 + 4*v3 -26  =  0; value: 0
- -2*v0 + v2  =  0; value: 0
- -16*v0 -24*v3  + 151  <  0; value: -24
- 7/2*v2 -231/4  <=  0; value: 0
+ -104/3  <=  0; value: -104/3
0: 1 2 3 4 5 
1: 1 3 5 
2: 2 4 5 
3: 1 4 5 3 
0: 2 -> 33/4
1: 0 -> 71/12
2: 4 -> 33/2
3: 5 -> 43/24
+ 2*v0 -2*v1  <=  0; value: 4
+ -1*v0 -6*v1 + 5*v2 -1  =  0; value: 0
+ -3*v0 + 6*v2 -3  =  0; value: 0
+ v2 -2  =  0; value: 0
+ 5*v1 + 5*v2 + 4*v3 -79  <=  0; value: -52
+ -6*v1 + 3*v2  <=  0; value: 0
0: 1 2 
1: 1 4 5 
2: 1 2 3 4 5 
3: 4 
optimal: 4
+  + 4  <=  0; value: 4
- -1*v0 -6*v1 + 5*v2 -1  =  0; value: 0
- -3*v0 + 6*v2 -3  =  0; value: 0
- 1/2*v0 -3/2  =  0; value: 0
+ 4*v3 -64  <=  0; value: -52
+  <=  0; value: 0
0: 1 2 5 4 3 
1: 1 4 5 
2: 1 2 3 4 5 
3: 4 
0: 3 -> 3
1: 1 -> 1
2: 2 -> 2
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ -3*v2  + 8  <=  0; value: -1
+ 3*v2 + 6*v3 -21  =  0; value: 0
+ -5*v2 -4  <  0; value: -19
+ -3*v1 -5  <=  0; value: -20
+ -3*v1 + 3*v2 + 2*v3  + 1  <  0; value: -1
0: 
1: 4 5 
2: 1 2 3 5 
3: 2 5 
optimal: oo
+ 2*v0 -80/9  <  0; value: 10/9
- -3*v2  + 8  <=  0; value: 0
- 3*v2 + 6*v3 -21  =  0; value: 0
+ -52/3  <  0; value: -52/3
+ -55/3  <=  0; value: -55/3
- -3*v1 + 3*v2 + 2*v3  + 1  <  0; value: -5/6
0: 
1: 4 5 
2: 1 2 3 5 4 
3: 2 5 4 
0: 5 -> 5
1: 5 -> 85/18
2: 3 -> 8/3
3: 2 -> 13/6
+ 2*v0 -2*v1  <=  0; value: -4
+ -6*v1 + 2*v2 -1*v3  + 29  =  0; value: 0
+ 2*v1 -3*v2 -6*v3 -6  <=  0; value: -20
+ -3*v0 -1*v3  + 10  <  0; value: -2
+ -2*v2 -3*v3  + 12  <=  0; value: -1
+ 5*v0 -5*v2 -11  <=  0; value: -6
0: 3 5 
1: 1 2 
2: 1 2 4 5 
3: 1 2 3 4 
optimal: oo
+ 2*v0 -2/3*v2 + 1/3*v3 -29/3  <=  0; value: -4
- -6*v1 + 2*v2 -1*v3  + 29  =  0; value: 0
+ -7/3*v2 -19/3*v3  + 11/3  <=  0; value: -20
+ -3*v0 -1*v3  + 10  <  0; value: -2
+ -2*v2 -3*v3  + 12  <=  0; value: -1
+ 5*v0 -5*v2 -11  <=  0; value: -6
0: 3 5 
1: 1 2 
2: 1 2 4 5 
3: 1 2 3 4 
0: 3 -> 3
1: 5 -> 5
2: 2 -> 2
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: -4
+ -5*v0 + 5*v1 -3*v3 -4  =  0; value: 0
+ 2*v2 -7  <=  0; value: -1
+ -5*v0 + v3  + 8  =  0; value: 0
+ -1*v1 + v3  + 2  <=  0; value: 0
+ 2*v0 -4*v3  + 4  =  0; value: 0
0: 1 3 5 
1: 1 4 
2: 2 
3: 1 3 4 5 
optimal: -4
+ -4  <=  0; value: -4
- -5*v0 + 5*v1 -3*v3 -4  =  0; value: 0
+ 2*v2 -7  <=  0; value: -1
- -5*v0 + v3  + 8  =  0; value: 0
+  <=  0; value: 0
- -18*v0  + 36  =  0; value: 0
0: 1 3 5 4 
1: 1 4 
2: 2 
3: 1 3 4 5 
0: 2 -> 2
1: 4 -> 4
2: 3 -> 3
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: -6
+ -1*v0  + 1  =  0; value: 0
+ -2*v1  <=  0; value: -8
+ 5*v2 -20  =  0; value: 0
+ 5*v1 + 2*v2 -2*v3 -40  <=  0; value: -18
+ -3*v1 -4*v2 -12  <=  0; value: -40
0: 1 
1: 2 4 5 
2: 3 4 5 
3: 4 
optimal: 2
+  + 2  <=  0; value: 2
- -1*v0  + 1  =  0; value: 0
- -2*v1  <=  0; value: 0
+ 5*v2 -20  =  0; value: 0
+ 2*v2 -2*v3 -40  <=  0; value: -38
+ -4*v2 -12  <=  0; value: -28
0: 1 
1: 2 4 5 
2: 3 4 5 
3: 4 
0: 1 -> 1
1: 4 -> 0
2: 4 -> 4
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 10
+ -3*v0 -6*v3 -11  <  0; value: -32
+ 5*v0 + 3*v2 -67  <  0; value: -30
+ 6*v2 -58  <  0; value: -34
+ 5*v3 -12  <=  0; value: -7
+ 3*v0 + v2 -5*v3 -14  =  0; value: 0
0: 1 2 5 
1: 
2: 2 3 5 
3: 1 4 5 
optimal: oo
+ 2*v0 -2*v1  <=  0; value: 10
+ -3*v0 -6*v3 -11  <  0; value: -32
+ 5*v0 + 3*v2 -67  <  0; value: -30
+ 6*v2 -58  <  0; value: -34
+ 5*v3 -12  <=  0; value: -7
+ 3*v0 + v2 -5*v3 -14  =  0; value: 0
0: 1 2 5 
1: 
2: 2 3 5 
3: 1 4 5 
0: 5 -> 5
1: 0 -> 0
2: 4 -> 4
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: 0
+ -1*v1  + 1  <=  0; value: 0
+ -3*v2 -6*v3 -13  <=  0; value: -52
+ 2*v1 + 3*v2 -17  =  0; value: 0
+ 5*v1 -1*v3 -1  <=  0; value: 0
+ 4*v0 -4*v2 -4*v3 -19  <=  0; value: -51
0: 5 
1: 1 3 4 
2: 2 3 5 
3: 2 4 5 
optimal: oo
+ 2*v2 + 2*v3  + 15/2  <=  0; value: 51/2
- -1*v1  + 1  <=  0; value: 0
+ -3*v2 -6*v3 -13  <=  0; value: -52
+ 3*v2 -15  =  0; value: 0
+ -1*v3  + 4  <=  0; value: 0
- 4*v0 -4*v2 -4*v3 -19  <=  0; value: 0
0: 5 
1: 1 3 4 
2: 2 3 5 
3: 2 4 5 
0: 1 -> 55/4
1: 1 -> 1
2: 5 -> 5
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: 2
+ -4*v2 -6*v3 -2  <=  0; value: -24
+ 6*v2 + 2*v3 -43  <=  0; value: -17
+ 6*v0 + 3*v1 -33  =  0; value: 0
+ 5*v2 -52  <  0; value: -32
+ 5*v2 -32  <  0; value: -12
0: 3 
1: 3 
2: 1 2 4 5 
3: 1 2 
optimal: oo
+ 6*v0 -22  <=  0; value: 2
+ -4*v2 -6*v3 -2  <=  0; value: -24
+ 6*v2 + 2*v3 -43  <=  0; value: -17
- 6*v0 + 3*v1 -33  =  0; value: 0
+ 5*v2 -52  <  0; value: -32
+ 5*v2 -32  <  0; value: -12
0: 3 
1: 3 
2: 1 2 4 5 
3: 1 2 
0: 4 -> 4
1: 3 -> 3
2: 4 -> 4
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -4
+ -5*v1 -6*v2  + 3  <  0; value: -22
+ 3*v1 -4*v2 + 3*v3 -56  <=  0; value: -29
+ v0 -3*v3 -3  <=  0; value: -12
+ -1*v1 -2*v2  + 5  =  0; value: 0
+ -3*v0 -4*v1 + 4*v3 -12  <  0; value: -25
0: 3 5 
1: 1 2 4 5 
2: 1 2 4 
3: 2 3 5 
optimal: (108/5 -e*1)
+  + 108/5  <  0; value: 108/5
- 5/6*v0 -4  <=  0; value: 0
+ -471/5  <  0; value: -471/5
- v0 -3*v3 -3  <=  0; value: 0
- -1*v1 -2*v2  + 5  =  0; value: 0
- -3*v0 + 8*v2 + 4*v3 -32  <  0; value: -8
0: 3 5 1 2 
1: 1 2 4 5 
2: 1 2 4 5 
3: 2 3 5 1 
0: 3 -> 24/5
1: 5 -> -4
2: 0 -> 9/2
3: 4 -> 3/5
+ 2*v0 -2*v1  <=  0; value: 8
+ 4*v2 -3*v3  + 8  <=  0; value: -7
+ 5*v1 + 5*v3 -25  =  0; value: 0
+ 5*v0 + 3*v1 -20  =  0; value: 0
+ 5*v1  <=  0; value: 0
+ -5*v0 + 5*v3 -9  <=  0; value: -4
0: 3 5 
1: 2 3 4 
2: 1 
3: 1 2 5 
optimal: 72/5
+  + 72/5  <=  0; value: 72/5
+ 4*v2 -13  <=  0; value: -13
- 5*v1 + 5*v3 -25  =  0; value: 0
- 5*v0 -3*v3 -5  =  0; value: 0
+ -10  <=  0; value: -10
- 10/3*v0 -52/3  <=  0; value: 0
0: 3 5 1 4 
1: 2 3 4 
2: 1 
3: 1 2 5 3 4 
0: 4 -> 26/5
1: 0 -> -2
2: 0 -> 0
3: 5 -> 7
+ 2*v0 -2*v1  <=  0; value: -4
+ 2*v2 -3*v3 -2  <=  0; value: -1
+ -6*v0 + 6*v3  =  0; value: 0
+ 6*v2 -3*v3 -10  <  0; value: -1
+ -3*v0 + 3*v2 + 5*v3 -17  <=  0; value: -9
+ -2*v1 + 4*v2 + 2*v3 -6  <=  0; value: -2
0: 2 4 
1: 5 
2: 1 3 4 5 
3: 1 2 3 4 5 
optimal: oo
+ -4*v2  + 6  <=  0; value: -2
+ -3*v0 + 2*v2 -2  <=  0; value: -1
- -6*v0 + 6*v3  =  0; value: 0
+ -3*v0 + 6*v2 -10  <  0; value: -1
+ 2*v0 + 3*v2 -17  <=  0; value: -9
- -2*v1 + 4*v2 + 2*v3 -6  <=  0; value: 0
0: 2 4 1 3 
1: 5 
2: 1 3 4 5 
3: 1 2 3 4 5 
0: 1 -> 1
1: 3 -> 2
2: 2 -> 2
3: 1 -> 1
+ 2*v0 -2*v1  <=  0; value: -6
+ -3*v0 -1*v1  + 7  =  0; value: 0
+ -5*v2  + 5  <=  0; value: -20
+ v2 + 6*v3 -82  <=  0; value: -53
+  <=  0; value: 0
+ 3*v1 + 6*v2 -42  =  0; value: 0
0: 1 
1: 1 5 
2: 2 3 5 
3: 3 
optimal: oo
+ -32*v3  + 1214/3  <=  0; value: 830/3
- -3*v0 -1*v1  + 7  =  0; value: 0
+ 30*v3 -405  <=  0; value: -285
- v2 + 6*v3 -82  <=  0; value: 0
+  <=  0; value: 0
- -9*v0 + 6*v2 -21  =  0; value: 0
0: 1 5 
1: 1 5 
2: 2 3 5 
3: 3 2 
0: 1 -> 109/3
1: 4 -> -102
2: 5 -> 58
3: 4 -> 4
+ 2*v0 -2*v1  <=  0; value: -4
+  <=  0; value: 0
+ 5*v2 -5  =  0; value: 0
+ 4*v1 -5*v2 -23  <=  0; value: -12
+ -2*v1  + 5  <  0; value: -3
+ -6*v0 -2*v1 + 2*v3  + 11  <  0; value: -1
0: 5 
1: 3 4 5 
2: 2 3 
3: 5 
optimal: oo
+ 2*v0 -5  <  0; value: -1
+  <=  0; value: 0
+ 5*v2 -5  =  0; value: 0
+ -5*v2 -13  <  0; value: -18
- 6*v0 -2*v3 -6  <=  0; value: 0
- -6*v0 -2*v1 + 2*v3  + 11  <  0; value: -3/2
0: 5 4 3 
1: 3 4 5 
2: 2 3 
3: 5 4 3 
0: 2 -> 2
1: 4 -> 13/4
2: 1 -> 1
3: 4 -> 3
+ 2*v0 -2*v1  <=  0; value: 2
+ -5*v0 -5*v2 -2*v3 -4  <=  0; value: -20
+ 3*v2 -5*v3 -5  <=  0; value: -17
+ -3*v0 + 2*v2  + 1  =  0; value: 0
+ 5*v2 + 4*v3 -17  =  0; value: 0
+ -3*v1  <=  0; value: 0
0: 1 3 
1: 5 
2: 1 2 3 4 
3: 1 2 4 
optimal: 494/111
+  + 494/111  <=  0; value: 494/111
+ -3410/111  <=  0; value: -3410/111
- -37/5*v3  + 26/5  <=  0; value: 0
- -3*v0 + 2*v2  + 1  =  0; value: 0
- 5*v2 + 4*v3 -17  =  0; value: 0
- -3*v1  <=  0; value: 0
0: 1 3 
1: 5 
2: 1 2 3 4 
3: 1 2 4 
0: 1 -> 247/111
1: 0 -> 0
2: 1 -> 105/37
3: 3 -> 26/37
+ 2*v0 -2*v1  <=  0; value: -4
+ 5*v2 -25  <=  0; value: 0
+ -4*v0 + 5*v1 + 2*v3 -33  <=  0; value: -16
+ -4*v1 + 3*v2 -4  <=  0; value: -9
+ -2*v0 -2*v1 -4*v2  + 36  =  0; value: 0
+ -2*v2 + 2*v3 -4  <  0; value: -10
0: 2 4 
1: 2 3 4 
2: 1 3 4 5 
3: 2 5 
optimal: 5
+  + 5  <=  0; value: 5
- 5*v2 -25  <=  0; value: 0
+ 2*v3 -161/4  <=  0; value: -145/4
- 4*v0 -21  <=  0; value: 0
- -2*v0 -2*v1 -4*v2  + 36  =  0; value: 0
+ 2*v3 -14  <  0; value: -10
0: 2 4 3 
1: 2 3 4 
2: 1 3 4 5 2 
3: 2 5 
0: 3 -> 21/4
1: 5 -> 11/4
2: 5 -> 5
3: 2 -> 2
+ 2*v0 -2*v1  <=  0; value: 2
+ 3*v0 + v2 -34  <  0; value: -17
+ 6*v0 + 2*v3 -38  =  0; value: 0
+ -1*v0 -2*v2  <=  0; value: -9
+ -1*v1 -6*v2 -13  <  0; value: -29
+ -5*v2  + 10  =  0; value: 0
0: 1 2 3 
1: 4 
2: 1 3 4 5 
3: 2 
optimal: (214/3 -e*1)
+  + 214/3  <  0; value: 214/3
- -1*v3 -13  <  0; value: -1
- 6*v0 + 2*v3 -38  =  0; value: 0
+ -44/3  <  0; value: -44/3
- -1*v1 -6*v2 -13  <  0; value: -1
- -5*v2  + 10  =  0; value: 0
0: 1 2 3 
1: 4 
2: 1 3 4 5 
3: 2 1 3 
0: 5 -> 31/3
1: 4 -> -24
2: 2 -> 2
3: 4 -> -12
+ 2*v0 -2*v1  <=  0; value: -6
+ -6*v2 + 2*v3  + 10  <=  0; value: -18
+ -6*v2  + 27  <=  0; value: -3
+ 4*v3 -6  <=  0; value: -2
+ 4*v0 -3*v1 -3*v3  + 12  =  0; value: 0
+ -6*v0  =  0; value: 0
0: 4 5 
1: 4 
2: 1 2 
3: 1 3 4 
optimal: -5
+ -5  <=  0; value: -5
+ -6*v2  + 13  <=  0; value: -17
+ -6*v2  + 27  <=  0; value: -3
- 4*v3 -6  <=  0; value: 0
- 4*v0 -3*v1 -3*v3  + 12  =  0; value: 0
- -6*v0  =  0; value: 0
0: 4 5 
1: 4 
2: 1 2 
3: 1 3 4 
0: 0 -> 0
1: 3 -> 5/2
2: 5 -> 5
3: 1 -> 3/2
+ 2*v0 -2*v1  <=  0; value: -4
+ 6*v2 -4*v3 -14  =  0; value: 0
+ -6*v0 -6*v1 -6*v2 -23  <=  0; value: -89
+ 2*v0 -3*v1 + 4*v3  + 5  =  0; value: 0
+ 4*v1 -1*v3 -20  <  0; value: -1
+ -1*v0 + 3*v2 -6  =  0; value: 0
0: 2 3 5 
1: 2 3 4 
2: 1 2 5 
3: 1 3 4 
optimal: -7/24
+ -7/24  <=  0; value: -7/24
- 6*v2 -4*v3 -14  =  0; value: 0
- -16*v0 -41  <=  0; value: 0
- 2*v0 -3*v1 + 4*v3  + 5  =  0; value: 0
+ -2677/96  <  0; value: -2677/96
- -1*v0 + 3*v2 -6  =  0; value: 0
0: 2 3 5 4 
1: 2 3 4 
2: 1 2 5 4 
3: 1 3 4 2 
0: 3 -> -41/16
1: 5 -> -29/12
2: 3 -> 55/48
3: 1 -> -57/32
+ 2*v0 -2*v1  <=  0; value: -10
+ -2*v0 + v3 -2  <=  0; value: 0
+ 6*v0 -1*v2 + 3*v3 -2  =  0; value: 0
+ 2*v1 -5*v2 -6  <=  0; value: -16
+ -3*v1 + 5*v2 + 4*v3 -13  =  0; value: 0
+ -5*v1  + 20  <=  0; value: -5
0: 1 2 
1: 3 4 5 
2: 2 3 4 
3: 1 2 4 
optimal: oo
+ 2*v0 -8  <=  0; value: -8
+ -68/19*v0 -3/19  <=  0; value: -3/19
- 6*v0 -1*v2 + 3*v3 -2  =  0; value: 0
+ -120/19*v0 -297/19  <=  0; value: -297/19
- -3*v1 + 5*v2 + 4*v3 -13  =  0; value: 0
- 40/3*v0 -95/9*v2  + 335/9  <=  0; value: 0
0: 1 2 5 3 
1: 3 4 5 
2: 2 3 4 5 1 
3: 1 2 4 5 3 
0: 0 -> 0
1: 5 -> 4
2: 4 -> 67/19
3: 2 -> 35/19
+ 2*v0 -2*v1  <=  0; value: -2
+ -4*v0 -1*v2  + 8  <=  0; value: -5
+ v0 -6*v1 + 5*v2  + 14  <=  0; value: -2
+ 2*v0 + 4*v1 -5*v2 -40  <=  0; value: -23
+ 4*v1 + 2*v2 -32  <=  0; value: -14
+ 5*v0 -1*v1 + 6*v3 -54  <  0; value: -25
0: 1 2 3 5 
1: 2 3 4 5 
2: 1 2 3 4 
3: 5 
optimal: 149/7
+  + 149/7  <=  0; value: 149/7
- -4*v0 -1*v2  + 8  <=  0; value: 0
- v0 -6*v1 + 5*v2  + 14  <=  0; value: 0
- 28/3*v0 -44  <=  0; value: 0
+ -542/7  <=  0; value: -542/7
+ 6*v3 -49/2  <  0; value: -13/2
0: 1 2 3 5 4 
1: 2 3 4 5 
2: 1 2 3 4 5 
3: 5 
0: 3 -> 33/7
1: 4 -> -83/14
2: 1 -> -76/7
3: 3 -> 3
+ 2*v0 -2*v1  <=  0; value: 0
+ -2*v0 + 6*v1 -3*v3 -53  <=  0; value: -33
+ -4*v1 + 3*v3  + 13  <=  0; value: -7
+ -5*v0 -2*v1  + 6  <  0; value: -29
+ 3*v0 + v1 -3*v2 -31  <  0; value: -14
+ 4*v1 + 2*v3 -49  <=  0; value: -29
0: 1 3 4 
1: 1 2 3 4 5 
2: 4 
3: 1 2 5 
optimal: oo
+ 42*v2  + 386  <  0; value: 428
+ -42*v2 -426  <  0; value: -468
- -4*v1 + 3*v3  + 13  <=  0; value: 0
- -5*v0 -3/2*v3 -1/2  <  0; value: -3/2
- 1/2*v0 -3*v2 -28  <  0; value: -1/2
+ -100*v2 -971  <  0; value: -1071
0: 1 3 4 5 
1: 1 2 3 4 5 
2: 4 1 5 
3: 1 2 5 3 4 
0: 5 -> 61
1: 5 -> -595/4
2: 1 -> 1
3: 0 -> -608/3
+ 2*v0 -2*v1  <=  0; value: 2
+ 2*v0 -4*v1  + 2  =  0; value: 0
+ 2*v0 -4*v3  <=  0; value: -2
+ 5*v0 + v3 -17  =  0; value: 0
+ 2*v1 -4  =  0; value: 0
+ 5*v0 + v1 -4*v3 -14  <=  0; value: -5
0: 1 2 3 5 
1: 1 4 5 
2: 
3: 2 3 5 
optimal: 2
+  + 2  <=  0; value: 2
- 2*v0 -4*v1  + 2  =  0; value